CSEbS84: Software Engineering

Lecture 10 (December 8, 1998)

David Notkin
Dept. of Computer Science & Engineering
University of Washington
www.cs.washington.edu/education/courses/584/CurrentQtr/

Software quality assurance

* Broad topic
- Testing
- Static analysis
- Reviews and inspections
- Software process
- Reliability
- Safety

+ High-level overview of some of these areas

- Specific domains have added techniques, etc.

Notkin (c) 1997, 1998 2

Key (unanswered) question?

* Many problems with
software engineering
research arise because
of a weak understanding
of time and money
constraints

+ This holds for much
SQA research
- Given a fixed resource

(dollars, time) how do you
allocate SQA activities?

Notkin (c) 1997, 1998 3

Reviews, etc.

+ Reviews, walkthroughs, and inspections are

all in a family of activities where an artifact
(specification, code, etc.) is studied by a
peer group to improve the artifact's quality

* There is a large and increasing literature

that demonstrates the effectiveness
(although not always the cost-effectiveness)
of these approaches

- Some evidence of cost-effectiveness may be

available, although it's hard to generalize
Notkin (c) 1997, 1998 4

Reviews, etc.

* N-heads are better than one
+ Intended to

- identify defects

- identify needed improvements

- encourage uniformity and conformance to
standards

- enforce subjective rules

Notkin (c) 1997, 1998 5

Purposes

+ Increase quality through peer review
+ Provide management visibility
+ Encourage preparation

- Explicit non-purpose

- Assessment of individual abilities for promotion,
pay increases, ranking, etc.

- Management often (usually) not permitted at
reviews

Notkin (c) 1997, 1998 6

Walkthrough

+ A formal activity

+ A programmer (designer) presents a program
(design)

* Values of sample data are traced

- Peers evaluate technical aspects of the
design

Notkin (c) 1997, 1998 7

Inspections

+ Formal approach to code review
+ Intended explicitly for defect detection (not

correction)

+ Defects include logical errors, anomalies in

the code (such as uninitialized variables),
non-complicance with standards, etc.

Notkin (c) 1997, 1998 8

Inspection requirements

* A precise specification must be available

* Peers must be knowledgeable about
organizational standards

+ Code should be syntactically correct and
basic tests passed

+ Error checklist must be provided

Notkin (c) 1997, 1998 9

Inspection process

* Plan
* Overview
* Individual preparation

- Code, documentation distributed in advance

* Meeting
* Rework
+ Follow-up

Notkin (c) 1997, 1998 10

Inspection teams

+ Four or more members

- Author of code

- Reader of code (reads to team)

- Inspector of code

* Moderator chairs meeting, takes notes, etc.

Notkin (c) 1997, 1998 1

+ Checklist of common errors drives inspection
* Checklist dependent on programming

+ Examples

Inspection checklists

language
- Weaker type systems usually imply longer
checklists

- Initialization, loop termination, array
bounds, ...

Notkin (c) 1997, 1998 12

Inspection rate

- 500 statements/hour during overview
- 125 statements/hour during individual prep
+ 90-125 statements/hour during review

* Inspecting 500 statements can take 40
person-hours

- For 1MLOC, this would be about 40 person-years
of effort

Notkin (c) 1997, 1998 13

Issues in inspections

+ Can groupware technology significantly

improve inspections?

+ Can you have inspections without meetings?

- Since meetings are expensive to hold and
schedule

- Since the preparation may catch more defects
than the meetings

Notkin (c) 1997, 1998 14

SQA Statistical approaches

* There are a number of approaches to quality
assurance that are (in varying senses) based
on statistics

- Software reliability

- N-version programming

- Cleanroom

Notkin (c) 1997, 1998 15

Software reliability [RST]

* The probability that software will provide failure-

free operation in a fixed environment for a fixed
interval of time

- A system might have reliability 0.96 when used for a one
week period by an expert user

+ Mean-time-to-failure is the average interval of

time between failures

+ One common use of software reliability models is to

decide when it's OK to ship a product

Notkin (c) 1997, 1998 16

Operational profiles

- A sufficiently accurate operational profile is

needed

- Frequency of application of specific operations
for the program being studied

* An operational profile is the probability

density function (over the entire input

space) that best represents how the inputs

would be selected during the life-time of the

software

Notkin (c) 1997, 1998 17

Understood domains

+ In industries such as telecommunications,

operational profiles can be fairly easily
gathered

* The phone company has records of virtually

every call made in the last 20 years
- Phones are used in pretty consistent ways

Notkin (c) 1997, 1998 18

Less understood domains

+ But for shrink-wrapped software products,
operational profiles are harder to divine

How will different users using different
products with different features behave?
- CPA's vs. college students using a spreadsheet?
+ Will usage change over time?

