CSE584 (Spring 1997)

CSEbS84: Software Engineering

Lecture 3 (October 13, 1998)

David Notkin
Dept. of Computer Science & Engineering

University of Washington
www.cs.washington.edu/education/courses/584/CurrentQtr/

Software architecture

* An area of significant attention in the last

five years

- Garlan and Shaw

- Perry and Wolf
* There are two basic goals

- Capturing, cataloguing, and exploiting experience

in software designs
- Allowing reasoning about classes of designs

Notkin (c) 1997, 1998 3

4/15/97

Outline

* More recent issues in design
+ Architecture, patterns, frameworks
* Problems with information hiding (and ways

to overcome them)
- Open implementation O aspect-oriented
programming (AOP)
+ A slide show from Xerox PARC will conclude the
lecture tonight (thanks to Gregor Kiczales)

Notkin (c) 1997, 1998 2

An aside: compilers I

* The first compilers had ad hoc designs
+ Over time, as a number of compilers were

built, the designs became more structured
- Experience yielded benefits

+ Compiler phases, symbol table, etc.
- Plenty of theoretical advances

* Finite state machines, parsing, ...

Notkin (c) 1997, 1998 4

An aside: compilers IT

- Compilers are perhaps the best example of
shared experience in design
- Lots of tools that capture common aspects
- Undergraduate courses build compilers
- Most compilers look pretty similar in structure

+ But we still don't fully generate compilers
- Despite lots of effort and lots of money

- And, as T mentioned before, the code in
compilers is often less clean than the designs

Notkin (c) 1997, 1998 5

Other domains?

+ Which other domains are as successful in

this regard as compilers?

* Quite a few, but generally much more narrow

- DARPA ran a large project, Domain-Specific

Software Architectures (DSSA) a few years ago

+ IST: Command and control message processing

- Some 46L approaches are basically domain-
specific systems

Notkin (c) 1997, 1998 6

Notkin (c) 1997

CSE584 (Spring 1997)

Back to software architecture

* The hope is that by studying our experiences
with a variety of systems, we can gain
leverage as we did with compilers

- Capture the strengths and weaknesses of
various software structures
- Perhaps enabling designers to select appropriate

architectures more effectively

- Benefit from high-level study of software
structure

Notkin (c) 1997, 1998 7

4/15/97

Components and connectors

- Software architectures are composed of
components and connectors
- Components define the basic computations
comprising the system
+ Abstract data types, filters, etc.
- Connectors define the interconnections between
components
+ Procedure call, event announcement, etc.
- The line between them may be fuzzy at times

+ Ex: A connector might (de)serialize data, but can it
perform other, richer computations?

Notkin (c) 1997, 1998 8

Architectural style

» Defines the vocabulary of components and
connectors for a family (style)

+ Constraints on the elements and their
combination

- Topological constraints (no cycles,
register/announce relationships, etc.)

- Execution constraints (timing, etc.)

* By choosing a style, one gets all the known
properties of that style
- For any given architecture in that style

Notkin (c) 1997, 1998 9

Not just boxes and arrows

prd

Expert
System

+ Consider pipes & filters

- Pipes must compute local
transformations

- Filters must not share
state with other filters

- There must be no cycles
DB Internet| . Tf these constraints are

Ul

Agents | pot satisfied, it's not a
pipe & filter system
- One can't tell this from a
picture
Notkin (c) 1997, 1998 10

WRIGHT

+ WRIGHT provides a formal basis for

architectural description (it's an ADL)

- Language for precisely defining an architectural
specification

- Basis for analyzing the architecture of individual
software systems and families of systems

- Underlying model in CSP, checkable using
standard model checking technology

+ Defines a set of standard consistency and
completeness checks

Notkin (c) 1997, 1998 1

Notkin (c) 1997

Pipe connector in WRIGHT

Connector Pipe =
role Wite = write -~ Witer O close - V
role Reader = let ExitOnly = close - V
inlet DoRead =
(read - Reader ¢
read-eof - ExitOnly)
in DoRead ¢ ExitOnly
glue = let ReadOnly = Reader.Read - ExitOnly
¢ Reader.read-eof -
Reader.close - V
¢ Reader.close - V

