
CSE584 (Spring 1997) 6/2/97

Notkin (c) 1997 1

Notkin (c) 1997 1

CSE584: Software Engineering
Lecture 9 (June 2, 1997)

David Notkin
Dept. of Computer Science & Engineering

University of Washington
www.cs.washington.edu/homes/notkin

UW CSE

CSE584: Software
Engineering Notkin (c) 1997 2

UW CSE

CSE584: Software
Engineering

Lecture 9, Outline
◆ Testing

◆ Break

◆ PSP, CMM, ISO 9000

◆ Hot topics in software engineering research

◆ Course evaluations
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Testing

◆ Testing is the process of executing
programs to improve their quality
– This clearly contrasts with proofs of

correctness and static analysis (like LCLint,
type checking, etc.) in which the analysis is
performed on the program text

◆ There are other forms of testing, such as
usability testing, that are quite different
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Confidence

◆ Dijkstra observed a long time ago that
testing cannot show that a program is
correct, testing can only show that a
program is incorrect

◆ This is accurate, but largely immaterial
– The objective is to build confidence, even in

safety-critical applications
– A more important question is, “Can testing be

made more rigorous?”
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A question

◆ Is model checking more like proofs of
program correctness or more like testing?
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Kinds of testing

◆ Symbolic testing

◆ Mutation testing

◆ Functional testing

◆ Algebraic testing

◆ Random testing

◆ Data-flow testing

◆ Integration testing

◆ White-box testing

◆ Black-box testing

◆ Boundary testing

◆ Cause-effect testing

◆ Regression testing

◆ … more …?



CSE584 (Spring 1997) 6/2/97

Notkin (c) 1997 2

Notkin (c) 1997 7

UW CSE

CSE584: Software
Engineering

Other definitions

◆ A failure occurs when the program acts in a
way inconsistent with its specification

◆ A fault occurs when an internal system state
is incorrect (even if it doesn’t lead to a failure)

◆ A defect is the piece of code that led to a
fault (and then usually a failure)

◆ An error is the human mistake that led to
the defect
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Test cases

◆ A test case succeeds if it reveals a defect in
a program
– Test cases used to succeed if they executed as

expected

◆ But test cases that “fail” help improve
confidence
– Many test cases are chosen because they are

characteristic of a collection of real executions
of the program
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Challenges of testing
◆ Producing effective test sets
◆ Producing reasonably small test sets
◆ Testing both normal and off-normal cases
◆ Testing for different classes of users
◆ Testing for different SW environments
◆ Testing for different HW environments
◆ Tracking results over time
◆ … more … ?
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White- vs. black-box testing

◆ A common dichotomy for testing is white-box vs.
black-box testing

◆ In white-box testing, the tester also sees the code
– A key question is, “What code is covered?”
– Often done earlier

◆ In black-box testing, the tester sees the
specification but not the code
– The primary question is, “Does the code satisfy the

specification for specific test cases?”
– Often done later
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Black-box testing

◆ Incorrect functions
◆ Missing functions
◆ Interface errors
◆ Performance problems
◆ Initialization and shutdown errors

◆ Can be done at the system level and/or at
the module level
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Black-box testing challenges I

◆ What classes of input provide
representative coverage?

◆ Is the system particularly sensitive to
certain input values?

◆ How are boundaries of the system tested?
◆ How do we produce the appropriate oracle?

– That is, how do we know the “right” answer
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Black-box testing challenges II

◆ How do we efficiently compare true output
to the expected output?

◆ What data rates and data volume can the
system handle?

