
CSE584 (Spring 1997) 6/2/97

Notkin (c) 1997 1

Notkin (c) 1997 1

CSE584: Software Engineering
Lecture 9 (June 2, 1997)

David Notkin
Dept. of Computer Science & Engineering

University of Washington
www.cs.washington.edu/homes/notkin

UW CSE

CSE584: Software
Engineering Notkin (c) 1997 2

UW CSE

CSE584: Software
Engineering

Lecture 9, Outline
◆ Testing

◆ Break

◆ PSP, CMM, ISO 9000

◆ Hot topics in software engineering research

◆ Course evaluations

Notkin (c) 1997 3

UW CSE

CSE584: Software
Engineering

Testing

◆ Testing is the process of executing
programs to improve their quality
– This clearly contrasts with proofs of

correctness and static analysis (like LCLint,
type checking, etc.) in which the analysis is
performed on the program text

◆ There are other forms of testing, such as
usability testing, that are quite different

Notkin (c) 1997 4

UW CSE

CSE584: Software
Engineering

Confidence

◆ Dijkstra observed a long time ago that
testing cannot show that a program is
correct, testing can only show that a
program is incorrect

◆ This is accurate, but largely immaterial
– The objective is to build confidence, even in

safety-critical applications
– A more important question is, “Can testing be

made more rigorous?”

Notkin (c) 1997 5

UW CSE

CSE584: Software
Engineering

A question

◆ Is model checking more like proofs of
program correctness or more like testing?

Notkin (c) 1997 6

UW CSE

CSE584: Software
Engineering

Kinds of testing

◆ Symbolic testing

◆ Mutation testing

◆ Functional testing

◆ Algebraic testing

◆ Random testing

◆ Data-flow testing

◆ Integration testing

◆ White-box testing

◆ Black-box testing

◆ Boundary testing

◆ Cause-effect testing

◆ Regression testing

◆ … more …?

CSE584 (Spring 1997) 6/2/97

Notkin (c) 1997 2

Notkin (c) 1997 7

UW CSE

CSE584: Software
Engineering

Other definitions

◆ A failure occurs when the program acts in a
way inconsistent with its specification

◆ A fault occurs when an internal system state
is incorrect (even if it doesn’t lead to a failure)

◆ A defect is the piece of code that led to a
fault (and then usually a failure)

◆ An error is the human mistake that led to
the defect

Notkin (c) 1997 8

UW CSE

CSE584: Software
Engineering

Test cases

◆ A test case succeeds if it reveals a defect in
a program
– Test cases used to succeed if they executed as

expected

◆ But test cases that “fail” help improve
confidence
– Many test cases are chosen because they are

characteristic of a collection of real executions
of the program

Notkin (c) 1997 9

UW CSE

CSE584: Software
Engineering

Challenges of testing
◆ Producing effective test sets
◆ Producing reasonably small test sets
◆ Testing both normal and off-normal cases
◆ Testing for different classes of users
◆ Testing for different SW environments
◆ Testing for different HW environments
◆ Tracking results over time
◆ … more … ?

Notkin (c) 1997 10

UW CSE

CSE584: Software
Engineering

White- vs. black-box testing

◆ A common dichotomy for testing is white-box vs.
black-box testing

◆ In white-box testing, the tester also sees the code
– A key question is, “What code is covered?”
– Often done earlier

◆ In black-box testing, the tester sees the
specification but not the code
– The primary question is, “Does the code satisfy the

specification for specific test cases?”
– Often done later

Notkin (c) 1997 11

UW CSE

CSE584: Software
Engineering

Black-box testing

◆ Incorrect functions
◆ Missing functions
◆ Interface errors
◆ Performance problems
◆ Initialization and shutdown errors

◆ Can be done at the system level and/or at
the module level

Notkin (c) 1997 12

UW CSE

CSE584: Software
Engineering

Black-box testing challenges I

◆ What classes of input provide
representative coverage?

◆ Is the system particularly sensitive to
certain input values?

◆ How are boundaries of the system tested?
◆ How do we produce the appropriate oracle?

