
CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 1

Notkin (c) 1997 1

CSE584: Software Engineering
Lecture 4 (April 22, 1997)

David Notkin
Dept. of Computer Science & Engineering

University of Washington
www.cs.washington.edu/homes/notkin

UW CSE

CSE584: Software
Engineering Notkin (c) 1997 2

UW CSE

CSE584: Software
Engineering

Lecture 4, Outline [approximate minutes]

❷ Software change
– Basic background [15]

– Approaches to change [15]

❷ Alternative approaches to maintenance
– Introduction [15]

– Source models [30]

❷ Break [10]

❷ Roundtable [15]
– Tools you use for change

❷ Alternative approaches to maintenance (con’t)
– Visualizing source models [60]

Notkin (c) 1997 3

UW CSE

CSE584: Software
Engineering

Software evolution

❷ Software changes
– Software maintenance

– Software evolution

– Incremental development

❷ The objective is to use an existing code
base as an asset
– Cheaper and better to get there from here,

rather than starting from scratch

Notkin (c) 1997 4

UW CSE

CSE584: Software
Engineering

Why does it change?

❷ Software changes does not change
primarily because it doesn’t work right

❷ But rather because the technological,
economic, and societal environment in
which it is embedded changes

❷ This provides a feedback loop to the
software
– The software is usually the most malleable link

in the chain, hence it tends to change

Notkin (c) 1997 5

UW CSE

CSE584: Software
Engineering

Kinds of change

❷ Corrective
maintenance
– Fixing bugs in released

code

❷ Adaptive maintenance
– Porting to new

hardware or software
platform

❷ Perfective maintenance
– Providing new

functions

0

10

20

30

40

50

60

70

Lientz & Swanson
1980

Corrective
Adaptive
Perfective

Notkin (c) 1997 6

UW CSE

CSE584: Software
Engineering

High cost, long time

❷ Gold’s 1973 study
showed the fraction
of programming
effort spent in
maintenance

❷ For example, 22%
of the organizations
spent 30% of their
effort in
maintenance

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100

CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 2

Notkin (c) 1997 7

UW CSE

CSE584: Software
Engineering

Total life cycle cost

❷ Lientz and Swanson determined that at least
50% of the total life cycle cost is in
maintenance

❷ There are several other studies that are
reasonably consistent

❷ General belief is that maintenance costs
somewhere between 50-75% of total life
cycle costs

Notkin (c) 1997 8

UW CSE

CSE584: Software
Engineering

Open question

❷ How much maintenance cost is “reasonable?”
– Corrective maintenance costs are ostensibly not

“reasonable”

– How much adaptive maintenance cost is “reasonable”?

– How much perfective maintenance cost is
“reasonable”?

❷ Measuring “reasonable” costs in terms of
percentage of life cycle costs doesn’t make sense

Notkin (c) 1997 9

UW CSE

CSE584: Software
Engineering

High-level answer

❷ For perfective maintenance, it seems that
the objective should be for the cost of the
change in the implementation to be
proportional to the cost of the change in the
specification (design)
– Ex: Allowing dates for the year 2000 is (at

most) a small specification change

– Ex: Adding call forwarding is a more
complicated specification change

Notkin (c) 1997 10

UW CSE

CSE584: Software
Engineering

Observations about maintenance

❷ Maintainers often get less respect than
developers

❷ Maintenance is generally assigned to the
least experienced programmers

❷ Software structure degrades over time

❷ Documentation is often poor and is often
inconsistent with the code

Notkin (c) 1997 11

UW CSE

CSE584: Software
Engineering

Laws of Program Evolution
[Belady & Lehman]

❷ Law of continuing change
– “A large program that is used undergoes

continuing change or becomes progressively
less useful.”

