C++ Coding Standards

Curt Carpenter, December 98

Introduction

I've wanted to write a coding standards document for my group at work for some time, and this project provided a good venue for that. I actually started before this class, but with less formality and completeness. I plan on using this document at work, and thus the target audience is the developers in my group, called Federation, which is an action/strategy massively multiplayer 3d space game. Portions of older Microsoft coding standards documents have been used in the creation of this.

Abstract

This document details the coding style that should be used for all C/C++ code. Coding standards are about as exciting as having your wisdom teeth pulled. However painful each of these experiences may be at first, there are good reasons for both and they each pay off in the long run (I know, I’ve done both and I’ve also suffered from putting both off for too long). The main reason a common coding style is useful is that it saves time. Having a common coding convention makes it easier to find various elements of the code, identify the code’s owner, etc. A common convention also eliminates context switches. The less thinking that’s devoted to unimportant details the better. A common style makes it easier to switch between different modules. Differences in coding style are confusing and very distracting while looking through code. Moving code from one place to another with different styles means reformatting, etc. These are all wastes of time. Every developer should feel (almost) as comfortable writing and modifying someone else's code as they do their own.

This other purpose of this document is to list features of C++ which we will use and which we will avoid, along with the basic rationale for doing so. This is not a complete list of C/C++ language features with commentary. Rather, it mentions only the issues we consider important. Knowledge of C++ is assumed. It is expected that all developers (including those in test) will familiarize themselves with, and adhere to, these guidelines.

Contents

31.
General Goals

2.
Classes
3
2.1
Class vs. Struct
4
2.2
Public, Private, and Protected members
4
2.3
Data Members
4
2.4
Virtual Functions
5
2.5
Constructors
5
2.6
Destructors
6
2.7
New and Delete
7
2.8
Operators
7
2.9
Inheritance
8
2.9.1
Inheritance of Interface vs. Implementation
8
2.9.2
Inheritance vs. Containment
10
2.9.3
Multiple Inheritance
11
3.
Other C++ Features
11
3.1
Constants and Enumerations
11
3.2
References
12
3.3
Const Parameters and Functions
13
3.4
Default Arguments
13
3.5
Function Overloading
14
3.6
Operator Overloading
14
4.
Common C/C++ Issues
14
4.1
#ifdefs
14
4.2
Global Variables
15
4.3
Macros and Inline Functions
16
4.4
Optimization
16
4.5
Warnings
17
4.6
Private Data and Functions
17
4.7
Typedefs
17
4.8
Basic Data Types
17
4.9
Pointers
18
4.10
Switch Statements
18
4.11
Asserts
19
4.12
Errors and Exceptions
19
4.13
Casts
20
4.14
Comparisons and Assignments
21
5.
Formatting Conventions
22
5.1
Naming Conventions
22
5.2
Functions
22
5.3
Variable Declarations
23
5.4
Class Declarations
23
5.5
Comments
24
5.5.1
File Headers and Section Separators
24
5.5.2
Function Headers
25
5.5.3
In-Code Comments
26
5.5.4
Attention Markers
27
5.6
Misc. Formatting Conventions
27
6.
Appendix A: Basic Hungarian Reference
29
6.1
Making Hungarian Names
29
6.2
Standard Base Tags
29
6.3
Standard Prefixes
30
6.4
Standard Suffixes
30

General Goals

C++ is a complex language that provides many ways to do things, and going “whole hog” on all of its features can lead to confusion, inefficiency, or maintenance problems. All Federation developers need to become experts on the features we will use, and avoid the others in order to form solid conventions within the group that we are all comfortable with. Our use of C++ features will be fairly conservative. We’d much rather err on the side of just dealing with C, which we’re all used to, then screwing up our app with a new concept that not all of us are expert at.

Underlying the choice of all of the style decisions are a few basic goals, as listed below. When in doubt about a particular issue, always think about the spirit of these goals. Sometimes these goals will conflict, of course, and in these cases we try to either prioritize the tradeoffs or use experience (either our own or from other groups that have used C++ extensively).

1.
Simplicity. When in doubt, keep it simple. Bugs are related mostly to complexity, not code.

2.
Clarity. The code should do what it looks like it’s doing. Other people need to be able to understand your code.

3.
Efficiency. Speed and size are important. Using C++ does not imply big and slow. There are plenty of perfectly reasonable ways to make things as fast or faster than the normal C way. Speed and size often trade off, and most people probably err on the side of choosing speed too often. Remember that 20% of the code is responsible for 80% of the time. In general, we’re more concerned about fitting comfortably in less RAM on the client (except for the 20% that is the main game loop and the scene renderer). But on the server every memory access, disk access, network packet, and database access is sacred, so on the server we’re more concerned about speed.

4.
Appropriateness. Use the language construct that is appropriate for the abstraction or operation you are trying to do. Do not abuse the language. Don’t use a construct just because it happens to work. Definitely don’t use a strange construct to amaze and confuse your friends to try to show how smart you are.

5.
Natural transition from C to C++. We all used to be C programmers. Others that look at our code might still be C programmers. When possible, avoid C++ constructs where a C programmer’s instinct causes a wrong assumption.

6.
Catch Errors Early. Having the compiler catch an error is ideal. Having debug code (e.g. Asserts) catch it is the next best thing, etc. Declare things in such as way as to give the compiler the best chance at catching errors.

7.
Fast builds. Total generality and modularity can cause lots of inter-dependencies between files, which can have a dramatic impact on build times. This is a constant time sink for everyone. It is often worth rearranging things a little to make incremental builds faster.

8.
Consistency. The whole point of having a style guide is that programmers are never totally autonomous, even when the group has strong code ownership. Other people need to read and understand your code. Everyone has to give a little to have a consistent style guide, but everyone gains it back when they read or debug other people’s code.

1. Classes

C++ classes are a nice way to encapsulate code and data into a single unit, which provides a good paradigm for object-oriented implementations as well other features such as flexible access control, convenient and type-safe polymorphism, and the possibility of code reuse via inheritance.

At the most general, classes are an extension to the built-in typing of C which allows you to define your own types along with the operations on that type. Taken to the extreme, every piece of data in a program could be an instance of a class. However, we will not go nearly this far in Federation. We will use classes when there is a good reason to, such as the concept being implemented is inherently object-oriented or polymorphism is required. It has been the experience of many people that programs that use classes for everything evolve into systems that are complex and inefficient. Although this may not be the fault of any particular class, complex class hierarchies can lead to needless complexity, and overly abstracted concepts can easily lead to inefficiency. Of course, classes are perfectly natural when implementing COM interfaces.

In general, we will avoid allocating classes on the stack and passing classes by value, because this is where the use of constructors and destructors gets you into the most trouble. Most classes should be allocated via new, freed by delete, and passed by pointer. In addition, we will never declare a global variable which is an instance of a class that has a constructor, because this causes a bunch of C runtime stuff to get linked in and stuff to happen at boot time to construct the thing, which is a big performance hit. Using only heap-allocated classes implies we’ll probably use classes only for relatively complex objects that you would normally have in the heap anyway, not simple things like basic data types. Beyond this, it is a judgment call when to use a class. Use one if there is a good reason, but not if a more straightforward solution is just as good.

Summary:

· Use classes to encapsulate the implementation of an object-oriented concept.

· Use classes to implement polymorphism.

· Use classes to implement COM interfaces

· Avoid allocating class instances on the stack and passing them by value. Use new and delete, and pass them by pointer. This implies not using classes for simple data types.

· Never declare a global instance of a class that has a constructor.

· Not everything is a class. Use them only when you gain something.

1.1 Class vs. Struct

In C++, a struct can also have member functions and operators and everything else that a class can have. In fact, the only difference between a class and a struct is that all members default to public access in a struct but private access in a class. However, we will not use this as the deciding point between using a class vs. a struct. To match the normal intuition, we will use a class if and only if there are member functions included.

Summary:

· Use a class instead of a struct if and only if there are member functions.

1.2 Public, Private, and Protected members

As stated above, structs default to public access and classes default to private access. However, we will depend on the default only in the case of structs (where we leave all the data implicitly public). For a class, we will declare all members (both data and code) explicitly as public, protected, or private, and group them into sections in that order. For example:

class Foo

{

public:

 Foo();

 ~Foo();

 void Hey(int I);

 void Ack();

protected:

 int m_iValue;

private:

 int m_iStuff;

 void LocalHelperSub();

};

Summary:

· Declare all class members explicitly as public, protected, or private, in groups in that order.

1.3 Data Members

Data members should use the naming convention m_name where name is a normal Hungarian local variable name. This makes member function implementations easier to read (no confusion about member vs. local data), and allows the use of the same Hungarian name for, e.g., parameters and members. See the example below.