– That is, how do we know the “right” answer

CSE584 (Spring 1997) 6/2/97

Notkin (c) 1997 3

Notkin (c) 1997 13

UW CSE

CSE584: Software
Engineering

Black-box testing challenges II

◆ How do we efficiently compare true output
to the expected output?

◆ What data rates and data volume can the
system handle?

◆ What effect will specific combinations of
operations and data have on system
operation?

Notkin (c) 1997 14

UW CSE

CSE584: Software
Engineering

Coverage criteria [Ghezzi, Jazayeri, Mandrioli]

◆ In black-box testing one (consciously or
sub-consciously) partitions the inputs into a
set of classes
– Again, the expectation is that a single test case

will identify common defects for that class

◆ There are formal definitions of test
selection criteria and of consistent and
complete criteria

Notkin (c) 1997 15

UW CSE

CSE584: Software
Engineering

Test selection criterion

◆ A test selection criterion specifies a
condition that must be satisfied by a test set
– Ex: Over integers, there must be positive,

negative, and zero test values

◆ There are (almost) always multiple test sets
that satisfy a given criterion

Notkin (c) 1997 16

UW CSE

CSE584: Software
Engineering

Consistent and complete

◆ A consistent criterion is one for which any
two test sets that satisfy the criterion, either
both sets succeed or both sets fail on the
program

◆ A complete criterion is one for which, if the
program is incorrect, there exists a
satisfying test set that demonstrates this

◆ Having a consistent and complete criterion
would guarantee finding errors in a program

Notkin (c) 1997 17

UW CSE

CSE584: Software
Engineering

But

◆ There is no way to guarantee consistency
and completeness
– In general, there is no way to compute whether

a criterion is consistent or complete

◆ So we tend to use informal or heuristic
approaches to approach consistency and
completeness

Notkin (c) 1997 18

UW CSE

CSE584: Software
Engineering

Syntax-driven testing

◆ In some situations, the possible inputs to a
program are characterized using a formal
grammar
– Ex: Compilers, simple user interfaces, etc.

◆ In these cases, one can generate test sets
such that each grammar rule is used at least
once

CSE584 (Spring 1997) 6/2/97

Notkin (c) 1997 4

Notkin (c) 1997 19

UW CSE

CSE584: Software
Engineering

Decision table testing

◆ Describe tabularly how
different inputs, in various
combinations, can
produce different outputs

◆ Coverage of individual
rows is needed

◆ But tables may be huge

P *
B * *
I * *
E * *
SE * * *
E=B *
E=I *
SE=B *
SE=I *
SE=B+I *
action p b I b I b I b,I b,I

Notkin (c) 1997 20

UW CSE

CSE584: Software
Engineering

Cause effect graphing

◆ Build boolean functions
that capture specific
transformations captured
by the program

◆ Constraints can be
defined to pare the input
space
– Ex: B and P are mutually

exclusive

B

I

P

E

E=B

SE

E=I

SE=B

SE=I

SE=B+I

B

Notkin (c) 1997 21

UW CSE

CSE584: Software
Engineering

White-box testing
◆ A central objective of white-box testing is

to increase coverage
– That is, ensure that as much code in the

program as possible is exercised
– The theory is that any code that is exercised by

no test case is likely to have defects

◆ The actual output may, at times, be of
secondary interest

◆ For large systems, effective white-box
testing requires tool support

Notkin (c) 1997 22

UW CSE

CSE584: Software
Engineering

Statement coverage

◆ The simplest notion of coverage is to ensure
that all (as many as possible) statements are
exercised

◆ Problem: what’s a statement?
– Solution: represent program as a control flow

graph and ensure all statement nodes are
executed

◆ Problem:
– if x > y then max := x else max := y

Notkin (c) 1997 23

UW CSE

CSE584: Software
Engineering

Program and its CFG

◆ if x > 0 then
x := -x;

endif

◆ The test set {x = 1}
exercises all nodes
(statements)

x >= 0?