– Analogies to biological evolution have been
made; the rate of change in software is far
faster

Notkin (c) 1997 12

UW CSE

CSE584: Software
Engineering

Law of increasing complexity

❷ “As a large program is continuously
changed, its complexity, which reflects
deteriorating structure, increases unless
work is done to maintain or reduce it.”
– Complexity, in part, is relative to a

programmer’s knowledge of a system
» Novices vs. experts doing maintenance

– Cleaning up structure is done relatively
infrequently

CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 3

Notkin (c) 1997 13

UW CSE

CSE584: Software
Engineering

Law of statistically regular growth

❷ “Measures of [growth] are cyclically self-
regulating with statistically determinable
trends and invariances.”
– (You can run but you can’t hide)

– Based on data from OS/360 and some other
systems

– Ex: Content in releases decreases or time
between releases increases

Notkin (c) 1997 14

UW CSE

CSE584: Software
Engineering

And two others

❷ “The global activity rate in a large
programming project is invariant.”

❷ “For reliable, planned evolution, a large
program undergoing change must be made
available for regular user execution at
maximum intervals determined by its net
growth.”
– This is related to Microsoft’s “daily builds”

Notkin (c) 1997 15

UW CSE

CSE584: Software
Engineering

Approaches to reducing cost

❷ Design for change
– Information hiding, layering, open

implementation, etc.

❷ Tools to support change
– grep, etc.

– Reverse engineering, program understanding,
system summarization, …

Notkin (c) 1997 16

UW CSE

CSE584: Software
Engineering

Approaches to reducing cost

❷ Improved documentation
– Discipline, stylized approaches

❷ Reducing bugs
– Many techniques, covered later in the quarter

❷ Increasing correctness of specifications

❷ Others?

17

UW CSE

CSE584: Software
Engineering

When assigned a task to modify
an existing software system,
how does a software engineer
choose to proceed?

A view of maintenance

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Assigned
Task

? ? ? ? ?

18

UW CSE

CSE584: Software
Engineering

Sample task

❷ You are asked to update an application in
response to a change in a library function

❷ The original library function is
– assign(char* to, char* from, int cnt = NCNT)

– Copy cnt characters from to into from

❷ The new library function is
– assign(char * to, char* from, int pos, int cnt = NCNT)

– Copy cnt characters starting at pos from to into from

❷ How would you make this change?

CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 4

19

UW CSE

CSE584: Software
Engineering

Recap: example

❷ What information did you need?
❷ What information was available?
❷ What tools produced the information?

– Did you think about other pertinent tools?

❷ How accurate was the information?
– Any false information? Any missing true

information?

❷ How did you view and use the information?

20

UW CSE

CSE584: Software
Engineering

Source models

❷ Reasoning about a maintenance task is done in
terms of a model of the source code

❷ Such a source model captures one or more
relations found in the system’s artifacts

Document

Document

Document

Document

Document

Document

(a,b)
(c,d)
(c,f)
(a,c)
...

(d,f)
(g,h)

Extraction Tool

21

UW CSE

CSE584: Software
Engineering

Example source models

❷ A calls graph
– Which functions call which other functions?

❷ An inheritance hierarchy
– Which classes inherit from which other classes?

❷ A global variable cross-reference
– Which functions reference which globals?

❷ A lexical-match model
– Which source lines contain a given string?

❷ A def-use model
– Which variable definitions are used at which use sites?

22

UW CSE

CSE584: Software
Engineering

Combining source models

❷ Source models may be produced by
combining other source models using
simple relational operations; for example,
– Extract a source model indicating which

functions reference which global variables

– Extract a source model indicating which
functions appear in which modules

– Join these two source models to produce a
source model of modules referencing globals

23

UW CSE

CSE584: Software
Engineering

Extracting source models

❷ Source models are extracted using tools

❷ Any source model can be extracted in
multiple ways
– That is, more than one tool can produce a given

kind of source model

❷ The tools are sometimes off-the-shelf,
sometimes hand-crafted, sometimes
customized

24

UW CSE

CSE584: Software
Engineering

Information characteristics

ideal conservative

optimistic approximate

no false positives false positives

no
 fa

ls
e

ne
ga

tiv
es

fa
ls

e
ne

ga
tiv

es

CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 5

25

UW CSE

CSE584: Software
Engineering

Ideal source models

❷ It would be best if every source model
extracted was perfect
– All entries are true and no true entries are omitted

❷ For some source models, this is possible
– Inheritance, defined functions, #include structure, etc.