Data members should normally not be declared public because this usually defeats the purpose of the class abstraction. To efficiently export a data member, declare inline get and set member functions. This will get optimized into the same code as a public data member. For example:

class Counter

{

public:

 int CItems() const { return m_cItems; }

 void SetCItems(int cItems) { m_cItems = cItems; }

private:

 int m_cItems;

};

Summary:

· Data members use the naming convention m_name.

· Do not declare public data members. Use inline accessor functions for performance.

1.4 Virtual Functions

Virtual functions are used to allow derived classes to override a method in a base class by providing their own implementation in a way that always causes the most-derived version to be called whenever a method is called through an object pointer, even if that pointer is declared as a pointer to the base class. This is usually done to implement polymorphism, and that’s when we’ll use them. For example, all COM interface methods are virtual because you are always going for polymorphism via a standard interface.

Unlike simple member functions, virtual functions incur some overhead due to need to call through the vtable. If a class contains at least one virtual function then the data size of each instantiated object will be 4 bytes larger than the combined size of the declared data in order to hold the vtable pointer. After the first virtual function, each additional one only adds another entry to the class vtable, which is static and per-class (nothing per object), so the main concern here is whether a class has any virtual functions at all. In addition to the memory overhead, there is the overhead to indirect a pointer twice before calling the function. This is fairly fast and compact in 32-bit code, but affects speed and size nevertheless. Perhaps the worst part is that virtual functions cannot be inlined, so there will always be a function call, even when the work is trivial.

Because they have overhead, you should not use virtual functions in a class unless you need to. However, make sure you do use them when it makes sense. In particular, if you have a base class which requires a destructor, then the destructor should definitely be virtual to allow derived classes to destruct any added members properly. If the destructor were not virtual, then in a context where polymorphism is being used (so the object pointer is declared as a pointer to the base class), the base class destructor will always get called, even for an object of a derived class that added data members and declared its own destructor in an attempt to free them. The derived class’s destructor will only get called if the base class destructor is declared virtual. This scenario applies to many other kinds of methods that you will add to your classes. In fact, most of the methods in a base class might be this way if polymorphism is intended. This issues is discussed in more detail in the Inheritance section below.

Note that although virtual functions have a performance penalty over regular member functions, they are often the most efficient way to implement a concept such as polymorphism where the alternative would be large switch statements (not to mention the benefits of the object-oriented encapsulation).

Summary:

· Use virtual functions to implement polymorphism.

· Virtual functions have overhead, so don’t use them unless you really should.

· A destructor in a base class should always be virtual if polymorphism is intended.

1.5 Constructors

Ah, constructors. Every new C++ programmer’s nightmare. This is one reason to try to minimize the use of constructors -- C programmers aren’t used to them and will get confused. Another reason is the infamous performance overhead of calling a function (unless it’s inline) and doing work at possibly unexpected and/or redundant times.

However, using constructors can eliminate the dangers of uninitialized data and can also made the code simpler to read (if you’re used to it). Judicious use of destructors (see below) which match the constructors can also help prevent memory leaks and other resource management problems.

Fortunately, the issue is mainly one when classes are declared on the stack or passed by value, both of which we will avoid. Most of our classes should be dynamic memory objects which will be passed around by pointer. In this case, the constructor is essentially just a helper function for the functions that create these dynamic objects. Using a constructor for this purpose is reasonable to ensure a clean and consistent initialization (if you make sure to initialize all data members), but to prevent potential performance problems due to redundant initialization the constructor should not do anything expensive. Simply assigning a constant or a parameter value to each data field is about right. Very simple constructors can be made inline.

Most importantly, a constructor must never be able to fail, because lacking a fancy exception handling mechanism, the caller has no way to handle this in most cases. Any initialization that can fail (e.g. memory allocations) should be put in a separate initialization member function (called, e.g., FInit). When this is the case, it is often useful to encapsulate the creation of an object in a function (a global function or a member of another class) that calls new and then FInit for the object, and returns the result of FInit. For example:

class Foo

{

public:

 Foo(int cLines) { m_hwnd = NULL; m_cLines = cLines}

 virtual ~Foo();

 bool FInit();

 void DoSomething();

private:

 HWND m_hwnd;

 int m_cLines;

};

BOOL FCreateFoo(int cLines, Foo **ppfoo)

{

 if ((*ppfoo = new Foo(cLines)) == NULL)

 return FALSE;

 if (*ppFoo->FInit())

 return TRUE;

 delete *ppFoo;

 *ppFoo = NULL;

 return FALSE;

}

BOOL Foo::FInit()

{

 m_hwnd = CreateWindow(...);

 return (m_hwnd != NULL);

}

Summary:

· Do not do expensive work in a constructor.

· If you do make a constructor, make sure to initialize all data members.

· Very simple constructors can be made inline

· A constructor should never fail. Do memory allocations and other potential failures in an FInit method.

· Consider making a creation function that encapsulates the new and FInit operations.

1.6 Destructors

If a class has resources that need to be freed, then the destructor is a convenient place to put this. The normal case for us will be that this is just the central place to free resources for an object that is freed via delete (see below). The trickier use of destructors is for stack-allocated classes, but we’re going to avoid that by not using classes on the stack.

A destructor should be careful to destroy an object properly regardless of how it was created or used. Furthermore, if you choose to implement a method that frees any resources before the actual destruction, make sure to reset those fields (e.g. set pointers to NULL) so that a destructor will not try to free them twice. It is not necessary for the destructor to reset any fields, though, because the object cannot be used after it is destructed.

Like a constructor, a destructor can never fail. Also, as stated above, a destructor in a base class should always be declared virtual to make polymorphism work.

The destructor for the above example would be defined as:

Foo:~Foo()

{

 if (m_hwnd != NULL)

 DestroyWindow(m_hwnd);

}

Summary:

· Use a destructor to centralize the resource cleanup of a class which is freed via delete.

· If resources are freed before destruction, make sure the fields are reset (e.g. set pointers to NULL) so that a destructor will not try to free them again.

· A destructor should never fail.

· A destructor in a base class should always be declared virtual if polymorphism might be used.

1.7 New and Delete

The operators new and delete should be used to allocate and free classes (instead of the low-level malloc-like function) so that the constructor and destructor, if any are called properly. We will implement our own global new and delete so that they in turn call our favorite low-level memory manager, so the only difference is really that new does the sizeof automatically and also calls a constructor, and delete calls the destructor.

Note that there must be some mechanism for detecting failed memory allocations. For new, the calling code is responsible for checking. Our memory manager simply returns 0 for a failed allocation, and this will in turn be returned from new (and the constructor will not be called). It is therefore up to the caller of new to check for a 0 return value, as in the example above in the Constructors section.

You should avoid defining any other new and delete (i.e. class-level) operators and stick to the global one to avoid mixed memory models, which complicates things like help optimization and memory leak checking and makes it risky to have the routines that allocate and free a block be different (although this is normally bad structure anyway).

Summary:

· Use new and delete to allocate and free classes.

· We will implement our own global new and delete in terms of the Federation infrastructure memory manager.

· Check the return value of new for failure.

· Avoid defining any other new and delete operators (use the global ones defined by Federation).

1.8 Operators

Ideally, you will never need to define an operator for a class. If you did one, it might be operator=, but don’t define one unless you really think you want this capability. Next might be operator== and operator!=, but the same applies here, only define them if really needed. We’re not in the business of providing a general class library that might be used in a certain way, we’re just implementing code that we actually expect to use ourselves. And if you do define these operators, make sure they are efficient so that you are not hiding an expensive operation.

By all means, never define standard operators such as operator+ to do anything other than the standard semantics for built-in objects. Don’t even push it by doing things like defining, say, operator+ to do a union or concatenation operation. In addition to causing confusion, this hides potentially expensive work behind an innocent-looking operator.

Summary:

· Ideally, classes shouldn’t need to define any operators.

· Define “reasonable” operators such as =, ==, and != only if you really want and use this capability yourself, and if you do they should be super-efficient (ideally inline).

· Never define an operator to do anything other than the standard semantics for built-in types.

· Never hide expensive work behind an operator. If it’s not super efficient then make it an explicit method call.

· When in doubt, just make a member function to do the work so that the operation is explicit.

1.9 Inheritance

Inheritance is a powerful technique, but it is often misused and can lead to complex class hierarchies that are hard to understand and hard to change. The following sections describe the various uses of inheritance, compare them to other techniques and try to provide rules of thumb about when to use it.

Beyond being appropriate in a particular case, however, just because inheritance can be appropriate does not mean it should be used everywhere. A deep or wide inheritance tree gets hard to understand, hard to browse, and eventually hard to maintain. Keep inheritance limited to a few “silver bullets” where you really win from it.