- More or less than the phone system?

Notkin (c) 1997, 1998 19

Cost

* To assess reliabilities past the 3rd or 4th

decimal place can require an enormous
amount of testing
- Is it necessary to do so?

» Should all failures be considered equally

bad?

- Showstoppers vs. “wrong color"

* Oracles of "correctness” aren't always easy
* Monitoring phone switches is relatively easy:;

monitoring shrinkwrap isn't

Notkin (c) 1997, 1998 20

Applying reliability models

- There is extensive real use of models in this
style

- There is also a ton of theoretical work that
is never validated

- Variants on models never compared to reality

- There are courses, books, etc. about how to
apply reliability modeling in practice

Notkin (c) 1997, 1998 21

N-version programming

+ The idea of N-version (multi-version)

programming comes from a common hardware
reliability approach--replication

* The basic notion is simple

- Have N independent teams write N versions of a
program

- Run them all simultaneously and have them vote
at specified points

Notkin (c) 1997, 1998 22

Objective

- Since the programs are built independently,
the objective is to improve the quality by a
multiplicative factor

- A bug only hurts if it also appears in another
(N/2)+1 versions

- This idea indeed works pretty well in hardware
- The cost issue in software is different,
though

- Not a matter of producing and testing multiple
chips, but of producing multiple implementations

Notkin (c) 1997, 1998 23

Assumption

+ But there is an underlying assumption at

work
- The implementations will fail independently

- Like the chips in hardware that fail based on physical
structures

- Otherwise, a multiplicative factor will not be
gained

- Do independently built implementations of

the same specification fail independently?

Notkin (c) 1997, 1998 24

Probably not

+ Knight and Leveson did some experiments

that showed that this assumption is probably

false

- In particular, they showed that similar errors
often arise in independently implemented
versions of the same specifications

* An additive benefit may arise from N-

version programming, but not a multiplicative

one

Notkin (c) 1997, 1998 25

Why?

- Errors are often in the specification
+ Errors are often made at boundary

conditions

* The complexity of a program is often ina

small piece or two, which each group has
trouble with

+ The background and training of people in an

organization are often similar

Notkin (c) 1997, 1998 26

And now...

* N-version advocates are still out there in an
aggressive way

* There are some experiments showing
independence

* There are attempts to introduce variety
explicitly

- Different specs, different languages, etc.

* I'm still completely opposed to this approach
based on the Knight/Leveson experiments

Notkin (c) 1997, 1998 27

Cleanroom [Harlan Mills]

+ Cleanroom combines managerial and technical

activities into a process intended to lead to
very high quality software

- Combines formal methods with statistical testing
for reliability with incremental development

- Does not allow unit execution or testing

- Effectiveness is a controversial issue

Notkin (c) 1997, 1998 28

Basics: five points

- Formal specification

- "Required system behavior and architecture”
- Black box stimulus-response specification

* Incremental development

- Partitioned into "user-function increments” that
"accumulate into the final product”

+ Structured programming
- Limited use of control and data abstraction
constructs; stepwise refinement of specification

Notkin (c) 1997, 1998 29

Basics: five points (con't)

- Static verification

- Components statically verified using mathematic
correctness arguments

- Individual components neither executed nor
tested

+ No white box testing, no black box testing, no
coverage analysis

+ Statistical testing

- Each increment is tested statistically based on
operational profile

Notkin (c) 1997, 1998 30

Three teams

- Specification feam
- Development team
- Codes
- Statically verifies using inspections
* Certification team
- Develops and applies statistical tests
- Reliability models used to decide when to ship

Notkin (c) 1997, 1998 31

Claims

+ Very aggressive positive claims

- About 20-30 systems (all under 500KLOC)

+ 100KLOC systems with (well) under 10 errors

in the field in the first year or two

+ Finds 1-4 errors/KLOC during statistical

testing

+ Some projects claim 70% improvement in

development productivity

Notkin (c) 1997, 1998 32

Counterclaims [Beizer]

+ Several (related) questions raised
- Are comparisons to other methods fair?
- Why eliminate unit testing?
- Why trust software reliability modeling so much?