◆ What effect will specific combinations of
operations and data have on system
operation?
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Coverage criteria [Ghezzi, Jazayeri, Mandrioli]

◆ In black-box testing one (consciously or
sub-consciously) partitions the inputs into a
set of classes
–  Again, the expectation is that a single test case

will identify common defects for that class

◆ There are formal definitions of test
selection criteria and of consistent and
complete criteria
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Test selection criterion

◆ A test selection criterion specifies a
condition that must be satisfied by a test set
– Ex: Over integers, there must be positive,

negative, and zero test values

◆ There are (almost) always multiple test sets
that satisfy a given criterion

Notkin (c) 1997 16

UW CSE

CSE584: Software
Engineering

Consistent and complete

◆ A consistent criterion is one for which any
two test sets that satisfy the criterion, either
both sets succeed or both sets fail on the
program

◆ A complete criterion is one for which, if the
program is incorrect, there exists a
satisfying test set that demonstrates this

◆ Having a consistent and complete criterion
would guarantee finding errors in a program
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But

◆ There is no way to guarantee consistency
and completeness
– In general, there is no way to compute whether

a criterion is consistent or complete

◆ So we tend to use informal or heuristic
approaches to approach consistency and
completeness
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Syntax-driven testing

◆ In some situations, the possible inputs to a
program are characterized using a formal
grammar
– Ex: Compilers, simple user interfaces, etc.

◆ In these cases, one can generate test sets
such that each grammar rule is used at least
once
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Decision table testing

◆ Describe tabularly how
different inputs, in various
combinations, can
produce different outputs

◆ Coverage of individual
rows is needed

◆ But tables may be huge

P *
B * *
I * *
E * *
SE * * *
E=B *
E=I *
SE=B *
SE=I *
SE=B+I *
action p b I b I b I b,I b,I
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Cause effect graphing

◆ Build boolean functions
that capture specific
transformations captured
by the program

◆ Constraints can be
defined to pare the input
space
– Ex: B and P are mutually

exclusive

B

I

P

E

E=B

SE

E=I

SE=B

SE=I

SE=B+I

B
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White-box testing
◆ A central objective of white-box testing is

to increase coverage
– That is, ensure that as much code in the

program as possible is exercised
– The theory is that any code that is exercised by

no test case is likely to have defects

◆ The actual output may, at times, be of
secondary interest

◆ For large systems, effective white-box
testing requires tool support
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Statement coverage

◆ The simplest notion of coverage is to ensure
that all (as many as possible) statements are
exercised

◆ Problem: what’s a statement?
– Solution: represent program as a control flow

graph and ensure all statement nodes are
executed

◆ Problem:
– if x > y then max := x else max := y
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Program and its CFG

◆ if x > 0 then
x := -x;

endif

◆ The test set {x = 1}
exercises all nodes
(statements)

x >= 0?

x :=  - x

Yes

No
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Edge coverage

◆ To eliminate the obvious problems with statement
coverage, one can require that all edges of the
program’s CFG be exercised
– Now a test set like {x = 1, x = -1} is needed

◆ Edge coverage is always at least as good as
statement coverage
– That is, any test set that satisfies edge coverage for a

program will also satisfy statement coverage
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Condition coverage I

◆ A weakness in edge coverage arises with
compound conditionals
– if x >= 0 and x <= 1000 then

     S1
else
     S2
endif

◆ A test set of {x = 10,x = 1997} will
satisfy edge coverage

Notkin (c) 1997 26

UW CSE

CSE584: Software
Engineering

Condition coverage II

◆ Instead, one can require that all
combinations of the compounds be tested
– However, this may not be feasible in all

situations; some combinations may never arise

◆ An alternative is to require edge coverage
plus a requirement that each clause in the
condition independently take on all values
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Condition coverage III

◆ A weakness with edge
and condition
coverage is that
combinations of
control flow aren’t
checked

◆ This example is
covered with
{x=-1,z=-1;x=1,z=1}

x < 0

x := x + 1 x := x - 1

z < 0

z:= z + 1 z := z - 1

Yes

Yes

No

No

Notkin (c) 1997 28

UW CSE

CSE584: Software
Engineering

A brief aside

◆ A key problem in coverage testing of any
sort arises when one learns that specific
elements are not covered by your test set

◆ How do you create a new test case that
covers some or all of those unexercised
elements?