Summary:

· Don’t use inheritance just because it will work. Use it sparingly and judiciously.

1.9.1 Inheritance of Interface vs. Implementation

Most people think about inheritance as a way to share code. However, one of the most useful ways to use it is simply as a way to ensure working polymorphism by inheriting interface only. The classic example is to have an interface class which is entirely abstract (all methods are pure virtual), and then one or more implementation classes that inherit the interface and implement it in different ways. The OLE COM model is an example of this. A COM interface is expressed in C++ as an abstract base class, and then a separate implementation class inherits from the interface class and implements the interface methods for that object. Here the inheritance is simply a convenient way to ensure that the object speaks the exact interface it is supposed to (has the right methods in the right order in the vtable with the right parameters and the right return types). This is ensured by having each implementation class inherit from the same interface class, which is only declared once in a common header file. Note than when an interface class implements an inherited pure virtual method, it must redeclare it because from a language point of view, it is still considered to “override” the base method. For example:

// The interface base class provides interface only

class FooInterface

{

public:

 virtual void DoThis() = 0;

// pure virtual

 virtual void DoThat(int i) = 0;
// pure virtual

};

// The implementation class implements the FooInterface interface

class FooImplementation: public FooInterface

{

public:

 virtual void DoThis();

 virtual void DoThat();

}

void FooImplementation::DoThis()

{

 ...

}

...

The above example shows the case where the entire base class is interface only. However, inheritance of interface only can also happen at the level of an individual member function in a base class which also includes some implementation. This is the case when any member function is declared pure virtual. An example of this is shown below with the DrawObj::Draw method.

The above example does not use inheritance to share code. However, inheritance can also be used for this, and this is done by providing implementations of methods in a base class that inherited classes can use. There are two interesting cases here. If the base class defines an implementation of a method which can either be used or overridden, then the base method is defining an interface with a default implementation. In this case, the method should be defined as virtual so that any class which overrides the method will get the right result when polymorphism is used. Alternately, if the base class method provides an implementation of a method which is not meant to be overridden (because it does a standard action on data which is private to the base class), then the base method is defining an interface and a required implementation. In this case, the method should not be declared virtual. The converse of this is that when inheriting from a class, do not override any non-virtual functions because this could lead to maintenance problems when the base class is changed.

In general, the two cases of inheritance of implementation outlined above as well as the case of inheritance of interface only can all be combined in a single class by having different methods do different things. The key is to decide, for each method, whether the goal of the base method is to provide interface only, interface plus default implementation, or interface plus required implementation. For example:

// A base class for drawing objects

class DrawObj

{

public:

 virtual void Draw() = 0; // interface only

 virtual BOOL FHitTest(POINT pt); // default implementation

 void GetBounds(RECT *pr); // required implementation

private:

 Rect m_rBounds;
// bounding rectangle

};

BOOL DrawObj::FHitTest()

{

 return PtInRect(pt, m_rBounds);

}

void DrawObj::GetBounds(RECT *pr)

{

 *pr = m_rBounds;

}

In this example, the Draw method is pure virtual because it is only specifying an interface for polymorphic use. Any derived class that can be instantiated must define the Draw method. The FHitTest method is defining interface (for polymorphism) as well as a default implementation. Any derived classes that don't need non-rectangular hit-testing can just use the default implementation (no code or declaration required), but other classes can simply override this method and do special hit-testing. The GetBounds method is an example of a required implementation. The base class requires that "bounds" be defined in the same way for all objects, and it doesn't make sense for anyone to change it. In this case, the member does not need to be virtual (and should not be for clarity and efficiency) because the base class implementation is always used.

Summary:

· Inheritance of interface can be used for ensuring a consistent (e.g. polymorphic) interface.

· An implementation class can inherit its interface from an interface class where the interface class has only pure virtual methods.

· When using inheritance of implementation to share code in a base class,

(Use pure virtual functions to provide interface only.

(Use virtual functions to provide interface and a default implementation.

(Use non-virtual functions to provide interface and a required implementation.

1.9.2 Inheritance vs. Containment

The most common misuse of inheritance is to view inheritance as a way to share code among “similar” objects and to use it in a context where there is no real “is a” relationship. There are several ways to share code, and the simpler technique of containment and delegation (one class contains another and delegates the relevant functionality to it), which we’re all used to from traditional structured programming, works fine in most cases. In this case, the relationship is described as “has a”.

The primary reason to use inheritance instead of containment is to achieve polymorphism (in conjunction with the use of virtual functions). The easiest way to test for an “is a” relationship is to think whether polymorphism is what is desired. If so, then inheritance could be appropriate (assuming any other practical concerns are met). Another way to test “is a” vs. “has a” is to ask yourself if it could make sense to have more than one of the base class in the derived class. If so, then “has a” (containment) is the right model. For example, if you were implementing a scrolling window and you already have a scrollbar class, you would notice that a window could have two scrollbars (horizontal and vertical) even if you weren’t planning on that feature in the first version, so a window should contain (“has”) a scrollbar, not inherit from (“is”) one.

Even when you do decide to use inheritance from another class, it is often the case that you should split the original class into a base class and a derived class and inherit only from the base class. This allows you to split off only the stuff that is really shared. For example, say you had a Rectangle drawing object, and now you want an “Oval” object. You convince yourself that polymorphism is desired (e.g. drawing and hit-testing code in the caller wants to treat all objects the same), and that an Oval would never want two Rectangles. Now you might decide to have the Oval inherit from the Rectangle, but probably what you really want is to split the Rectangle class into a base DrawingObject class and a separated derived Rectangle class, and then Oval would inherit from DrawingObject, not Rectangle. This allows later changes to the Rectangle object that are specific only to it, even if this isn’t needed now. As in the example from the previous section, the DrawingObject base class will probably have a combination of pure virtual methods to enforce the polymorphic interface, virtual methods to provide a standard interface as well as a default implementation for all “simple objects”, and non-virtual methods to provide required implementation of stuff that is common to all objects and assumed to be constant in the common code.

Note that containment forces you to use the contained object’s public interface, whereas inheritance allows use of protected members also. This is another way of saying that containment is more encapsulated than inheritance. In fact, it is often said that inheritance breaks encapsulation because it can create dependencies on the implementation of the base class. This is particularly true in the case of overridden functions, where a change to the base class might not have the right effect on all derived classes.

Summary:

· Be careful with inheritance vs. containment. When in doubt, use containment.

· Inheritance is an “is a” relationship, whereas containment is a “has a” relationship.

· Test for “is a” by seeing if polymorphism is desired or makes sense.

· Test for “has a” by asking yourself if one class could ever use more than one of the other class.

1.9.3 Multiple Inheritance

We will avoid multiple inheritance altogether. Multiple inheritance has a number of problems including resolution of name conflicts, efficiency concerns of some operations (functionality is hidden from you), maintenance problems, and general confusion about what the heck is going on.

If you are building a large and complex inheritance hierarchy (to be avoided as noted above), you might find yourself wanting multiple inheritance to share code from two different places. In the case of literally sharing code from two different places, this is the most dangerous form of multiple inheritance because it leads to the trickiest dependencies. There are other forms of multiple inheritance, though. The safest is multiple inheritance of only interfaces (no code from any base class), but even this has problems with things like name conflicts. So, we will avoid it altogether.

Every time you think you need multiple inheritance, you should consider that maybe you are over-using inheritance and you should switch to containment in some cases. Inheritance is a silver bullet that you have only one of. Once you’ve used it for a given class, you need to use containment to get anything else. Note that you can use containment as much as you want within a given class with no problems.

The exception here is when using ATL to implement COM objects, which forces you to use multiple inheritance.

Summary:

· Don’t use multiple inheritance, except when implementing ATL COM objects.

· Given only single inheritance, inheritance is a “silver bullet” which you have only one of, so use it sparingly and judiciously.

2. Other C++ Features

The following sections comment on various new features of C++ that aren’t directly related to classes.

2.1 Constants and Enumerations

C++ adds the concept of true constants to C. In C, you had the choice of using a #define or declaring a "const" global variable. However, the #define will not be type safe, and the const variable takes up real memory and isn't optimized. For example:

// C alternatives:

#define dxMin 0

// not type safe

const DX dxMin = 0;
// just a real global variable

In C++, the const syntax declares a real constant of the specified type that the compiler will type-check, and then substitute the actual value in-line and optimize (fold constants, etc). As a bonus, the debugger will even know about this symbol. For example,

// C++ solution:

const DX dxMin = 0;
// type safe, optimized, and debug symbol

So true C++ constants are preferred to the traditional C++ #define. Note that when used in shared C++ header files, they must be defined, not just declared, or you will get linker errors. So, constants should never be declared without being defined at the same time. You will not have a problem with the symbol being defined in multiple modules. The compiler is smart.