Notkin (c) 1997, 1998 12

CSE584 (Spring 1997)

Decoding a little bit

+ Connectors represent links to components on
the roles, which are ports of the connectors

- The WRIGHT process descriptions describe the
obligations of each connector

* The glue process coordinates the behavior of
the roles

- Essentidlly, it defines a high-level protocol

* One can then prove properties about the
stated protocols

Notkin (c) 1997, 1998 13

4/15/97

Benefits

* In the pipes & filters example, a benefit of

the constraints is that deadlock will not
arise

- Again, in any instantiation of the style that
satisfies the constraints

+ One can think of the constraints as

obligations on the designer and on the
implementor
- Some properties can be automatically checked

Notkin (c) 1997, 1998 14

Specializations

* Architectural styles can have specializations

- A pipeline might further constrain an
architecture to a linear sequence of filters
connected by pipes

- A pipeline would have all properties that the pipe
& filter style has, plus more

Notkin (c) 1997, 1998 15

Well, do they help?

+ T like the basic software architecture

research as an intellectual tool

- The work is helping us better understand classes
of software structures that have shown
themselves as useful

- Simply improving our shared terminology is a
benefit

* Tt may not be fully distinct from Parnas’

families of systems, but enough to benefit

Notkin (c) 1997, 1998 16

Open questions T

+ What properties can be analyzed?
- Wright [Allen & Garlan]

+ Reason about architectures in terms of protocols,
using a CSP-like language
+ Roughly, type-checking of architectural styles
- Of these, which are sufficiently important to
Jjustify the investment
+ The investment is high, but in theory amortized
- What about across heterogeneous
architectures?

Notkin (c) 1997, 1998 17

Notkin (c) 1997

Open questions IT

* How does one go from an architectural style

to an architecture?

* How does one produce new architectural

styles?

Notkin (c) 1997, 1998 18

CSE584 (Spring 1997)

Open questions IIT

+ What is the relationship between

architectural and implementation?

- Does architectural information aid in going from
design to implementation?

- What happens as the implementation evolves in
ways inconsistent with the architecture?
* Which properties still hold, and how do we know this?

Notkin (c) 1997, 1998 19

4/15/97

Experience

+ It's a hot area, with lots of companies paying

attention

* Allen & Garlan recently reported on a case

study in applying architectural modeling to
the AEGIS Weapons System
- Used formalism to help "expose and resolve some

of the architectural problems that arose in
implementing the system”

- Similar advantages for the HLA project

Notkin (c) 1997, 1998 20

AEGIS

+ AEGIS Weapons System, control of US Navy ships

- Model problem for work in software architecture

Experiment
Control

[Doctrine | [Doctrine

[|
| Authoring | | Validation ‘T'“k Server)

Se

Doctrine
GeoServer Reasoning

Sener

Example benefits in AEGIS

* Clarifying client-server misconceptions

- Which party initiated interactions?
- Re-established after every request?
- Synchronous or asynchronous?

* WRIGHT used to clarify

- Avoiding deadlocks
- Reducing unnecessary synchronization

- And to simplify instrumentation of the
architecture

Notkin (c) 1997, 1998 22

Forcing discussions

- In some ways, the primary benefit of

architecture a la Garlan is that it forces

discussions of some critical issues

- The Xerox PARC Mesa/Cedar group did roughly
the equivalent by spending enormous amounts of
times in defining and clarifying interfaces,
before coding

+ I'm unsure the degree to which the

formalism per se helps, although there are

surely some supporting examples

Notkin (c) 1997, 1998 23

Notkin (c) 1997

On-going research

+ Environments to support the design of

architectural styles and architectures

* Architectural design languages (ADLs)
+ Formal models of architectures

- Architectural case studies

- Use of informal architectures

Notkin (c) 1997, 1998 24

CSE584 (Spring 1997) 4/15/97

Design patterns A weak analogy
+ Design patterns are idioms that are intended + I view high-level control structures in
to be "simple and elegant solutions to programming languages as quite the same
specific problems in object-oriented - For example, a while loop is an idiomatic
software design.” collection of machine instructions
+ They are drawn from actual software * Knuth's 1974 article ("Structured
systems Programming with go to Statements") shows
+ They are intended to be language- that this is not a language issue alone
independent - Patterns are a collection of "mini-
architectures” that combine structure and
behavior
Notkin (c) 1997, 1998 25 Notkin (c) 1997, 1998 26
Example: flyweight [6amma et al] Flyweight structure

