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Lecture 7, Outline [approximate minutes]

◆ Analysis of formal specifications [10]
– Consistency and completeness

– Ensuring specific properties

– Counterexample checking

◆ Model checking background [30]

◆ Break [10]

◆ Model checking software specifications [50]

◆ Counterexample checking of Z-like specifications [15]

◆ Wrap-up [20]
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Today’s two questions

◆ Why use formalisms in (at least) some
requirements specifications?

◆ How do we build confidence in the correctness of
a requirements specification?
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Short answers

◆ Model checking and related techniques are
extremely promising for helping improve
the quality of (some limited, but important
kinds of) software requirements
specifications

◆ Improve confidence in a specification by
iterative checking of a different “view” of
the specification
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Verification vs. falsification

◆ Ed Clarke has observed that this general
area of improving confidence in a
specification should probably be called
falsification rather than verification

◆ This is not so different from the shift in
testing terminology
– Does a test case succeed or fail if it exposes a

problem?
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Model checking
◆ Evaluate temporal

properties of finite state
systems

◆ Extremely successfully
for hardware
verification

◆ Open question:
applicable to software
specifications?

Finite State
Machine

Temporal Logic
Formula

Model
Checker

Yes No
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The plan

◆ Basics of model checking
– Explicit model checking
– Symbolic model checking

◆ Applying model checking
– Hardware
– Software

» Protocols, TCAS, …

◆ Counterexample checking

Notkin (c) 1997 8

UW CSE

CSE584: Software
Engineering

State Transition Graph

◆ One way to represent a finite state machine is as a
state transition graph
– S is a finite set of states
– R is a binary relation that defines the possible

transitions between states in S
– P is a function that assigns atomic propositions to each

state in S
» e.g., that a specific process holds a lock

◆ Other representations include regular expressions,
etc.
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Example

◆ Three states

◆ Transitions as shown

◆ Atomic properties a, b
and c

◆ Given a start state,
you can consider legal
paths through the state
machine

a
b

b
c

a
c

S0

S1

S2
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A computation tree

◆ From a given start
state, you can
represent all possible
paths with an infinite
computation tree

◆ Model checking
allows us to answer
questions about this
tree structure

S0

S0

S1

S2S1

S0

S2S1
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Temporal formulae

◆ Temporal logics allow
us to say things like
– Does some property

hold true globally?
» Top figure

– Does some property
inevitably hold true?

» Bottom figure

– Does some property
potentially hold true?

S0

S0

S1

S2S1

S0

S2S1

S2

S0

S0

S1

S2S1

S0

S2S1
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Mutual exclusion example

N1/N2

N1/T2T1/N2

C1/N2 T1/T2 T1/T2 N1/C2

T1/C2C1/T2

◆ N1 & N2, non-critical
regions of Process 1 and 2

◆ T1 & T2, trying regions

◆ C1 and C2, critical regions

◆ AF(C1) in lightly shaded
state?
– C1 always inevitably

true?

◆ EF(C1 ∧ C2) in dark
shaded state?
– C1 and C2 eventually

true?
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Model checking

◆ A model checker takes as input the state
machine description and a temporal logic
formula and
– either returns “true” or

– returns “false” and gives a counterexample
» a description of state transitions that leads to a

counterexample of the temporal formula
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How does it work? (in brief)

◆ An iterative algorithm that labels states in the
transition graph with formulae known to be true

◆ For a query Q
– the first iteration marks all subformulae of Q of

length 1

– the second iteration marks them of length 2

– this terminates since the formula is finite

◆ The details of the logic indeed matter (but not at
this level of description)
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Example

◆ Q = T1 ⇒ AF C1
– If Process 1 is trying to acquire the mutex, then

it is inevitably true it will get it sometime

◆ Q = ¬Τ1 ∨ AF C1
– Rewriting with DeMorgan’s Laws

◆ First, label all the states where T1, ¬T1,
and C1 are true
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Example

◆ Next mark all the
states in which AF
C1 is true, etc.
– The algorithm tracks

states visited using
depth-first search

– Slight variations for
AF, AG, EF, EG, etc.