C++ also makes the existing C concept of an enum type safe. An enum in C++ defines a type and declares constants of that type. You can then use that type as, say, a parameter to a function, and the compiler can then enforce that you pass one of the symbols defined in the enumeration (or you can type cast to get around this if you need to). An enum can also be made local to a class so that its scope is limited. For example,

class Foo

{

public:

 enum GMODE { gmNo = 0, gmYes = 1, gmMaybe = -1 };

 void InsertGNode(GMODE gm);

};

Summary:

· Use const or enum instead of #define for constants wherever possible.

2.2 References

C++ adds the ability to express references to objects, and the primary use of them is to pass classes as parameters without the overhead of the copy constructor being called. This is a worthy goal, but a more straightforward method to do this is to just to pass classes by pointer, which is what we’re all used to from C. For someone used to C, seeing something being passed by reference looks like it’s being passed by value, so you might wonder if the constructor is being called, or whatever. Furthermore, when using a reference, the illusion is that you have a local copy of the object that you can reference cheaply, but in fact you just have a pointer to the object (this is how the compiler does it), and every access is an indirection. We should just make this indirection explicit by actually using pointers. Typing “*” or “->“ instead of “.” is not a big deal, and it makes it more clear what is going on. The one real advantage of references over pointers is that they are guaranteed to be initialized (they cannot be NULL or point to garbage). But this advantage is not worth the above problems for us.

Also note that when you do pass objects by pointer, use const to mark formal parameters that are read-only (see the "Const" section below). This is related to references because some C++ programmers will use the convention that read-only objects are passed by references and other objects are passed by pointer (to make this safe you still need to the declare the reference const because C++ will let you change a parameter through a reference). This is a reasonable convention, but it still has the problem of looking foreign and confusing to programmers with a C background. So, we will use const to get the safety but pass every object by pointer.

There are other more exotic uses of references, such as being able to return an lvalue from an operator function, and sometimes this is necessary if you've defined such an operator. But since we don’t plan to use operators much if at all (because we won’t use stack-based classes), we should be able to avoid references in most cases.

Summary:

· Avoid references. Pass objects that are larger than an “int” by pointer.

2.3 Const Parameters and Functions

As mentioned above, you should use const to mark formal parameters that are read-only. This allows the compiler to check that you actually obey this, serves as a form of documentation to users of your function, and also allows the compiler to produce better code in some cases. For example:

/* Copy the contents of 'fooSrc' into 'fooDst'. */

void CopyFoo(const FOO *fooSrc, FOO *fooDst);

You can also declare non-pointer formal parameters as const (as well as the actual pointer portion of a pointer parameter, rather than what it points at, in which case the word "const" may appear twice for that parameter), but this is not as much of a win and it can make the prototype harder to read, so it's optional. This just makes sure that you don't reuse the parameter itself as a local variable and change its value. Of course, sometimes a function will do this as a way of avoiding declaring and setting up a local variable, so in this case you can't use const (note that this is not great programming style, but we're not going to disallow it). On the other hand, if you don't change the value of the parameter within the function, declaring it as const may allow the compiler to generate better code. Note that doing this does not give any useful documentation to the caller, though. For example:

/* Copy 'cb' bytes of the contents of 'fooSrc' into 'fooDst'.

 In addition to not changing what 'fooSrc' points at, my implementation

 promises not to change the values of any of the local parameters

 within the function (like you care...). */

void CopyFooCb(const FOO *const fooSrc, FOO *const fooDst, const int cb);

In addition to declaring parameters const, you can also declare a member function const to indicate that the function does not modify the object. Again, this allows compiler checks and possible optimization as well as a form of documentation. For example:

class Counter

{

public:

 int CItems() const { return m_cItems; }

 void SetCItems(int cItems) { m_cItems = cItems; }

private:

 int m_cItems;

};

Summary:

· Use const to mark read-only pointer parameters (what the pointer points at, not the pointer itself).

· Use const to mark member functions that don't change the object

· Use const to mark parameters themselves only if you care about the possible performance gains in the implementation.

2.4 Default Arguments

Having default arguments seems like a cool feature. It seems like a way to add a parameter which only some calls to a function will need to pass, so that the simple cases will be kept simple. Well unfortunately, there is no efficiency gain here, and instead the compiler is just hiding work from you. If you have a function with one required argument and four optional arguments, every call to this function will push all five arguments, so you are getting the code size and time hit in every case. Furthermore, you can’t even use default arguments just to try something new without bothering with the old calls because you still have to find all the old calls in order to rebuild those files (if you do an incremental build of just one use after adding a default argument, the other calls will screw up). Finally, default arguments can be easily confused with overloading (which we’ll also avoid).

There are cases, however, where a certain parameter is totally irrelevant in a call (because, for example, the value of another parameter tells you all you need to know). Note that this is somewhat different from a default argument because there is no real default value for this parameter. In these cases, it is nice to have the untyped constant "NA" , #defined to be 0, to stand for "Not applicable" which can be passed to indicate this for any actual parameter. This is better than passing, say, NULL for a pointer or FALSE for a Boolean because it makes it clear that the value is not important at all. For example:

#define NA 0

// universal "not applicable" parameter value

/* If fShow then show the object, else hide it. If showing then

 redraw it only if fRedraw.

void Show(BOOL fShow, BOOL fRedraw);

void Ack()

{

 Show(TRUE, TRUE);

 ...

 Show(FALSE, NA);

}

Summary:

· Don't use default arguments.

· Use "NA" (#defined to be 0) for "not applicable" parameters in a call.

2.5 Function Overloading

Overloading functions is just a lazy naming scheme. It seems like a form of polymorphism, but it shouldn’t be confused with real polymorphism because all the decisions must be made statically at compile time. It’s just a way to keep “simple” function names and reuse them for different cases. Such a lazy naming scheme just causes more confusion than it’s worth (trying to determine which function is relevant, changing the wrong one by accident, etc.) and can also interfere with proper use of Hungarian in some cases. It can also make using browse info more difficult, because symbol lookups will result in multiple finds. Finally, the combination of function overloading and type coercion can be quite confusing indeed.

Summary:

· Don’t overload functions

2.6 Operator Overloading

The main use of operators is in classes. This is discussed in a previous section. Operators can also be overloaded at global scope. For example, you can define what operator+ should do when it finds a Foo on the left side and a Bar on the right side. Unlike the use within a class, this allows control over the left-hand side operand. Anyway, all the same problems apply and more (due to the larger scope). Functionality is hidden (a possible efficiency problem) and confusion can result, so we will avoid this.

Summary:

· Don’t overload operators, especially at global scope.

3. Common C/C++ Issues

The following sections comment of features of regular C that we also try to maintain a consistent use of.

3.1 #ifdefs

First and foremost, everyone should try really hard to minimize the use of #ifdefs. Programs with lots of #ifdefs are really hard to read. It is often possible to either invent the right abstraction or to isolate the #ifdefs to small places in header files, or make the right definitions in target-specific headers so as to make #ifdefs unnecessary in the main code. The main argument for #ifdefs (over, say, a regular “if”) is to minimize the code size. However, everyone should be aware that the optimizer is perfectly capable of simplifying statements that evaluate to a constant. For example,

// Wrong:

#ifdef MAC

if (x == 3 || Foo() || FSomeMacMode())

#else

if (x == 3 || Foo())

#endif

// Right:

// In a header file for each non-Mac platform, there is

#define FSomeMacMode()
FALSE

// Then the using code can just be

if (x == 3 || Foo() || FSomeMacMode())

In this example, the compiler is perfectly capable of eliminating what amounts to (“|| FALSE”) at compile-time. Furthermore, if the entire "if" were to always evaluate to FALSE at compile time, then the optimizer will also remove all of the code inside the "if" and remove the test.

If you must use an #ifdef, we prefer to use #if instead because it's shorter and allows logical operations, as in:

int Foo()

{

 int x = 3

 #if MAC && !DEBUG

 x = 0;

 #endif

 return x;

}

Note that we will still leave flags such as DEBUG undefined when false, but the compiler does the right thing here (treats it the same as being defined to be 0). Leaving these flags undefined means that #ifdef will also work, in case this is used by accident anywhere.

Also, as this example shows, #ifs should be properly indented so that they read easily when nested. Yes, this works; C Compilers have accepted this for years.

Aside from the standard identifiers defined by our build process (e.g. DEBUG), we will also use the identifiers UNUSED and LATER, which are never defined, to mark code which is currently unused but kept in for some reason, and code which cannot be activated yet but will eventually, respectively.

Summary:

· Minimize #ifdefs by defining good abstractions, partitioning files better, or defining appropriate constants or macros in header files for the compiler to figure out.

· Prefer #if over #ifdef.