x := - x

Yes

No

Notkin (c) 1997 24

UW CSE

CSE584: Software
Engineering

Edge coverage

◆ To eliminate the obvious problems with statement
coverage, one can require that all edges of the
program’s CFG be exercised
– Now a test set like {x = 1, x = -1} is needed

◆ Edge coverage is always at least as good as
statement coverage
– That is, any test set that satisfies edge coverage for a

program will also satisfy statement coverage

CSE584 (Spring 1997) 6/2/97

Notkin (c) 1997 5

Notkin (c) 1997 25

UW CSE

CSE584: Software
Engineering

Condition coverage I

◆ A weakness in edge coverage arises with
compound conditionals
– if x >= 0 and x <= 1000 then

 S1
else
 S2
endif

◆ A test set of {x = 10,x = 1997} will
satisfy edge coverage

Notkin (c) 1997 26

UW CSE

CSE584: Software
Engineering

Condition coverage II

◆ Instead, one can require that all
combinations of the compounds be tested
– However, this may not be feasible in all

situations; some combinations may never arise

◆ An alternative is to require edge coverage
plus a requirement that each clause in the
condition independently take on all values

Notkin (c) 1997 27

UW CSE

CSE584: Software
Engineering

Condition coverage III

◆ A weakness with edge
and condition
coverage is that
combinations of
control flow aren’t
checked

◆ This example is
covered with
{x=-1,z=-1;x=1,z=1}

x < 0

x := x + 1 x := x - 1

z < 0

z:= z + 1 z := z - 1

Yes

Yes

No

No

Notkin (c) 1997 28

UW CSE

CSE584: Software
Engineering

A brief aside

◆ A key problem in coverage testing of any
sort arises when one learns that specific
elements are not covered by your test set

◆ How do you create a new test case that
covers some or all of those unexercised
elements?

◆ I don’t know of any research that addresses
this, although there may be some
– Some work in program slicing might help

Notkin (c) 1997 29

UW CSE

CSE584: Software
Engineering

Path coverage

◆ Path coverage requires that all paths through the
control flow graph be exercised

◆ For the last example, we’d need four cases
– {x=-1,z=-1;x=1,z=1;x=-1,z=1;x=1,z=-1}

◆ The problem with path coverage is that loops are
intractable
– It’s generally impossible to ensure that all possible

paths are taken in a program with a loop

◆ Also, not all paths are feasible

Notkin (c) 1997 30

UW CSE

CSE584: Software
Engineering

Loops with path coverage

◆ The path taken by
x = -10 is different
from the path taken by x
= -20

◆ All paths cannot be
tested, so representative
ones must be used
– Boundaries

– “Average”

x < 0

Yes

x := x + 1

No

CSE584 (Spring 1997) 6/2/97

Notkin (c) 1997 6

Notkin (c) 1997 31

UW CSE

CSE584: Software
Engineering

Data flow approaches

◆ The coverage approaches shown so far rely
on control flow information

◆ Rapps and Weyuker (1985) suggested using
data flow information for coverage instead
– Basic idea uses def-use graphs

– Coverage of variable definitions (essentially,
assignments) and uses considered

Notkin (c) 1997 32

UW CSE

CSE584: Software
Engineering

Example (xy)

◆ def is an
assignment to a
variable

◆ c-use is a
computational
use of a variable

◆ p-use is a
predicate use of
a variable

1. scanf(x,y); if (y < 0)

2. pow = -y;

3. else pow = y;

4. z = 1.0;

5. while (pow != 0)

6. {z=z*x;pow--;}

7. if (y < 0)

8. z = 1.0/z;

9. printf(z);

Notkin (c) 1997 33

UW CSE

CSE584: Software
Engineering

Flow graph

1

98

76

5

4

32

{y} {y}

{y}{y}

{pow} {pow}

def={x,y}
c-use={}

def={pow}
c-use={y}

def={}
c-use={z}

def={}
c-use={}

def={}
c-use={}

def={z}
c-use={}

def={z}
c-use={z}

def={pow}
c-use={y}

def={z,pow}
c-use={x,z,pow}

◆ There are many
alternative
criteria
– all-defs
– all-p-uses
– all-uses

◆ Could require
O(N2) in 2-way
branches, but
empirically it’s
linear

◆ Need to find
test cases

Notkin (c) 1997 34

UW CSE

CSE584: Software
Engineering

Relationships among approaches [RW]

path
coverage

all-uses

all-p-uses/
some-c-

uses

all-p-uses

branch
coverage

statement
coverage

all-c-uses/
some-p-

uses

all-defs

◆ Frankl & Weyuker have
shown empirically that
none of these do
significantly better than
the others