❷ For some source models, this is not possible
– Ideal call graphs, for example, are uncomputable

❷ For some source models, achieving the
ideal may be difficult in practice

26

UW CSE

CSE584: Software
Engineering

Conservative source models

❷ These include all true information and
maybe some false information, too

❷ Frequently used in compiler optimization,
parallelization, in programming language
type inference, etc.
– Ex: never misidentify a call that can be made or

else a compiler may translate improperly

– Ex: never misidentify an expression in a
statically typed programming language

27

UW CSE

CSE584: Software
Engineering

Optimistic source models

❷ These include only truth but may omit some
true information

❷ Often come from dynamic extraction

❷ Ex: In white-box code coverage in testing
– Indicating which statements have been

executed by the selected test cases

– Others statements may be executable with
other test cases

28

UW CSE

CSE584: Software
Engineering

Approximate source models

❷ May include some false information and
may omit some true information

❷ These source models can be useful for
maintenance tasks
– Especially useful when a human engineer is

using the source model, since humans deal well
with approximation

❷ Turns out many tools produce approximate
source models (more on this later)

29

UW CSE

CSE584: Software
Engineering

Static vs. dynamic source models

❷ Source model extractors can work
– statically, directly on the system’s artifacts, or

– dynamically, on the execution of the system, or

– a combination of both

❷ Ex:
– A call graph can be extracted statically by

analyzing the system’s source code or can be
extracted dynamically by profiling the system’s
execution

30

UW CSE

CSE584: Software
Engineering

Must iterate

❷ Usually, the engineer must iterate to get a source
model that is “good enough” for the assigned task

❷ Often done by inspecting extracted source models
and refining extraction tools

❷ May add and combine source models, too

Document

Document

Document

Document

Document

Document

(a,b)
(c,d)
(c,f)
(a,c)
...

(d,f)
(g,h)

Extraction Tool

CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 6

31

UW CSE

CSE584: Software
Engineering

Another maintenance task

❷ Given a software system, rename a given
variable throughout the system
– Ex: angle should become diffraction

– Probably in preparation for a larger task

❷ Semantics must be preserved

❷ This is a task that is done infrequently
– Without it, the software structure degrades

more and more

32

UW CSE

CSE584: Software
Engineering

What source model?

❷ Our preferred source model for the task
would be a list of lines (probably organized
by file) that reference the variable angle

❷ A static extraction tool makes the most
sense
– Dynamic references aren’t especially pertinent

for this task

33

UW CSE

CSE584: Software
Engineering

Start by searching

❷ Let’s start with grep, the most likely tool
for extracting the desired source model

❷ The most obvious thing to do is to search
for the old identifier in all of the system’s
files
– grep angle *

34

UW CSE

CSE584: Software
Engineering

What files to search?

❷ It’s hard to determine which files to search
– Multiple and recursive directory structures
– Many types of files

» Object code? Documentation? (ASCII vs. non-
ASCII?) Files generated by other programs (such
as yacc)? Makefiles?

– Conditional compilation? Other problems?

❷ Care must be taken to avoid false negatives
arising from files that are missing

35

UW CSE

CSE584: Software
Engineering

False positives

– grep angle [system’s files]

❷ There are likely to be a number of spurious
matches
– …triangle…, …quadrangle…

– /* I could strangle this programmer! */

– /* Supports the small planetary rovers
 presented by Angle & Brooks (IROS ‘90) */

– printf(“Now play the Star Spangled Banner”);

❷ Be careful about using agrep!