· Indent an #if with the code so that it reads better when nested within others.

· Use #if UNUSED for code that is on longer used but kept in for some reason.

· Use #if LATER for code that cannot be used yet but will eventually.

3.2 Global Variables

Global variables are usually bad programming style. More specifically, they are often trouble when used to cache “current” state because it is so easy to get them out of sync. Everybody knows this from their past experience, so there’s no point in going into gory detail. In addition to these problems, globals make things such as multiple uses of a DLL in the same process, reentrancy, and multi-threading very hard to achieve, all of which we may need to worry about in Federation.

Due to the DLL/process/thread problem (all instances of the same DLL in a process as well as all threads share the same copy of the globals), if we decide to support multiple instances of the client, then most things that you might normally think of as global should go in an instance data structure. In Federation, this structure will be something like FEDINST struct, which is allocated and returned for each caller of, say, FInitFederation.

When you do use a global (e.g. for data which is truly shared among all uses in a given process), use the Hungarian “g_” prefix before the type tag to make the global clear.

Summary:

· Minimize global variables.

· Use the Hungarian “g_” prefix at the beginning of global variables.

3.3 Macros and Inline Functions

In C++, what would be a functional or procedural macro in C is usually better expressed as an inline function because this makes it type safe and avoids problems with multiple evaluation of macro parameters. For example:

//Wrong

#define XOutset(x) ((x) + 1)

#define XMin(x1, x2) ((x1) < (x2) ? (x1) : (x2))

//Right

inline XY XOutset(XY x) { return x + 1; }

inline XY XMin(XY x1, XY x2) { return x1 < x2 ? x1 : x2; }

In addition, inline functions can be limited to the scope of a class if appropriate in order to make them more specific.

When you do use #define to write functional macros with arguments, be sure to remember to enclose each instance of an argument in parentheses, and also the entire expression if necessary, to avoid precedence problems. Also, #defined constants should be in all uppercase.

Summary:

· Use inline functions instead of #define macros when possible.

· In functional macros, enclose all argument instances in parentheses as well as the entire expression if necessary.

3.4
Optimization

If you’re traying to squeeze the most juice out of the compiler (only for the most commonly executed code), always know what code the compiler generates for your favorite constructs, and what things typically get optimized. Trying to hand-optimize your code can cause bugs and can also actually make the generated code worse. For example, introducing temporary variables may cause something that would have been pre-computed and cached in a register to be moved into a stack variable. It is worth it for everyone to play around with sample constructs, compile with /Fc, and look at the .cod file to see what gets generated. Finally, remember that the expanded code you see when debugging is not the optimized code; it is totally unoptimized for debugging purposes (e.g. to make it line up exactly with the source statements).

Another issue to be aware of is that in order to get maximum benefit from our optimizer, we want to enable lots of different kinds of optimization. Some coding constructs can confuse the optimizer and cause bugs (for example, depending on subtle aliasing behavior). The rule of thumb here is that the more straightforward your code is, the better the optimizer will be able to improve it and the less chance of an optimization bug. This is always good practice anyway, because it makes your code easier for people too.

Summary:

· Know what your compiler and optimizer produce. Compile with /Fc and look at the .cod files to see for yourself. Don’t make theoretical arguments about what you think is generated, and don’t base it on the debug (unoptimized) version. Check it for yourself in a ship compile.

· Don’t use strange coding techniques (e.g. depending on aliasing) that confuse the optimizer.

3.5 Warnings

We will compile our code at warning level 3, and all code should be free of warnings. If you absolutely have to code something that generates a warning, disable the warning with a #pragma. We may disable some that we don’t like globally (e.g. unused parameter).

Summary:

· Make your code warning level 3 clean.

3.6 Private Data and Functions

Data and functions that are local to a module or class should be kept as such and not exported from the module or class. This prevents name conflicts (and therefore allows for shorter, simpler names), and also makes the linker do less work, which speeds up the builds. Data and functions that are local to a module (scoped at module level) should be marked with “static”. Many “module” local data and functions can be encapsulated in classes. In this case, class static data should be declared with static and the s_name naming convention. Local functions should just be member functions if they logically operate on an instance of the object.

Summary:

· Prototypes for module-local data and functions are marked with “static”.

· Module-specific data can often be encapsulated in classes with class-static data and member functions.

3.7 Typedefs

In C++, a struct or class tag defines a new type automatically, so don’t explicitly typedef it.

Don’t use typedefs to define pointers to other types. Just use the normal ‘*’ notation itself. This keeps the Hungarian simpler and makes the pointer explicit.

In the few compelling cases that really justify typedefs, define the type in all uppercase.

We will use “int” for integer data whose exact size is not important in memory (we will assume an “int” is at least 32 bits). However, you should specify the size of the integer (char, short or long) to define types for data where the size is important because it is being saved to disk or packed in a tight data structure, like in a FEDMESSAGE.

Summary:

· Don’t typedef classes or structs in C++

· Don’t define typedefs for pointers to other types, just use the ‘*’ notation.

· Use “int” for “natural sized” machine integers (assume at least 32 bits), but specify size for size-sensitive data.

3.8 Basic Data Types

Use the basic data types provided by the language, by Windows, and by OLE where appropriate. Try not to define special basic types such as “Integer” or “Boolean” that are redundant (and possibly different than) the basic system types, unless there is a very compelling reason to. Win32 is our API, so we don’t need “portability” abstractions on top of this.

Following is a list of the most common basic types that we will use, along with the default Hungarian tag. Note that the actual Hungarian tag used will usually depend on the usage (see Appendix A).

Type
Defined by
Meaning
Default Tag

Void
C++
No type
(none)

Int
C++
Signed natural machine-size integer, at least 32 bits
(none)

Bool
C++
Natural machine-sized boolean holding true or false. Do not use BOOL, as the compiler can’t optimize that.
f

UINT
Win32
Unsigned natural machine-size integer, at least 32 bits
(none)

BYTE
Win32
Unsigned 8-bit value
b

CHAR
Win32
Signed 8-bit value (usually used for ANSI characters)
ch

WCHAR
Win32
16-bit (wide) character used for UNICODE characters
wch

USHORT, WORD
Win32
Unsigned 16-bit value. USHORT is preferred when the type is a number.
w

SHORT
Win32
Signed 16-bit value
w

ULONG, DWORD
Win32
Unsigned 32-bit value. ULONG is preferred when the type is a number.
u, dw

LONG
Win32
Signed 32-bit value
l

HRESULT
OLE
OLE general purpose error/result code
hr

For bitfields, the type given to each field will depend on how the struct and bitfields are used. Usually a bitfield will be used in a memory-only data structure because this eliminates concerns over bit-ordering in a file format. If your usage is in memory and you don't care about the exact size of the bitfield, each field can simply be declared as "int". UINT can also be used for multi-bit fields that are to be interpreted as unsigned integers. The most common type bool should be declared as BOOL instead of bool. You cannot type it as bool, because the compiler doesn’t handle them in the way you’d think. It will not pack them, at least not in debug builds, and all your hard work to force dword alignment will be lost. For example:

// A typical bitfield

struct foo

{

 BOOL fVisible
:1;

 BOOL fEnabled
:1;

 BOOL fPushed
:1;

 int
unused
:13;

// used to ensure reasonable alignment

 int iBar

:16;

};

Summary:

· Use the basic types provided by C/C++, Windows, and OLE. See the table above.

· Use BOOL, int, or UINT in most bitfields, unless size is important, then use a size-specific type such as WORD for all fields. Use "unused" fields to force alignment or to help enforce a specified size.

3.9 Pointers

We’re 32-bit flat everywhere, so use just plain ‘*’ everywhere. Don’t use “near”, “far”, or “huge”.

Summary:

· Use flat 32-bit pointers everywhere (declared using just plain “*”).

3.10 Switch Statements

Some switch statements can be avoided by using classes and virtual functions in C++, and often the result will be smaller and faster as well as simpler. A switch statement can take a long time to find its target (depending on the values involved, the compiler may not generate a good lookup table).

When you do use a switch statement, cases that do something and then fall through to the next case should be explicitly marked with a “// Fall through” comment, since this is a common source of mis-read code.

Summary:

· Consider using classes and virtual functions instead of switch statements in some cases.

· Switch cases that do something and then fall through to the next case should be explicitly marked with a “// Fall through” comment.

3.11 Asserts

Use plenty of asserts to verify correct program operation. It’s better to catch errors early. We will have a smart assert layer that allows you to break, continue, abort, with cancel all asserts and continue.

Asserts are used to assert correctness. In other words, a failed Assert always means exactly one of two things: either there is a bug in the code that caused the unexpected condition, or the Assert is invalid. It is not used instead of, or even in conjunction with, error handling. Error handling is the graceful handling of situations that we know may arise, such as out of memory or disk space, certain functions returning failure codes, etc.