◆ At termination,
¬T1 ∨ AF C1 is true
everywhere

N1/N2
¬T1

¬T1 v AF C1

N1/T2
¬T1

¬T1 v AF C1

T1/N2
AF C1

¬T1 v AF C1

C1/N2
¬T1

AF C1
¬T1 v AF C1

N1/C2
¬T1

¬T1 v AF C1

T1/C2
AF C1

¬T1 v AF C1

T1/T2
AF C1

¬T1 v AF C1

C1/T2
¬T1

AF C1
¬T1 v AF C1

T1/T2
AF C1

¬T1 v AF C1
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Examples in hardware

◆ This approach can be used to demonstrate
properties of some protocols, such as the
Alternating Bit Protocol
– Senders send data
– Receivers send acknowledgments
– Garbled and lost messages can be detected
– Must resend for garbled and lost messages and

missing acknowledgments
– ABP passes an “alternation” (control) bit
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ABP state graph

◆ Produce state machines for Sender and
Receiver

◆ Interleave them to produce a single
machine
– After state minimization, state graph has 251

states
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ABP formulae

◆ AG(RcvMsg ⇒
 A[RcvMsg U (¬RcvMsg U SndMsg])])

◆ AG(SndMsg ∧ Smsg ⇒ A[SndMsg U …

◆ …

◆ Collectively, the (three) formulae imply that
sending a message strictly alternates with
receiving a message and that the proper message
is received
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Limitations

◆ This approach is called explicit model checking,
because the state graph is represented and
traversed explicitly

◆ When the state space is very large, this approach
is computationally infeasible
– There has been lots of recent work on explicit model

checkers, notably the MurΦ system at Stanford (Dill et
al.)

– Identifying isomorphic states is the central idea
– Can be effective in situations with many replicated

structures
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Symbolic model checking

◆ State space can be huge (>21000) for many
systems

◆ Use implicit representation
– Data structure to represent transition relation as

a boolean formula

◆ Algorithmically manipulate the data
structure to explore the state space

◆ Key: efficiency of the data structure
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Binary decision diagrams (BDDs)

◆ “Folded decision tree”
◆ Fixed variable order
◆ Many functions have

small BDDs
– Multiplication is a

notable exception

◆ Can represent
– State machines

(transition functions)
– Temporal queries

01

1 1

1 10

10

1 1

0

0

x1

x4

x3

x2

Odd Parity

Due to Randy Bryant
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BDD-based model checking

◆ Iterative, fixed-point algorithms that are
quite similar to those in explicit model
checking

◆ Applying boolean functions to BDDs is
efficient, which makes the underlying
algorithms efficient

◆ When the BDDs remain small, that is
– Variable ordering is a key issue
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BDD-based successes in HW

◆ IEEE Futurebus+ cache coherence protocol

◆ Control protocol for Philips stereo
components

◆ ISDN User Part Protocol

◆ ...
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Software model checking

◆ Finite state software specifications
– Reactive systems (avionics, automotive, etc.)

– Hierarchical state machine specifications
» Statecharts (Harel), RSML (Leveson)

◆ Not intended to help with proving
consistency of specification and
implementation
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Why might model checking fail?

◆ Software is often specified with infinite
state descriptions
– We’ll come back to this later (counterexample

checking)

◆ Software specifications may be structured
differently from hardware specifications
– Hierarchy
– Representations and algorithms for model

checking may not scale
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Our approach at UW—try it!

◆ Applied model checking to the specification of
TCAS II
– Traffic Alert and Collision Avoidance System

» In use on U.S. commercial aircraft
» http://www.faa.gov/and/and600/and620/newtcas.htm

– FAA adopted specification
– Initial design and development by Leveson et

al.
◆ Joint with Anderson, Beame, Chan, Modugno,

Reese
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TCAS

◆ Warn pilots of traffic
– Plane to plane, not through ground controller

– On essentially all commercial aircraft

◆ Issue resolution advisories only
– Vertical resolution only

– Relies on transponder data
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TCAS specification

◆ Irvine Safety Group (Leveson et al.)
– Specified in RSML as a research project

» RSML is in the Statecharts family of hierarchical
state machine description languages

– FAA adopted RSML version as official

◆ Specification is about 400 pages long

◆ This study uses: Version 6.00, March 1993
– Not the current FAA version
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TCAS—high-level structure

Own_Aircraft Other_Aircraft

On

◆ Own_Aircraft
– Sensitivity levels, Alt_Layer, Advisory_Status

◆ Other_Aircraft
– Tracked, Intruder_State, Range_Test, Crossing,

Sense Descend/Climb
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Using SMV

◆ SMV is a BDD-based model checker

◆ It checks CTL formulas
– A specific temporal logic

TCAS
(RSML)

Properties
(CTL)

Model Checker
(SMV)

Partial TCAS
(SMV)
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Iterative process