FlyweightFactory Flyweight

=

¢ In.ren.r GetFlyweight(key) — Operation(extrinsicState)
. weighs

- Use sharing to support @ CD @ "

many fine-grained

objects efficiently ONORORORORORONO!
- Can't usudlly afford to

have small elements (I|ke @ ConcreteFlyweight UnsharedConcreteFlyweight

characters) be full- ° °

fledged objects @ 6 D @ rnsicstate st

+ Separate logical model

from physical model OLLLOLOOLOO [am]
J@@O@@O@@OO@O@
Notkin (c) 199 O®®®OOO®O®OOO Notkin (c) 1997, 1998 28
Categories of patterns An enlightening experience
- Creational + At a workshop a year or two ago, I had an

experience with two of the Gang of Four

+ They sat down with Griswold and me to show how to
use design patterns to (re)design a software design
we had published

+ The rate of communication between these two was
unbelievable

- And much of it was understandable to us without training
(good sign for a learning curve)

- Structural
+ Behavioral

Notkin (c) 1997, 1998 29 Notkin (c) 1997, 1998 30

Notkin (c) 1997 5

CSE584 (Spring 1997)

4/15/97

This is the real thing

- Design patterns are not a silver bullet

+ But they are impressive, important and worthy of
attention

+ T think that (slowly?) some of the patterns will
become part and parcel of designers' vocabularies

- This will improve communication and over time improve
the designs we produce

+ The relatively disciplined structure of the pattern
descriptions may be a plus

Notkin (c) 1997, 1998 31

The future

+ I'm somewhat worried that “second wave"
R&D will hurt more than help
- They may be considered a panacea

- They are surely going to be misunderstood

+ Everything now is a "pattern”, even if it doesn't have
the key characteristics

- Tools and languages for patterns may help, but
may also hinder

* How do patterns interact?

Notkin (c) 1997, 1998 32

Patterns resources

+ Patterns Home Page
- http://st-www.cs.uiuc.edu/users/patterns/patterns.html
+ Portland Pattern Repository
- http://c2.com/ppr/index.html
- FAQ
- http://g.0swego.edu/dl/pd-FAQ/pd-FAQ.html
+ &ang of Four book

- Design Patterns: Elements of Reusable Object-Oriented Software.
Gamma et. al. (as of 10/12/98 @ 12:45PM PDT, Amazon sales rank of 173)

+ OO journals, OOPSLA, etc.

Notkin (c) 1997, 1998 33

Do any of you use patterns?

Notkin (c) 1997, 1998 34

Frameworks

* Frameworks are another desigh buzzword
+ One way to think about them is as upside-
down layers

- That is, layered systems allow us to construct
families of systems by sharing lower layers

- Frameworks allow us to construct families of
systems by sharing upper “layers"”

- Instantiate and specialize provided classes
- "More" than patterns

Notkin (c) 1997, 1998 35

Examples

- DuPont's business model
— http://www-cat.ncsa.uiuc.edu/~yoder/Research/catdesc.html
- Visual table-based framework for improving
financial decisions, etc.
- CHOICES: customizing operating systems
— http://choices.cs.uiuc.edu/choices/choices.html
- Frameworks for VM, memory management,
process management, file storage, exceptions
and hardware device drivers, distributed
processing and communication

Notkin (c) 1997, 1998 36

Notkin (c) 1997

CSE584 (Spring 1997)

A commercial example
- Visio is in many ways a . 2 1
framework A e,
- It is also a complete & S
application on its own, =}
but it can be — —
specialized (in a number T
of ways) that is T
consistent with being a i
framework f
- -
Notkin (c) 1997, 1998 o 37_ =

4/15/97

Open implementation

* Last week in discussing information hiding T

listed some central premises

Two important ones are especially
questionable

Kiczales et al. have studied this question
carefully, leading to some work generally
called Open Implementation