There are two kinds of asserts we will use. The first, named “Assert”, evaluates its expression only in DEBUG compiles, so don’t put any needed side-effects inside! The second, named "AssertDo" (name subject to change), always evaluates its expression, but only checks the final condition and possibly generates an error in DEBUG builds. Note that the “compare” portion of an AssertDo statement, if any, will be removed by the optimizer. For example.

Assert(hwnd != NULL);

Assert(HwndTop() == hwnd);
// don't want HwndTop() call in ship

AssertDo(FInitFooBar());

// must init in ship too!

AssertDo(pObj->Release() == 1);
// release and verify ref count

Summary:

· Use Assert for debug-only checks, use AssertDo to execute always but check only in debug.

3.12 Errors and Exceptions

There are two basic ways to handle unexpected errors (e.g. memory allocation failure) in code. One is to return failure codes and check them (bubbling them back to the caller as necessary), and another is to catch and throw exceptions. Exceptions can be useful and more efficient in some cases, but they can also be harder to understand and cause unexpected results. The root of the whole problem is that you often can’t tell what exception handling code will do by just looking at it. There may be places where we will use exceptions (unclear at this point whether it will be C++ exceptions or something else we create), but the default should be to use normal return codes in order to make the code more straightforward. In any case, it is not possible to throw an exception over a DLL boundary, so all DLL-exported APIs or methods that can fail must return error codes.

When doing many things in a row that can fail, it is perfectly reasonable to use a goto to direct all the return code-based functions to a common error handler (which recovers in a robust way based on consistent initialization of the data. This is probably the best use of a goto in C/C++. For example

{

 bool fRet = false;

 FOO *pfoo = NULL;

 BAR *pbar = NULL;

 ACK *pack = NULL;

 if (!FCreateFoo(&pfoo))

 goto Error;

 //...

 if (!FCreateBar(&pbar))

 goto Error;

 //...

 if (!FCreateAck(&pack))

 goto Error;

 // Use data in normal way...

 fRet = true;
// Success return flag

Error:

 /* This is common error and success cleanup code. */

 if (pack != NULL)

 DeleteAck(pack);

 if (pbar != NULL)

 DeleteBar(pbar);

 if (pfoo != NULL)

 DeleteFoo(pfoo);

 return fRet;

}

A convention we will use for functions that return pointers and can fail (e.g. because the object is being created and returned) is that the function will return a bool or HRESULT, and return the pointer in a parameter. This makes explicit the fact that the function can fail and prevents errors where NULL is returned and indirected without checking by a client. To contrast, pointer-fetching functions that cannot fail can return the pointer directly. For example,

bool FCreateFoo(FOO *pfoo);

// can fail

FOO *PfooGet(BAR *pbar);

// get a FOO from a BAR, cannot fail

Summary:

· Prefer error code return values to exception handling in most cases, for simplicity.

· Always use error codes from DLL-exported APIs or methods.

· Use goto to implement common cleanup code when using return values in complex cases.

· Functions that return pointers but can fail should return a bool or HRESULT and return the pointer in a parameter instead of returning NULL to indicate failure.

3.13 Casts

Casts are evil, casts are bad. Well written code seldom has use for casts. Obvious exceptions exist, such as casting a derived class to a base class. The majority of problems created by using casts fall into one of two categories. The first is casting objects to objects of a different size. Bugs caused by these casts are usually really hard to debug because they are often quite subtle. For example,

extern int cchFileBuff;

// contrived use of short *, should really be an int *

extern HRESULT HrReadFromFile(TCHAR * pchBuff, int cchToRead, short * pcchRead);

hr = HrReadFromFile(pchBuff, cchToRead, (short *) &cchFileBuff);

This code will often work correctly on Intel machines because of the byte ordering used by Intel CPUs. However, it will fail miserably on most other CPU types because they use a different byte ordering. Consider also the following code.

extern HRESULT HrReadFromFile(TCHAR * pchBuff, int cchToRead, int * pcchRead);

HRESULT HrFillBuffer(TCHAR * pch, int cch)

{

 HRESULT hr = S_OK;

 short cchRead = 0;

 BOOL fFreeMem = FALSE;

 SomethingThatMayOrMayNotSetfFreeMemButUsuallyDoesNot(&fFreeMem);

 hr = HrReadFromFile(pch, cch, (int *) &cchRead);

 if (FAILED(hr))

 goto err;

 // do other stuff here

err:

 if (fFreeMem)

 FreePv(g_pchGlobalBuff);

 return hr;

}

This code is extremely dangerous. The call to HrReadFromFile() will most likely overwrite other variables on the stack when writing to &cchRead because it’s expecting an int, not a short. This can cause very subtle bugs such as fFreeMem being set to TRUE whenever more than 64K was read. Note that the order variables are declared does not necessarily correspond to their order on the stack. Adding another variable to this function could drastically change the function’s behavior by exposing the latent overwrite bug.

The other category of bugs caused by casts come from casting pointers to constant data. Using casts it is possible to modify constant data. This may confuse compiler optimizations, cause bugs from function semantics being violated, or cause any other number of problems.

Unfortunately, external code (e.g., DirectX) is not always as good as Federation (will be) about declaring function parameters using const. Because of this, casts are sometimes needed when passing const data to an external function. These casts should only be used when the semantics of the function make it clear that the data is indeed constant. If this is not the case, const data cannot be passed (for obvious reasons). Please point out any instances of external APIs that don’t use const to the source of the API, or to CurtC, and I’ll try and get them to fix it.

Summary:

· Casts cause hard to find bugs. Avoid casts whenever possible.

3.14 Comparisons and Assignments

When comparing a value for equality with a constant, always place the constant on the left side. This avoids inadvertently using “=” when you meant “= =”. If you accidentally use “=” the compiler will generate an error. This applies not only to literal constants and #define constants, but also to functions and constant variables (oxymoron anyone?). For example:

if (E_OUTOFMEMORY == hr)

 DoSomething(pch, cch);

else if (cchMax == cch) // cchMax is declared as const int cchMax

 DoSomethingElse(pch, cch);

In each of these cases the compiler would generate an error if “=” was inadvertently used instead of “==”. Yes, this looks a bit weird, but it’s a quick cheap solution to a potentially nasty problem.

On a related topic, never use “=” inside an expression. Separate the expression out into multiple statements to avoid this use. For example,

if ((cch = lstrlen(sz)) > cchMax)

should be written as

cch = lstrlen(sz);

if (cch > cchMax)

You may think the first case generates smaller code, but with optimizations turned on, the code generated is identical in both cases. The second example is much safer and easier to maintain so it should be used instead of the first. In general, separating expressions out into multiple statements does not adversely affect the efficiency of the generated code, but it does increase the readability and maintainability.

Summary:

· When comparing a variable with a nonvariable, always put the nonvariable on the left

· Put assignments on a line by themselves.

4. Formatting Conventions

The following sections describe various formatting conventions that we will use to produce common-looking code for easy readability throughout the group.

4.1 Naming Conventions

We will use the Microsoft Hungarian naming conventions for identifiers (see Appendix A below, which contains the bulk of the matter). Show the Hungarian naming tag at the declaration of a class or type for variables of that type. Use the syntax “// Tag abc”, where “abc” is the desired tag for the type. This serves two purposes. First, when someone is reading your code and wonders what the heck “abcFoo” is, they can search for “Tag abc” to find the type definition. Second, it ensures that everyone who uses the type uses the same tag.

When using Hungarian, remember to preserve abstraction where appropriate. Don’t say that something is a pointer to an integer if you really want to say it’s a pointer to, say, a “cell index”. Invent abstract tags where appropriate and use them consistently. For real global variables, use the Hungarian ‘g_’ prefix before the type tag to make the global nature clear.

For C++ class data members, we will use the m_name convention because this makes it easier to distinguish members from locals and allows consistent use of Hungarian (the name portion is the normal Hungarian name and often matches parameter or local names). A modification of this rule is that for class static members, use a name of the form s_name in order to make the static (global) nature clear.

Summary:

· Use Hungarian naming conventions. Invent Hungarian tags and use them consistently where appropriate to preserve abstraction. Add all new tags to the checked-in Hungarian tag reference file.

· Use the ‘g_’ prefix for global variables.

· Use m_name for C++ class member data, and s_name for static class data.

4.2 Functions

Declare full function prototypes so that you get good type checking and warning level 3 clean code. Put the names and types of the parameters inside the argument list in both this declaration and the definition, because this makes it particularly easy to keep these two in sync. Prototypes are not necessary for functions with file scope, that can easily be placed above all functions that call it.

Summary:

· Declare full function prototypes with argument names and types.