◆ Iterate SMV version of
specification

◆ Clarify temporal formula

◆ Model environment more
precisely

◆ Refine specification

Environment

Abstracted
Part of

Specification

Modeled Part
of Specification
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Use of non-determinism

◆ Inputs from environment
– Altitude := {1000…8000}

◆ Simplification of functions
– Alt_Rate := 0.25*(Alt_Baro-ZP)/Delta_t

– Alt_Rate := {-2000…2000}

◆ Unmodelled parts of specification
– States of Other_Aircraft treated as non-

determinstic input variables
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Translating RSML to SMV

On

Off

MODULE main
VAR

state:{ON,OFF};
on_event: boolean;
off_event: boolean;

ASSIGN
init(state) := OFF;
next(state) := case

state = ON &
        off_event: OFF;

state = OFF &
        on_event: ON;

1 : state;
esac;
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State encoding

A B

D F

E G

S

C

T U

◆ Flatten nested AND
and nested OR states

◆ One variable for each
OR state
– An enumerated type of

the alternatives
◆ VAR

S: {A,B,C};
T: {D,E};
U: {F,G};
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Synchrony hypothesis

◆ Handling an external event
DEFINE

Stable := !Initiate_Move &
             !Move_Finished &
             !Rod_Updated & !Clock_Event
ASSIGN

next(Move_Finished) := case
Stable : {0,1};
1      : 0;

esac;
…for other external events…
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Transitions

VAR RC: {Out, Mid, In};

ASSIGN

T_Out_Mid : Mid; T_Mid_In : In;

T_Mid_Out : Out; T_In_Mid : Mid;

1 : RC;

esac;
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Non-deterministic transitions

◆ A machine is deterministic
if at most one of T_A_B,
T_A_C, etc. can be true

◆ Else non-deterministic
◆ Can encode non-

deterministic transitions
◆ next(S) := case

T_A_B & T_A_C: {B,C};
T_A_B : B; T_A_C : C;
1 : S;

esac;

A

C

B
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Checking properties

◆ Initial attempts to check any property
generated BDDs of over 200MB

◆ First successful check took 13 hours
– Has been reduced to a few minutes

◆ Partitioned BDDs
◆ Reordered variables
◆ Implemented better search for

counterexamples
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Property checking

◆ Domain independent properties
– Deterministic state transitions
– Function consistency

◆ Domain dependent
– Output agreement
– Safety properties

◆ We used SMV to investigate some of these
properties on TCAS’ Own_Aircraft module
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Disclaimer

The intent of this work is to evaluate symbolic
model checking of state-based specifications, not to
evaluate the TCAS II specification.  Our study used
a preliminary version of the specification, version
6.00, dated March, 1993.  We did not have access to
later versions, so we do not know if the issues
identified here are present in later versions.
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Deterministic transitions

◆ Do the same conditions allow for non-
deterministic transitions?

◆ Inconsistencies were found earlier by other
methods [Heimdahl and Leveson]

– Identical conditions allowed transitions from
Sensitivity Level 4 to SL 2 or to SL 5

◆ Our formulae checked for all possible non-
determinism; we found this case, too

Earlier
version of
TCAS spec
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V_254a := MS = TA_RA | MS = TA_only | MS =3 | MS = 4 |
          MS = 5 | MS = 6 | MS = 7;
V_254b := ASL = 2 | ASL = 3 | ASL = 4 | ASL = 5 |
          ASL = 6 | ASL = 7;
T_254  := (ASL = 2 & V_254a) | (ASL = 2 & MS = TA_only) |
          (V_254b & LG = 2 & V524a);
V_257a := LG = 5 | LG = 6 | LG = 7 | LG = none;
V_257b := MS = TA_RA | MS = 5 || MS = 6 | MS = 7;
V_257c := MS = TA_RA | MS = TA_only | MS = 3 | MS = 4 |
          MS = 5 | MS = 6 | MS = 7;
V_257d := ASL = 5 | ASL = 6 | ASL = 7;
T_257  := (ASL = 5 | V_257a | V_257b) |
          (ASL = 5 & MS = TA_only) |
          (ASL = 5& LG = 2 & V_257c) |
          (V_257d & LG = 5 & V_257b) |
          (V_257d & V_257a & MS = 5);
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Tradeoffs

◆ Our approach was slower than the
Heimdahl & Leveson approach
– BDD-based, but not model checking

◆ Their approach reported some false
positives
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Function consistency