36

UW CSE

CSE584: Software
Engineering

More false negatives

❷ Some languages allow identifiers to be split
across line boundaries
– Cobol, Fortran, PL/I, etc.

– This leads to potential false negatives

❷ Preprocessing can hurt, too
– #define deflection angle

...
deflection = sin(theta);

CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 7

37

UW CSE

CSE584: Software
Engineering

It’s not just syntax

❷ It is also important to check, before
applying the change, that the new variable
name (degree) is not in conflict anywhere
in the program
– The problems in searching apply here, too

– Nested scopes introduce additional
complications

38

UW CSE

CSE584: Software
Engineering

Tools vs. task

❷ In this case, grep is a lexical tool but the
renaming task is a semantic one
– Mismatch with syntactic tools, too

❷ Mismatches are common and not at all
unreasonable
– But it does introduce added obligations on the

maintenance engineer

– Must be especially careful in extracting and
then using the approximate source model

39

UW CSE

CSE584: Software
Engineering

Finding vs. updating

❷ Even after you have extracted a source
model that identifies all of (or most of) the
lines that need to be changed, you have to
change them

❷ Global replacement of strings is at best
dangerous

❷ Manually walking through each site is time-
consuming, tedious, and error-prone

40

UW CSE

CSE584: Software
Engineering

Downstream consequences

❷ After extracting a good source model by
iterating, the engineer can apply the
renaming to the identified lines of code

❷ However, since the source model is
approximate, regression testing (and/or
other testing regimens) should be applied

41

UW CSE

CSE584: Software
Engineering

An alternative approach

❷ Griswold developed a meaning-preserving
program restructuring tool that can help

❷ For a limited set of transformations, the
engineer applies a local change and the tool
applies global compensating changes that
maintain the program’s meaning
– Or else the change is not applied

– Reduces errors and tedium when successful

42

UW CSE

CSE584: Software
Engineering

But

❷ The tool requires significant infrastructure
– Abstract syntax trees, control flow graphs,

program dependence graphs, etc.

❷ The technology OK for small programs
– Downstream testing isn’t needed

– No searching is needed

❷ But it does not scale in terms of either
computation size or space

CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 8

43

UW CSE

CSE584: Software
Engineering

Recap

❷ “There is more than one way to skin a cat”

❷ The engineer must decide on a source
model needed to support a selected
approach

❷ The engineer must be aware of the kind of
source model extracted by the tools at hand

❷ The engineer must iterate the source model
as needed for the given task

44

UW CSE

CSE584: Software
Engineering

Build up your idioms

❷ Handling each task independently is hard
❷ You can build up some more common

idiomatic approaches
– Some tasks, perhaps renaming, are often part of

larger tasks and may apply frequently
– Also internalize source models, tools, etc. and

what they are (and are not) good at

❷ But don’t constrain yourself to only what
your usual tools are good for

45

UW CSE

CSE584: Software
Engineering

Another task: isolating a subsystem

❷ Many maintenance tasks require identifying and
isolating functionality within the source
– sometimes to extract the subsystem

– sometimes to replace the subsystem

46

UW CSE

CSE584: Software
Engineering

Mosaic

❷ The task is to isolate
and replace the
TCP/IP subsystem that
interacts with the
network with a new
corporate standard
interface

❷ First step in task is to
estimate the cost

47

UW CSE

CSE584: Software
Engineering

Mosaic source code

❷ After some configuration and perusal, determine
the source of interest is divided amongst 4
directories with 157 C header and source files

❷ Over 33,000 lines of non-commented, non-blank
source lines

48

UW CSE

CSE584: Software
Engineering

Some initial analysis

❷ The names of the directories suggest the
software is broken into:
– code to interface with the X window system

– code to interpret HTML

– two other subsystems to deal with the world-
wide-web and the application (although the
meanings of these is not clear)

CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 9

49

UW CSE

CSE584: Software
Engineering

Apply the framework

❷ What source model would be useful?
– calls between functions (particularly calls to

Unix TCP/IP library)

❷ How do we get this source model?
– statically with a tool that analyzes the source or

dynamically using a profiling tool

– these differ in information characterization
produced

50

UW CSE

CSE584: Software
Engineering

Call graph extractors

Call
Graph

Source
Program

Static
CG

Extractor

Call
Graph

Source
Program

Dynamic
CG

Extractor

Test
Cases

51

UW CSE

CSE584: Software
Engineering

Apply the framework...