· Define function implementation using argument names and types directly in the argument list to match the prototype (it’s exactly the same minus the semicolon).

4.3 Variable Declarations

Variables can be declared either C-style (at the top of a function or block) or C++ style (in with the code). The C style is preferred for variables that are used throughout the function or used for more than one thing in the function. The C++ style is preferred for temporary variables or those limited in scope. It is not necessary to create a new execution block to define the variables in, and doing so gains you nothing, unless some gotos could potentially skip the variable initialization. Always provide an initialization for variables. This eliminates the entire class of uninitialized variable bugs.

Variables should be declared one per line, to prevent bugs with pointers, arrays, and initializers doing the wrong thing by accident. Exceptions can be made in extremely simple or related cases such as int x, y;. You get extra credit if you make the variable names line up in the same column for increased readability.

Summary:

· Declare and initialize variables C-style (top of block) if used throughout the function or for more then one thing, use C++ style (declare and initialize at first use) for temporary and limited-scope variables.

· Declare variables one per line, except in extremely simple cases such as int x, y;

4.4 Class Declarations

A class declaration should provide prototypes with comments for function members and comments for data members. Function members that are overriding those in a base class which are declared and commented elsewhere in our code or in a standard place such as OLE need not have a duplicate comment, but they should be grouped into sections with a comment stating where they came from. The constructor(s) and destructor should be declared first, followed by any overridden inherited methods, followed by other methods. The constructor(s) and destructor do not require comments. For example,

// The Ellipse object implmements an Ellipical drawing object

class Ellipse: public DrawObj

{

public:

 Ellipse();

 virtual ~Ellipse();

 // DrawObj methods

 virtual BOOL FHitTest(int x, int y);

 virtual void Draw();

 // Return the x radius of the ellipse.

 int XRadius();

 // Return the y radius of the ellipse.

 int YRadius();

 /* Set the shading parameters for the ellipse to use shading type

 'st' and color slopes 'xSlope' and 'ySlope' in the x and y

 directions, respectively. */

 void SetShading(ShadeType st, int xSlope, int ySlope);

private:

 RECT m_rBounds;
// bounding rectangle of ellipse

 SHADING m_sd;

// the shading parameters for 3D effects

};

4.5 Comments

Contrary to some old Microsoft notions, comments are not bad. Comments are an integral part of the source code. They are not separate from or in addition to the source code, they are part of the source code. As such, they must be included and maintained as part of the source code. Comments that are out of date are bad, but they only get that way because the programmers didn’t think maintaining them was important in the first place. Comments are part of the code, so maintain them. Changing an implementation or algorithm without changing all relevant comments is a failure to maintain the code. Adding new functionality without adding comments is a failure to correctly code the functionality. Implementation without comments isn’t code, it’s a bunch of cryptic incantations that probably won’t make sense to anyone else or even to the author a year later. Comments can appear at several levels and serve different purposes. Some serve to explain the contract of an interface (e.g. in a header file). Others serve to summarize the following code so that it can be read and understood faster. And some just explain a strange construct or the reason for doing something. All of these types are important. Use // for all single line comments, and /* */ for multi-line comments. Classes, global variables, structures, types, etc., should all be commented and classes should fully explain the their usage.

Summary:

· Write comments both to define interface contracts and to summarize and explain implementation.

· Keep comments up to date. They are part of the code.

· Use // for single line comments, and /**/ for multi-line comments.

The following sections give examples of some different kinds of comments.

4.5.1 File Headers and Section Separators

Each file has a header at the top that specifies the name of the file, the owner, a copyright, and an explanation of the contents. The header must include the file name, and the directory it lives in relative to the src directory. Use the following as a template:

/*---

 * directory\modulename.CPP

 *

 * Enter the description of the file here

 *

 * Owner: CurtC

 *

 * Copyright 1986-1998 Microsoft Corporation, All Rights Reserved

 ---/

In addition, banner comments of asterisk characters with an explanation of the following section are used to separate major parts of a file. For example:

/***

 The Foo object

***/

void Foo::Hey()

{

}

void Foo::Ack()

{

}

...

/***

 The Bar object

***/

void Bar::Glorp()

{

}

void Bar::Blob()

{

}

...

Summary:

· Each file starts with a file header comment using the template above. The header includes the filename, owner, Microsoft copyright, and an explanation of the contents.

· Separate major parts of a file with banner comments of asterisk characters with an explanation of the following section.

4.5.2 Function Headers

All function definitions (above the implementation, not the prototype) should also include a comment before the prototype that describes what the function does, how it use its parameters and what it returns. This is best done in a comment that describes this in complete sentences and referencing each parameter by name, except for parameters that are completely obvious. Use this as a template (remove the sample comments):

/*---
 * IFooFromXY
 *---
 * Purpose:
 * Find the foo element at position (x, y) in the fooset
 *
 * Parameters:
 * pfs:
FooSet to search
 *
 * Returns:
 * index of the element found in the set, or 0 if not found
 *
 * Side Effects:
 * MRU cache updated
 */

int IFooFromXY(const FOOSET *pfs, int x, int y)

{

…

}

Summary:

· A function definition has a comment using the template above.

4.5.3 In-Code Comments

Comments that appear directly in the code are usually trying to make the code easier to understand. Summarize big, important, or non-obvious blocks of code by preceding them with a blank line and a comment on a line (or more) by itself. Explain strange code with line-trailing comments or larger ones if necessary. Feel free to reference RAID bug numbers in a comment if the code is directly related to a bug and not obviously correct otherwise. Comments that take more than one line are often easier to write using /*...*/ rather than //, but // is clearly easier and better for end-of-line comments. Single-line comments can go either way, but // is preferred. For example:

pTarget = PObjGetTarget();

/* Find the beginning of the sub-list where the target object and

 its children start. */

for (p = pFirst; p != NULL; p = p->next)

{

 if (p == pTarget)

 break;

 if (p == pSpecial) // bug 1234: pSpecial denotes gag mode

 {

 pTarget = pSpecial

 break;

 }

}

// Process target node if found.

if (p != null)

 ...

When multiple lines of code have trailing comments, horizontally align the beginning of comments where practical, for enhanced readability. For example:

DoSomething(); // Start doing something

DoSomethingElse(); // But we need to do this because…

DoSomethingCompletelyDifferent(); // In this we also need this because…

Summary:

· Use in-code comments to summarize big sections of code and also to explain weird code.

· Reference RAID bug numbers in comments that are totally specific to that bug fix.

4.5.4 Attention Markers

It is useful to have standard markers in comments that call attention to incomplete or wring code and can be searched for. Use “// TODO:” to mark incomplete code and “// BUG:” to mark wrong code. Follow each by an appropriate comment. Adding your email name to the comment is an optional addition that makes it easier for others to see who added it.

Summary:

· Use “// TODO: comment” to mark incomplete code.

· Use “// BUG: comment” to mark wrong code.

· Adding your email name to the comment in an attention marker is an optional addition that makes it easier for others to see who added it.

4.6 Misc. Formatting Conventions

A group that can standardize on low-level details of code formatting, such as where the spaces go, saves time by being able to read code faster (especially others’ code), and no time is spent reformatting copied code to match another environment. Like Hungarian, less time spent thinking about details that don’t matter means more time to think about the things that do.

Tabs are treated differently by different products and environments, but spaces are always treated the same, so we will not use tabs. Editors should be configured to insert spaces instead of a tab character when the tab key is pressed. The tab stop interval is 2 spaces (so that typing 2 spaces at the beginning of a line is equivalent to typing a tab). Line length should be kept within 78 characters when possible so that horizontal scrolling is not required in text editors that support 80 columns plus borders. Using a 2-space tab helps to keep highly structured code from extending beyond this boundary. Blank lines should be used before large code blocks (usually with a comment before the next block), and two blank lines are used between function implementations.

Top level constructs (functions, typedefs, global variables, etc.) start in column zero. Code in blocks are indented one tab stop to the right of the block containing them regardless if they are single statements or a block of statements. Curly braces are not considered part of the block so they are not indented, they are flush with the code containing the block. Variable definitions are indented flush with the code in the same block as the variables. Each variable should be defined in a separate statement (each variable gets its own line and type label) and all the variable names should line up. This makes it easier to find a given variable’s definition. The asterisk for pointer variables belongs to the type, not the variable (see example below). Case statements are flush with the switch statement, i.e. not indented. The code for a case statement is indented one tab stop from the case statement, including the break. A blank line is used before each case (except the first). In switch statements without a default case, the last case still has a break, to prevent accidental fall-through when cases are rearranged, or a new case is added. Labels (goto destinations) always start in column zero, regardless of what block they are contained in. Structure and class members are indented one tab stop in the class or structure definition. The storage class labels (public, protected, private) of classes are not indented.