◆ They also showed that
branch coverage and
all-uses perform better
than random test case
selection

Notkin (c) 1997 35

UW CSE

CSE584: Software
Engineering

Mutation testing [Demillo, Lipton, et al.]

◆ The idea here is to take a program, bring a
variant (mutant) of it, and compare how the
program and the variant execute

◆ The objective is to find test cases that
distinguish between the program and its
mutants
– Otherwise, the test cases (or the mutation

approach) are weak

Notkin (c) 1997 36

UW CSE

CSE584: Software
Engineering

Example [Jalote]

◆ Consider the “program”
– a := b*(c-d)

– written in a language with five arithmetic
operators {+,-,*,/,**}

◆ There are eight “first order” mutants of this
program
– Four operators can replace * and four can

replace -

CSE584 (Spring 1997) 6/2/97

Notkin (c) 1997 7

Notkin (c) 1997 37

UW CSE

CSE584: Software
Engineering

Other kinds of mutations

◆ Replacing constants

◆ Replacing names of variables

◆ Replacing conditions

◆ ...

Notkin (c) 1997 38

UW CSE

CSE584: Software
Engineering

Process

◆ Define a set of test cases for a program
– Test until no more defects are found

◆ Produce mutants
– Test these mutants with the same test set as the

base program
– Score “dead” vs. “live” mutants (ones that are

and are not distinguished from the original
program)

– Add test cases until there are no dead mutants

Notkin (c) 1997 39

UW CSE

CSE584: Software
Engineering

Utility?

◆ There are some questions about whether
mutation testing is sensible
– Does it really help improve test sets?

– The evidence is murky

◆ There are also performance questions
– If not automated, it’s a lot of management

– Computation of the mutants and applying the
tests to the mutants can be very costly

Notkin (c) 1997 40

UW CSE

CSE584: Software
Engineering

Open questions include

◆ Minimizing test sets
◆ Testing OO programs
◆ Incremental re-testing

– “Cheap” regression testing

◆ Balancing static analysis with testing
– Can some properties be “proven” using this

combination?
◆ … more … ?

Notkin (c) 1997 41

UW CSE

CSE584: Software
Engineering

Software process

◆ Capability maturity model (CMM), ISO
9000, Personal Software Process (PSP), …

◆ These are all examples of approaches to
improving software quality through a focus
on software process and software process
improvement
– Relatively little focus on the technical issues of

software

Notkin (c) 1997 42

UW CSE

CSE584: Software
Engineering

A little history

◆ The waterfall model, etc., have been
considered since the late 1950’s/early
1960’s

◆ Incremental development models, the spiral
model (Boehm), and others arose as
refinements

CSE584 (Spring 1997) 6/2/97

Notkin (c) 1997 8

Notkin (c) 1997 43

UW CSE

CSE584: Software
Engineering

1987

◆ At the 1987 International Conference on
Software Engineering (ICSE), Lee
Osterweil presented a paper titled,
“Software processes are programs, too”
– Essentially, this said that one could and should

represent software processes explicitly
– Allowing one to “enact” processes as part of an

environment
◆ Highly controversial, including a response

by Manny Lehman

Notkin (c) 1997 44

UW CSE

CSE584: Software
Engineering

Why controversial?

◆ Importance of technical issues and
decisions w.r.t. managerial issues and
decisions?

◆ Prescriptive processes vs. descriptive
processes?

◆ Capturing processes as programs?

Notkin (c) 1997 45

UW CSE

CSE584: Software
Engineering

In any case...