◆ I don’t know of any research that addresses
this, although there may be some
– Some work in program slicing might help
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Path coverage

◆ Path coverage requires that all paths through the
control flow graph be exercised

◆ For the last example, we’d need four cases
– {x=-1,z=-1;x=1,z=1;x=-1,z=1;x=1,z=-1}

◆ The problem with path coverage is that loops are
intractable
– It’s generally impossible to ensure that all possible

paths are taken in a program with a loop

◆ Also, not all paths are feasible
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Loops with path coverage

◆ The path taken by
x = -10 is different
from the path taken by x
= -20

◆ All paths cannot be
tested, so representative
ones must be used
– Boundaries

– “Average”

x < 0

Yes

x := x + 1

No
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Data flow approaches

◆ The coverage approaches shown so far rely
on control flow information

◆ Rapps and Weyuker (1985) suggested using
data flow information for coverage instead
– Basic idea uses def-use graphs

– Coverage of variable definitions (essentially,
assignments) and uses considered
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Example (xy)

◆ def is an
assignment to a
variable

◆ c-use is a
computational
use of a variable

◆ p-use is a
predicate use of
a variable

1. scanf(x,y); if (y < 0)

2.    pow = -y;

3. else pow = y;

4. z = 1.0;

5. while (pow != 0)

6.    {z=z*x;pow--;}

7. if (y < 0)

8.     z = 1.0/z;

9. printf(z);
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Flow graph
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{y} {y}

{y}{y}

{pow} {pow}

def={x,y}
c-use={}

def={pow}
c-use={y}

def={}
c-use={z}

def={}
c-use={}
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def={z}
c-use={}

def={z}
c-use={z}

def={pow}
c-use={y}

def={z,pow}
c-use={x,z,pow}

◆ There are many
alternative
criteria
– all-defs
– all-p-uses
– all-uses

◆ Could require
O(N2) in 2-way
branches, but
empirically it’s
linear

◆ Need to find
test cases
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Relationships among approaches [RW]

path
coverage

all-uses

all-p-uses/
some-c-

uses

all-p-uses

branch
coverage

statement
coverage

all-c-uses/
some-p-

uses

all-defs

◆ Frankl & Weyuker have
shown empirically that
none of these do
significantly better than
the others

◆ They also showed that
branch coverage and
all-uses perform better
than random test case
selection
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Mutation testing [Demillo, Lipton, et al.]

◆ The idea here is to take a program, bring a
variant (mutant) of it, and compare how the
program and the variant execute

◆ The objective is to find test cases that
distinguish between the program and its
mutants
– Otherwise, the test cases (or the mutation

approach) are weak
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Example [Jalote]

◆ Consider the “program”
– a := b*(c-d)

– written in a language with five arithmetic
operators {+,-,*,/,**}

◆ There are eight “first order” mutants of this
program
– Four operators can replace * and four can

replace -
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Other kinds of mutations

◆ Replacing constants

◆ Replacing names of variables

◆ Replacing conditions

◆ ...
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Process

◆ Define a set of test cases for a program
– Test until no more defects are found

◆ Produce mutants
– Test these mutants with the same test set as the

base program
– Score “dead” vs. “live” mutants (ones that are

and are not distinguished from the original
program)

– Add test cases until there are no dead mutants
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Utility?

◆ There are some questions about whether
mutation testing is sensible
– Does it really help improve test sets?