Whenever possible statements should wrap at expression boundaries. If statements are wrapped at expression boundaries then subsequent lines should be indented at a level that matches the depth of the expression (see example below). If statements are not wrapped at expression boundaries then subsequent lines should be indented two tab stops to the right of the first line. When possible, function calls should wrap at parameter boundaries. Subsequent lines should be indented to match the column of the first parameter. If the invocation cannot be wrapped at a parameter boundary then the subsequent lines should be indented one tab stop past the column of the first parameter.

Spaces are placed after keywords, after commas, and both before & after other operators. Spaces are not used after open parenthesis/brackets, before close parenthesis/brackets, or before semicolons, colons, or commas. When declaring pointer variables or parameters, a space is placed before and after the asterisks. Here’s an example of properly formatted code:

x = XGetFirst(p);

y = YGetFirst(p);

// Determine the z value for this coordinate

if (x == 0 && FBar(x, y + 1) &&

 SomeReallyBigOlMassivelyLongFunctionName(x, y))

 z = -1;

else

{

 for (p = pFirst; p != NULL; p = p->next)

 {

 x = 3;

 if (FAck(p))

 z = 0;

 }

 x = 0;

}

// Process according to the face type

switch (z)

{

case 0:

ft = ftNone;

RemoveFace(p, x, y, z);

break;

case -1:

ft = ftReverse;

FlipFace(p, x, y, z);

break;

default:

DrawFace(p, x, y ,z);

break;

}

Summary:

· Use a blank line between blocks of code separated by a summary comment.

· Try to keep line length to within 78 characters.

· Indent using 2 space tabs.

· Curly braces go on their own line, flush with the code containing the block. Code within the block is indented.

· Case labels for switch statements line up with the switch keyword and are preceded by a blank line..

· Place spaces as in English (after keywords and commas, between operators, not after open parentheses).

Appendix A: Basic Hungarian Reference

This section gives a brief summary of the basic Hungarian naming elements. The Federation project itself will invent abstract type tags where necessary and keep a record of these with the definition of the type for which the tag denotes. The rationale and exact mechanism for Hungarian naming is not described here. See the vintage 1988 document HGARIAN.DOC by Doug Klunder, or read chapter 2 of Charles Simonyi's even finer vintage "Meta-Programming" thesis if interested.

4.7 Making Hungarian Names

A general Hungarian name is formed by appending together one or more prefixes, a base tag, a qualifier (description), and suffix. The base tag indicates the type of the variable (e.g. "co" for a color), the prefixes modify that type (e.g. "rg" for an array, giving "rgco" for an array of colors), and the qualifier describes the use of this particular type (e.g. "rgcoGray", for an array of colors used as grays). The suffix further explains either the usage (see table below). Not all of these are used for all names. A prefix or suffix is often not relevant, and the qualifier can be omitted if the use is obvious, such as when there is only one of the relevant type involved in the code. When tags are used (always with only a few exceptions) the prefix, if any, and the tag are in all lowercase, and the qualifier begins with an uppercase letter. For trivial cases where there is no tag or prefix, the qualifier is all lowercase.

It is important to note that many (perhaps most) base tags and qualifiers will be application-specific because they are denoting application-defined types and uses. There are various standard tags for basic types (several are given below), but it is a mistake to use these when the abstract type is more appropriate. For example, if a color happened to be implemented as a long, then one might say "rgl" for an array of colors, but this breaks the abstraction of a color.

When Hungarian is used for function names, the qualifier usually just describes the action of the function. After the basic qualifier, it is sometimes useful to describe the parameters to the function by appending Hungarian types for them. And, of course, the first letter of a function name is always capitalized. For example, "FInitFooFromHwndXY" might be the name of a function which initializes a "foo" structure from parameters of type "Hwnd", "X", and "Y", and returns a Boolean success code. This is not a requirement, though. Use it only when it makes the name easier to understand.

4.8 Standard Base Tags

The following list gives standard base tags for basic types. As stated above, note that an application will define many of its own tags for its own internal types.

f
A flag (BOOL). The value should be TRUE or FALSE . The qualifier should describe when the flag is TRUE, for example "fError" is true if an error occurred.

ch
A one-byte character (a CHAR).

sz
A zero-terminated string of CHARs (a classic C string). Sometimes a maximum length is specified, as in "sz255", which indicates that the actual string part can have 255 characters, so that there must be 256 characters allocated.

wch, wsz
Wide-character (WCHAR) versions of ch and sz. Wide strings (UNICODE) probably won’t be used much (if at all) on the client, but the server uses them in a few cases.

fn
A function. This is usually used with the "p" prefix (see below) to make "pfn" because in C you can only hold the address of a function in a variable.

b
A BYTE.

w
A 16-bit quantity (WORD, SHORT, or USHORT).

dw
A 32-bit unsigned double-word (DWORD).

l
A LONG (a signed 32-bit quantity).

u
An unsigned long (ULONG). In classic Hungarian, this was an unsigned word. In Federation, this will be an unsigned 32-bit quantity and is therefore the same as "dw", but the "u" tag (and the ULONG type) is preferred when the type is a number.

v
A void. This is always used with the "p" prefix to make "pv", a pointer to an unknown type.

hr
An OLE HRESULT.

var
An OLE VARIANT.

varg
An OLE VARIANTARG.

4.9 Standard Prefixes

The following list gives standard prefixes that are used to modify a base tag type. More than one prefix can be used. It is possible, but probably unusual for an application to define its own prefixes (typically an application will define only base tags and qualifiers).

p
A pointer. For example, "pch" for a pointer to a character. In classic Microsoft Hungarian, "p" meant a near pointer, and "lp" and/or "hp" were used for long (far) pointer and huge pointer, respectively. In a 32-bit world this is no longer an issue.

rg
An array (comes from "range"). For example, "rgch" for an array of characters. For arrays that are allocated off the heap, “parg” (pointer to allocated array) may be used, and adds a bit of clarity.

i
An index into an array of the base type. For example, "ich" for in index into an array of characters.

c
A count of items of the base type. For example, "cch" for a count of characters.

n
Another use for a count of items, (for "number of"), but "c" is preferred.

d
A difference or delta between values of the base type. For example, "dx" for a difference between two values of type x.

h
A handle. An opaque reference to an item of the base type that cannot be indirected by the user (this definition has been loosened in the past due to a somewhat different use for a movable memory block). For example, "hwnd" is a handle to a window ("wnd") that you are not allowed to indirect and access the fields of because it's not in your address space (this also preserves the abstraction of the opaque reference).

mp
An array used to map an index or other scalar to a value. The index and value tags are appended, as in "mpchdx" to map a character value (used as the array index) to a dx value for that character. (Not too common)

In addition, there are the following special prefixes that we will add before any Hungarian prefix when appropriate:

g_
A global variable.

c_
A global constant.

m_
A C++ class data member.

s_
A C++ class static data member.

4.10 Standard Suffixes

First
The first item in a set, or the first one of interest (e.g. pchFirst)

Last
The last item in a set, or the last one of interest (e.g. pchLast). When used as an index, Last represents the last valid/desired value, so a loop might read:
for (ich = ichFirst; ich <= ichLast; ich++)

Lim
The upper limit of elements in a set. Unlike Last, Lim does not represent a valid value; Lim is one beyond the last valid value, so a loop might read:
for (ich = ichFirst; ich < ichLim; ich++)

Min
The minimum element in a set. Similar to First, but usually represents the first valid value, not just the first one to be dealt with.

Max
The upper limit of elements in a set (same as Lim). Unfortunately, a normal English reading of "Max" usually implies the last valid value, but the Max qualifier is not a valid value; it is one beyond. Like Lim, a typical use would be:

For (ich = ichMin; ich < ichMax; ich++)
Be very careful with this one.

Mac
Like Max, but sometimes used when the "current" maximum can change over time. Note that Mac is also one beyond the "last" valid value.

Mic
Like Min, but sometimes used when the "current" minimum can change over time.

T
A temporary value. This qualifier is probably overused as a way to avoid coming up with a good new name for something, but sometimes a brief temporary is OK, such as in a classic swap operation.

TT, T3, etc.
Further abuses of the T = temporary convention when more unique names are needed. These should be avoided.

Sav
A temporary value used to save a value so that it can be restored later. For example:
hwndSav = hwnd; ...; hwnd = hwndSav;

Null
The special 0 value, always equal to 0 but used for documentation purposes (e.g. hwndNull).

Nil
A special invalid value, not necessarily equal to 0 (might be -1, or anything else). To avoid confusion, it's best to not have both Null and Nil values for the same type.

Src
The source of an operation, typically paired with Dest as the destination, as in:

*pchDest = *pchSrc

Dest
A destination. See Src.

28
31