- Especially hard to get good operational models

+ Claim is that unless Cleanroom embraces
modern testing approaches, it will fail to be
used broadly

Notkin (c) 1997, 1998 33

Testing

+ Testing is the process of executing programs

to improve their quality

- This clearly contrasts with proofs of
correctness and static analysis (like LCLint, type
checking, etc.) in which the analysis is performed
on the program text

+ There are other forms of testing, such as

usability testing, that are quite different

Notkin (c) 1997, 1998 34

Confidence

- Dijkstra observed a long time ago that
testing cannot show that a program is
correct, testing can only show that a
program is incorrect

+ This is accurate, but largely immaterial

- The objective is to build confidence, even in
safety-critical applications

- A more important question is, "Can testing be
made more rigorous?"

Notkin (c) 1997, 1998 35

+ Symbolic testing
* Mutation testing
+ Functional testing
+ Algebraic testing
+ Random testing

+ Data-flow testing + .. more .?
+ Integration testing

+ White-box testing

Kinds of testing

+ Black-box testing

+ Boundary testing

+ Cause-effect testing
* Regression testing

+ System tfesting

Notkin (c) 1997, 1998 36

Other definitions

* A failure occurs when the program acts ina
way inconsistent with its specification

* A fault occurs when an internal system state
is incorrect (even if it doesn't lead to a
failure)

- A defectis the piece of code that led to a
fault (and then usually a failure)

* An erroris the human mistake that led to
the defect

Notkin (c) 1997, 1998 37

Test cases

- A test case succeeds if it reveals a defect in

a program
- Test cases used to succeed if they executed as
expected

+ But test cases that "“fail” help improve

confidence

- Many test cases are chosen because they are
characteristic of a collection of real executions
of the program

Notkin (c) 1997, 1998 38

Challenges of testing

* Producing effective test sets

* Producing reasonably small test sets

+ Testing both normal and off-normal cases
+ Testing for different classes of users

+ Testing for different SW environments

+ Testing for different HW environments

+ Tracking results over time

© ..more ..?

Notkin (c) 1997, 1998 39

White- vs. black-box testing

* A common dichotomy for testing is white-

box vs. black-box testing

- In white-box, the tester sees the code

- A key question is, "What code is covered?”
- Often done earlier

+ In black-box, the tester sees the

specification but not the code

- The primary question is, "Does the code satisfy
the specification for specific test cases?”

- Often done later

Notkin (c) 1997, 1998 40

Black-box testing

- Incorrect functions

* Missing functions

+ Interface errors

+ Performance problems

- Initialization and shutdown errors

- Can be done at the system level and/or at
the module level

Notkin (c) 1997, 1998 41

Black-box challenges T

*+ What classes of input provide representative

coverage?

+ Is the system particularly sensitive to

certain input values?

+ How are boundaries of the system tested?
* How do we produce the appropriate oracle?

- That is, how do we know the "right" answer

Notkin (c) 1997, 1998 42

Black-box challenges II

+ How do we efficiently compare true output
to the expected output?

* What data rates and data volume can the
system handle?

*+ What effect will specific combinations of
operations and data have on system
operation?

Notkin (c) 1997, 1998 43

Coverage criteria
[Ghezzi, Jazayeri, Mandrioli]

* In black-box testing one (consciously or sub-

consciously) partitions the inputs into a set
of classes

- Again, the expectation is that a single test case
will identify common defects for that class

- There are formal definitions of test

selection criteria and of consistent and
complete criteria

Notkin (c) 1997, 1998 a4

Test selection criterion

* A test selection criterion specifies a

condition that must be satisfied by a test

set

- Ex: Over integers, there must be positive,
negative, and zero test values

* There are (almost) always multiple test sets

that satisfy a given criterion

Notkin (c) 1997, 1998 45

Consistent and complete

* A consistent criterion is one for which any

two test sets that satisfy the criterion,
either both sets succeed or both sets fail on
the program

- A complete criterion is one for which, if the

program is incorrect, there exists a
satisfying test set that demonstrates this

* Having a consistent and complete criterion

would guarantee finding errors in a program

Notkin (c) 1997, 1998 46

But

* There is no way to guarantee consistency and

completeness

- In general, there is no way to compute whether a
criterion is consistent or complete

+ S0 we tend to use informal or heuristic

approaches to approach consistency and

completeness

Notkin (c) 1997, 1998 47

Syntax-driven testing

+ In some situations, the possible inputs to a

program are characterized using a formal
grammar
- Ex: Compilers, simple user interfaces, etc.

+ In these cases, one can generate test sets

such that each grammar rule is used at least
once

* This is a good example where entirely

random tests are essentially useless

Notkin (c) 1997, 1998 48

White-box testing

* A central objective of white-box testing is
to increase coverage
- That is, ensure that as much code in the program
as possible is exercised
- The theory is that any code that is exercised by
no test case is likely to have defects
* The actual output may, at times, be of
secondary interest
+ For large systems, effective white-box
testing requires tool support

Notkin (c) 1997, 1998 49

Statement coverage

+ The simplest notion of coverage is to ensure

that all (as many as possible) statements are
exercised

+ Problem: what's a statement?