◆ This led to an enormous increase in
– industrial interest, and
– research in software process

◆ Software process workshops
◆ More recently

– A journal or two
– A number of conferences
– Lots of papers in general software engineering

conferences

◆ “Most influential paper of ICSE 9”

Notkin (c) 1997 46

UW CSE

CSE584: Software
Engineering

CMM (SEI’s web page)
◆ “The Software CMM has

become a de facto standard for
assessing and improving
software processes.

◆ Through the SW-CMM, the
SEI and community have put in
place an effective means for
modeling, defining, and
measuring the maturity of the
processes used by software
professionals.”

Notkin (c) 1997 47

UW CSE

CSE584: Software
Engineering

CMM (Levels 1 and 2)

◆ Initial. The software process is characterized as ad
hoc, and occasionally even chaotic. Few processes
are defined, and success depends on individual
effort and heroics.

◆ Repeatable. Basic project management processes
are established to track cost, schedule, and
functionality. The necessary process discipline is
in place to repeat earlier successes on projects
with similar applications.

Notkin (c) 1997 48

UW CSE

CSE584: Software
Engineering

CMM (Level 3)

◆ Defined. The software process for both
management and engineering activities is
documented, standardized, and integrated into a
standard software process for the organization. All
projects use an approved, tailored version of the
organization’s standard software process for
developing and maintaining software.

CSE584 (Spring 1997) 6/2/97

Notkin (c) 1997 9

Notkin (c) 1997 49

UW CSE

CSE584: Software
Engineering

CMM (Levels 4 and 5)

◆ Managed. Detailed measures of the software
process and product quality are collected. Both the
software process and products are quantitatively
understood and controlled.

◆ Optimizing. Continuous process improvement is
enabled by quantitative feedback from the process
and from piloting innovative ideas and
technologies.

Notkin (c) 1997 50

UW CSE

CSE584: Software
Engineering

My opinion(s)

◆ For some organizations, moving upwards at
the very low levels is sensible

◆ The focus on process improvement is
inherently good

◆ The details of the actual levels are not
especially material for most organizations

◆ Technical issues are still downplayed too
much

Notkin (c) 1997 51

UW CSE

CSE584: Software
Engineering

CMM mania

◆ SW CMM

◆ People CMM

◆ Systems engineering CMM

◆ Integrated product development CMM

◆ Software acquisition CMM

◆ CMM integration

Notkin (c) 1997 52

UW CSE

CSE584: Software
Engineering

ISO 9000

Notkin (c) 1997 53

UW CSE

CSE584: Software
Engineering

Hot software engineering topics

◆ Recent ICSE session titles
– Exploiting the Internet, formal specifications,

reliability, inspections & reviews, user
interface & specifications, legacy systems &
testing, static analysis, metrics, process,
hardware/software issues, reverse engineering,
process improvement, economic & legal issues,
OOT, testing

Notkin (c) 1997 54

UW CSE

CSE584: Software
Engineering

Recent NSF grants I

◆ Reasoning about open systems
◆ Formalisms for requirements analysis and design
◆ Theoretical underpinnnings of formal analysis of

concurrent systems
◆ Formal reasoning about reactive systems
◆ Unifying real-time design and implementation
◆ A framework for specifying and verifying generic

system components
◆ Empirical investigations of software inspections

CSE584 (Spring 1997) 6/2/97

Notkin (c) 1997 10

Notkin (c) 1997 55

UW CSE

CSE584: Software
Engineering

Recent NSF grants II

◆ Testing OOP
◆ Exploratory programming techniques for program

execution monitoring
◆ Reflexion models
◆ Scalable static techniques for exhaustive and

incremental analyses of C systems
◆ And more: inspections & reviews, process-based

environments, VPL, software architecture,
program restructuring, evolution of persistent
ADTs, and many more

Notkin (c) 1997 56

UW CSE

CSE584: Software
Engineering

My top few

◆ Lightweight tools and analyses

◆ Relationship between compiler-based and
software engineering analyses

◆ Software archaeology

Notkin (c) 1997 57

UW CSE

CSE584: Software
Engineering

Your top few?