– The evidence is murky

◆ There are also performance questions
– If not automated, it’s a lot of management

– Computation of the mutants and applying the
tests to the mutants can be very costly
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Open questions include

◆ Minimizing test sets
◆ Testing OO programs
◆ Incremental re-testing

– “Cheap” regression testing

◆ Balancing static analysis with testing
– Can some properties be “proven” using this

combination?
◆ … more … ?
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Software process

◆ Capability maturity model (CMM), ISO
9000, Personal Software Process (PSP), …

◆ These are all examples of approaches to
improving software quality through a focus
on software process and software process
improvement
– Relatively little focus on the technical issues of

software
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A little history

◆ The waterfall model, etc., have been
considered since the late 1950’s/early
1960’s

◆ Incremental development models, the spiral
model (Boehm), and others arose as
refinements
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1987

◆ At the 1987 International Conference on
Software Engineering (ICSE), Lee
Osterweil presented a paper titled,
“Software processes are programs, too”
– Essentially, this said that one could and should

represent software processes explicitly
– Allowing one to “enact” processes as part of an

environment
◆ Highly controversial, including a response

by Manny Lehman
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Why controversial?

◆ Importance of technical issues and
decisions w.r.t. managerial issues and
decisions?

◆ Prescriptive processes vs. descriptive
processes?

◆ Capturing processes as programs?
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In any case...

◆ This led to an enormous increase in
– industrial interest, and
– research in software process

◆ Software process workshops
◆ More recently

– A journal or two
– A number of conferences
– Lots of papers in general software engineering

conferences

◆ “Most influential paper of ICSE 9”
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CMM (SEI’s web page)
◆ “The Software CMM has

become a de facto standard for
assessing and improving
software processes.

◆ Through the SW-CMM, the
SEI and community have put in
place an effective means for
modeling, defining, and
measuring the maturity of the
processes used by software
professionals.”
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CMM (Levels 1 and 2)

◆ Initial. The software process is characterized as ad
hoc, and occasionally even chaotic. Few processes
are defined, and success depends on individual
effort and heroics.

◆ Repeatable. Basic project management processes
are established to track cost, schedule, and
functionality. The necessary process discipline is
in place to repeat earlier successes on projects
with similar applications.
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CMM (Level 3)

◆ Defined. The software process for both
management and engineering activities is
documented, standardized, and integrated into a
standard software process for the organization. All
projects use an approved, tailored version of the
organization’s standard software process for
developing and maintaining software.
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CMM (Levels 4 and 5)

◆ Managed. Detailed measures of the software
process and product quality are collected. Both the
software process and products are quantitatively
understood and controlled.

◆ Optimizing. Continuous process improvement is
enabled by quantitative feedback from the process
and from piloting innovative ideas and
technologies.
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My opinion(s)

◆ For some organizations, moving upwards at
the very low levels is sensible

◆ The focus on process improvement is
inherently good

◆ The details of the actual levels are not
especially material for most organizations

◆ Technical issues are still downplayed too
much
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CMM mania

◆ SW CMM

◆ People CMM

◆ Systems engineering CMM

◆ Integrated product development CMM

◆ Software acquisition CMM

◆ CMM integration
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ISO 9000
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Hot software engineering topics

◆ Recent ICSE session titles
– Exploiting the Internet, formal specifications,

reliability, inspections & reviews, user
interface & specifications, legacy systems &
testing, static analysis, metrics, process,
hardware/software issues, reverse engineering,
process improvement, economic & legal issues,
OOT, testing
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Recent NSF grants I

◆ Reasoning about open systems
◆ Formalisms for requirements analysis and design
◆ Theoretical underpinnnings of formal analysis of

concurrent systems
◆ Formal reasoning about reactive systems
◆ Unifying real-time design and implementation
◆ A framework for specifying and verifying generic

system components
◆ Empirical investigations of software inspections
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Recent NSF grants II

◆ Testing OOP
◆ Exploratory programming techniques for program

execution monitoring
◆ Reflexion models
◆ Scalable static techniques for exhaustive and

incremental analyses of C systems
◆ And more: inspections & reviews, process-based

environments, VPL, software architecture,
program restructuring, evolution of persistent
ADTs, and many more
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My top few

◆ Lightweight tools and analyses

◆ Relationship between compiler-based and
software engineering analyses

◆ Software archaeology
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Your top few?