- Solution: represent program as a control flow
graph and ensure all statement nodes are
executed

+ Problem:

—if x>y then max := x else max :=y

Notkin (c) 1997, 1998 50

Program and its CFG

 if x> 0then

X 1= -X;
endif @

+ The test set {x =1}
exercises all nodes
(statements)

X = -

/V No
~__

Notkin (c) 1997, 1998 51

Edge coverage

* To eliminate the obvious problems with

statement coverage, one can require that all
edges of the program's CFG be exercised
- Now a test set like {x =1, x = -1} is needed

- Edge coverage is always at least as good as

statement coverage

- That is, any test set that satisfies edge
coverage for a program will also satisfy
statement coverage

Notkin (c) 1997, 1998 52

Condition coverage T

+ A weakness in edge coverage arises with
compound conditionals
— if x>=0 and x <= 1000 then

endif
- A test set of {x = 10,x = 1997} will satisfy
edge coverage

Notkin (c) 1997, 1998 53

Condition coverage IT

+ Instead, one can require that all

combinations of the compounds be tested

- However, this may not be feasible in all
situations; some combinations may never arise

* An alternative is to require edge coverage

plus a requirement that each clause in the
condition independently take on all values

Notkin (c) 1997, 1998 54

Condition coverage ITI

* A weakness with edge
and condition coverage
is that combinations of
control flow arent
checked

+ This example is

covered with
{x=-1, z=-1; x=1, z=1}

Notkin (c) 1997, 1998 55

A brief aside

+ A key problem in coverage testing of any
sort arises when one learns that specific
elements are not covered by your test set

+ How do you create a new test case that
covers some or all of those unexercised
elements?

+ I don't know of much research that
addresses this, although there may be some

- Some work in program slicing might help

Notkin (c) 1997, 1998 56

Path coverage

* Path coverage requires that all paths
through the control flow graph be exercised
* For the last example, we'd need four cases
—{x=-1,z=-1;x=1,z=1;x=-1,z=1;x=1,z=-1}

* A problem with path coverage is that loops
are intractable

- It's generally impossible to ensure that all
possible paths are taken in a program with a loop

+ Also, not all paths are feasible

Notkin (c) 1997, 1998 57

Loops with path coverage

+ The path taken by
x=-10 is different
from the path taken by
X =-20

+ All paths cannot be
tested, so
representative ones

must be used

Data flow approaches

+ The coverage approaches shown so far rely
on control flow information

+ Rapps and Weyuker (1985) suggested using
data flow information for coverage instead
- Basic idea uses def-use graphs

- Coverage of variable definitions (essentially,
assignments) and uses considered

Notkin (c) 1997, 1998 59

- Boundaries
- “Average"
Notkin (c) 1997, 1998 58
Example (xy)
+ defis an assignment to 1 scanf(x,y); if (y <0)
a variable 2 e o

* c-useis a computational 3 ¢ se pow = y;
use of a variable

- p-useis a predicate use
of a variable

4.z =1.0;
5. while (pow != 0)

6. {z=z*x; pow-;}

7.it (y <0)
8. z =1.0/z;
9. printf(z);

Notkin (c) 1997, 1998 60

10

Flow graph

+ There are many
alternative criteria
- dll-defs
- dll-p-uses
- all-uses

+ Could require O(N?) in
2-way branches, but
empirically it's linear

+ Need to find test cases

Notkin (c) 1997, 1998 61

Relationships among approaches

+ Frankl & Weyuker have e
shown empirically that l
none of these do
significantly better / |
than the others Ly

+ They also showed that M l
branch coverage and
all-uses perform better l
than random test case -
selection l

Notkin (c) 1997, 1998

Mutation testing
[Demillo, Lipton, et al.]

The idea here is to take a program, bring a
variant (mutant) of it, and compare how the
program and the variant execute
The objective is to find test cases that
distinguish between the program and its
mutants

- Otherwise, the test cases (or the mutation
approach) are weak

Notkin (c) 1997, 1998 63

Example [Jalote]

+ Consider the "program”
—a = b*(c-d)
- written in a language with five arithmetic
operators {+,-*/**}
* There are eight "first order” mutants of this
program
- Four operators can replace * and four can
replace -

Notkin (c) 1997, 1998 64

Other kinds of mutations

* Replacing constants
+ Replacing names of variables
* Replacing conditions

Notkin (c) 1997, 1998 65

Process

- Define a set of test cases for a program
- Test until no more defects are found
+ Produce mutants

- Test these mutants with the same test set as
the base program

- Score "dead" vs. "live" mutants (ones that are
and are not distinguished from the original
program)

- Add test cases until there are no dead mutants

Notkin (c) 1997, 1998 66

11

Utility?