— http://www.parc.xerox.com/spl/projects/oi/

Notkin (c) 1997, 1998 38

Central premises IIT and IV

The semantics of the module must remain

unchanged when implementations are

replaced

- Specifically, the client should not care how the
interface is implemented by the module

- One implementation can satisfy multiple

clients

- Different clients of the same interface that
need different implementations would be counter
to the principle of information hiding

+ Clients should not care about implementations, as long
as they satisfy the interface

Notkin (c) 1997, 1998 39

Examples

* The flyweight pattern

example points out a few of
these issues

+ Logically, any

implementation of the TR
interface is OK =
- But not all implementations

are equally adequate for all
clients /
+ The Kiczales spreadsheet

example

Notkin (c) 1997, 1998 41

Notkin (c) 1997

These are often false

« What defines the semantics of the interface?

- Much is not (cannot?) be defined, but is inferred by the
client

+ Once properties are inferred, clients start to

assume that they are true

* Multiple clients may infer different properties

- So changing those properties consistently may be
impossible

+ Client do, in practice, care about (aspects of) the

implementation

Notkin (c) 1997, 1998 40

Two approaches often taken

+ Programmers often respond to these problems in

one of two ways
- Write own windowing system

- Clever coding tricks
+ Paging example

Notkin (c) 1997, 1998 42

CSE584 (Spring 1997) 4/15/97

The experts say The OI solution
+ "I found alarge number of + "An interface should + Define two interfaces
programs perform poorly capture the minimum - The base interface, which
because of the language’s essentials of an provides the essential
tendency to hide *what is abstraction. i_";}"‘“"*'cs - e
going on’ with the . "When an interface = edr;refa—/:ferf ace, w |: is |
g on W . . £ T — e
misguided intention of *not yndertakes to do too much, the im:é‘,’:eg;“q'fziz:zﬂefh: © el :ll Y
bothering the programmer the result is a large, slow base w11
with de_‘rculs complicated + Based on experience ima
= LTS, |mp|emen‘ru‘r|on." - Common Lisp Meta-Object
- B. Lampson, 1984 Protocol (CLOS MOP)
- Reflective computing
Notkin (c) 1997, 1998 43 Notkin (c) 1997, 1998 44
Allows the client to Design issues: OI claims
+ Use the module's primary functionality alone * The base interface design requires similar
when the default implementation is adequate techniques to current interface design
+ Control the module's implementation- * The design of the meta-interface and of the
strategy decisions when necessary coupling of the meta- and base interface is
- Deal with functionality and implementation more complicated
strategy decisions in lqrgely separate ways - Requires expertise in the definition and uses of

the components

Notkin (c) 1997, 1998 45 Notkin (c) 1997, 1998 46
Design issues: meta-interface It's not an entirely new idea
+ Scope control + Compiler pragmas
- Are controls over the implementation for * Multiple implementations of an interface
instances, classes, other? - With client choice [Hermes]
+ Conceptual separation & incrementality - User-directed parallelization

- Can the client of the meta-interface understand
and use just parts of it?
+ Robustness

- Are bugs in a client’s meta-program limited in
effect?

+ Unix madvi se
- Influence page replacement
* Many more

Notkin (c) 1997, 1998 47 Notkin (c) 1997, 1998 48

Notkin (c) 1997 8

CSE584 (Spring 1997)

4/15/97

More recently

+ Examples
+ Design guidelines
+ Analysis techniques

+ Aspect-oriented programming, an outgrowth
of the work in OI (and some other stuff)

- Let's breeze through some slides on AOP from
Xerox PARC

Notkin (c) 1997, 1998 49

Recap

+ Software architecture

- Heavy-weight design, with an eye towards ensuring
specific properties over families of systems

+ Patterns

- Mini-architectures, allows effective chunking of small
combinations of classes/objects

+ Frameworks

- Sharing the "top" of a family of applications (as opposed
to the bottom, like in layering)

+ Open implementation/AOP

- Overcoming problems in separation of concerns

Notkin (c) 1997, 1998 50

Notkin (c) 1997