AG ! ((C1 & C2) | (C1 & C3) | (C2 & C3))

F :=
V1 if C1
V2 if C2
V3 if C3

◆ Many functions are
defined in terms of
cases

◆ A function is
inconsistent if two
different conditions Ci
and Cj and be true
simultaneously

Notkin (c) 1997 47

UW CSE

CSE584: Software
Engineering

Display_Model_Goal

◆ Tells pilot desired rate of altitude change
◆ Checking for consistency gave a

counterexample
– Other_Aircraft  reverse from an Increase-

Climb  to an Increase-Descend  advisory
– After study, this is only permitted in our non-

deterministic modeling of Other_Aircraft
– Modeling a piece of Other_Aircraft’s logic

precludes this counterexample
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Output agreement

◆ Related outputs should be consistent
– Resolution advisory

» Increase-Climb, Climb, Descend,
Increase-Descend

– Display_Model_Goal

» Desired rate of altitude change

» Between -3000 ft/min and 3000 ft/min

– Presumably, on a climb advisory,
Display_Model_Goal should be positive
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Output agreement check

◆ AG (RA = Climb -> DMG > 0)

– If Resolution Advisory is Climb, then
Display_Model_Goal is positive

◆ Counterexample was found
– t 0 : RA = Descend, DMG = -1500

– t 1 : RA = Increase-Descend, DMG = -2500

– t 2 : RA = Climb, DMG = -1500
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Limitations

◆ Can’t model all of TCAS
– Pushing limits of SMV (more than 200 bit

variables is problematic)

– Need some non-linear arithmetic to model parts
of Other_Aircraft
» New result that represents constraints as BDD

variables and uses a constraint solver

◆ How to pick appropriate formulae to check?
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Where may formulae come from?

“There have been two pilot reports received which
indicated that TCAS had issued Descend RA's at
approximately 500 feet AGL even though TCAS is
designed to inhibit Descent RAs at 1,000 feet AGL.
All available data from these encounters are being
reviewed to determine the reason for these RAs.”

                                             --TCAS Web site
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Where may formulae come from?

◆ Jaffe, Leveson et al. developed criteria that
specifications of embedded real-time systems
should satisfy, including:
– All information from sensors should be used

– Behavior before startup, after shutdown and during off-
line processing should be specified

– Every state must have a transition defined for every
possible input (including timeouts)

» Predicates on the transitions must yield
deterministic behavior
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More criteria

◆ Timing criteria

◆ Data validity criteria

◆ Degradation criteria

◆ Feedback criteria

◆ Reachability criteria
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What about infinite state specs?

◆ Model checking does not apply to infinite state
specifications
– The iterative algorithm will not reach a fixpoint

◆ Theorem proving applies well to infinite state
specifications, but has generally proved to be
unsatisfactory in practice

◆ One approach is to abstract infinite state
specifications into finite state ones
– Doing this and preserving properties is hard
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A middle ground

◆ Jackson and Damon have found an
interesting middle ground

◆ Write infinite state specs (in the style of Z)

◆ Use “model checking” on all instances of
the specifications up to a certain size
– Report counterexamples, if found

– Success doesn’t guarantee that the properties
hold in the specification (beyond the checked
sizes)
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Nitpick

◆ The tool that checks for counterexamples
given a (subset of) Z specification

◆ Examples include
– Paragraph style mechanisms

– Telephone switch structures (like the one from
Mataga and Zave)

◆ Two variants—explicit state space
enumeration and BDD-based checking
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Paragraph style mechanisms

◆ Hierarchical definition of styles

◆ Questions about inheritance structures
– Inferred or declared?

– What happens when the relationship between styles changes?

Normal

Caption Indent Formula Section Title Ref

No
indent

Section
Sub

Author
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Adding formats

◆ Now add formats to the specification
– Formatting can override pieces of style

◆ What are the consequences?
– Formatting accidentally dropped

– …
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Explicit vs. symbolic

◆ The explicit counterexample checker
identifies isomorphs, does short-circuit
enumeration, etc.

◆ The symbolic counterexample checker
translates the relational descriptions into
boolean structures and then uses BDDs

◆ The BDD-based has less consistent
behavior, but is sometimes much faster
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Iteration

◆ Improve confidence in a specification by
iterative checking of a different “view” of
the specification
– People using model checkers are usually

unhappy when the original answer is “yes”

– The iterative process of poking at the
specification, changing the formulae, etc.,
contribute to an increased confidence that is not
necessarily measurable