+ There are some questions about whether
mutation testing is sensible
- Does it really help improve test sets?
- The evidence is murky
* There are also performance questions
- If not automated, it's a lot of management

- Computation of the mutants and applying the
tests to the mutants can be very costly

Notkin (c) 1997, 1998 67

Open testing questions

* Minimizing test sets
* Testing OO programs
+ Incremental re-testing

- "Cheap" regression testing

* Balancing static analysis with testing

- Can some properties be "proven” using this
combination?

+ .. more ..?

Notkin (c) 1997, 1998 68

Software process

* Capability maturity model (CMM), ISO 9000,
Personal Software Process (PSP), ...

+ These are all examples of approaches to
improving software quality through a focus
on software process and software process
improvement

- Relatively little focus on the technical issues of
software

Notkin (c) 1997, 1998 69

A little history

+ The waterfall model, etc., have been

considered since the late 1950's/early 1960's

* Incremental development models, the spiral

model (Boehm), and others arose as
refinements

Notkin (c) 1997, 1998 70

1987

* At the 1987 International Conference on
Software Engineering (ICSE), Lee Osterweil
presented a paper titled, "Software
processes are programs, too"

- Essentially, this said that one could and should
represent software processes explicitly

- Allowing one to “enact” processes as part of an
environment

» Highly controversial, including a response by
Manny Lehman

Notkin (c) 1997, 1998 7

Why controversial?

+ Importance of technical issues and decisions

w.r.t. managerial issues and decisions?

* Prescriptive processes vs. descriptive

processes?

* Capturing processes as programs?

Notkin (c) 1997, 1998 72

12

In any case...

* This led to an enormous increase in
- industrial interest, and

- research in sof tware process

- Software process workshops

More recently

- A journal or two

- A number of conferences

- Lots of papers in general software engineering
conferences

+ "Most influential paper of ICSE 9"

Notkin (c) 1997, 1998 73

+ "The Software CMM has

+ Through the SW-CMM, the bimsd

CMM (SET's web page)

become a de facto

standard for assessing and i
improving software e
processes.

SET and community have
put in place an effective
means for modeling,
defining, and measuring the
maturity of the processes
used by software
professionals.”

Feepaabe:

Notkin (c) 1997, 1998 74

CMM (Levels 1 and 2)

+ Initial The software process is characterized as
ad hoc, and occasionally even chaotic. Few
processes are defined, and success depends on
individual effort and heroics.

+ Repeatable. Basic project management processes
are established to track cost, schedule, and
functionality. The necessary process discipline is in
place to repeat earlier successes on projects with
similar applications.

Notkin (c) 1997, 1998 75

+ Defined. The software process for both

CMM (Level 3)

management and engineering activities is
documented, standardized, and integrated into a
standard software process for the organization. All
projects use an approved, tailored version of the
organization's standard software process for
developing and maintaining software.

Notkin (c) 1997, 1998 76

CMM (Levels 4 and 5)

* Managed. Detailed measures of the software
process and product quality are collected. Both the
software process and products are quantitatively
understood and controlled.

* Optimizing. Continuous process improvement is
enabled by quantitative feedback from the process
and from piloting innovative ideas and technologies.

Notkin (c) 1997, 1998 77

+ For some organizations, moving upwards at

- Technical issues are still downplayed far too

My opinion(s)

the very low levels is sensible

The focus on process improvement is
inherently good

The details of the actual levels are not
especially material for most organizations

much

Notkin (c) 1997, 1998 78

13

CMM mania

© SWCMM

* People CMM

+ Systems engineering CMM

+ Integrated product development CMM
+ Software acquisition CMM

+ CMM integration

- PSP

Notkin (c) 1997, 1998 79

ISO 9000

Notkin (c) 1997, 1998 80

81

Notkin (c) 1997, 1998

Last words

- Lots of software engineering research

misses the mark w.r.t. industrial practice

+ But lots contributes, too: both directly and

by laying a foundation for the future
- Research papers and prototypes are our
"products”, and they have many of the same
pressures as your projects
+ Evaluate the research “alphas” & "betas" in that light

* Practitioners have some responsibility in

helping to guide and refine research in
software engineering

Notkin (c) 1997, 1998 82

14