❷ What precision in the source model is
appropriate?
– want ideal but can’t get it

– second best would be conservative, which
implies using the tools that produce calls
information through a static analysis of the
source

52

UW CSE

CSE584: Software
Engineering

Call graph extraction tools (C)

❷ Two basic categories: lexical or syntactic
– lexical

» e.g., awk, mkfunctmap, lexical source model
extraction (LSME)

- likely produce an approximate source model

+ extract calls across configurations

+ can extract even if we can’t compile

+ typically fast

53

UW CSE

CSE584: Software
Engineering

CGE tools (C)...

❷ Two basic categories: lexical or syntactic...
– syntactic

» e.g., CIA, Field, cflow, rigiparse, etc.

+ more likely to produce conservative information
than a lexically-based tool

- have to pick a configuration

- need to get the source to a parseable state

54

UW CSE

CSE584: Software
Engineering

Apply a syntactic CGE tool

❷ C Information Abstractor (CIA)
– http://www.research.att.com:80/library/books/reuse/license/packages/95/cia.html

– extracts references between functions

❷ Constraints:
– specific configuration, libraries, etc.

❷ Queries:
– cref func - func socket

HTFTP.c get_listen_socket -> <libc.a> socket
HTTCP.c HTDoConnect -> <libc.a> socket
accept.c NetServerInit -> <libc.a> socket

CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 10

55

UW CSE

CSE584: Software
Engineering

Querying the source model

❷ Continue to follow the trace of references:
cref func - func HTDoConnect
HTFTP.c get_connection -> HTTCP.c HTDoConnect
HTGopher.c HTLoadGopher -> HTTCP.c HTDoConnect
HTNews.c HTLoadNews -> HTTCP.c HTDoConnect
HTTP.c HTLoadHTTP -> HTTCP.c HTDoConnect

❷ Can dump the entire source model
– 3966 references

56

UW CSE

CSE584: Software
Engineering

Iterate and add information

❷ Sometimes may want to augment the source
model
– for example, add in global variable information

Call
Graph

Source
Program

Static
CG

Extractor

Global
Var
Refs

Static
GV

Extractor

Source
Model

92 global variables
260 non-local function

references

57

UW CSE

CSE584: Software
Engineering

How precise is the source model?

❷ Are the source models extracted by CIA
conservative?

❷ It is typically difficult to determine the
answer to this kind of question

❷ But, to perform a task confidently, you need
to get a handle on the precision
– maybe by reading the tool’s documentation

– maybe by comparison to other tools

– maybe by?
58

UW CSE

CSE584: Software
Engineering

A CGE experiment

❷ To investigate several call graph extractors
for C, we ran a simple experiment
– For several applications, extract call graphs

using several extractors

– Applications: mapmaker, mosaic, gcc

– Extractors: CIA, rigiparse, Field, cflow,
mkfunctmap

59

UW CSE

CSE584: Software
Engineering

Experimental results

❷ Quantitative
– pairwise comparisons between the extracted

call graphs

❷ Qualitative
– sampling of discrepancies

❷ Analysis
– what can we learn about call graph extractors

(especially, the design space)?

60

UW CSE

CSE584: Software
Engineering

Pairwise comparison (example)

❷ CIA vs. Field for
Mosaic
– CIA found about 89%

of the calls that Field
found

– Field did not find
about 5% of the
references CIA found

– CIA did not find about
12% of the calls Field
found

89%
5% 12%

Field
4258

CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 11

61

UW CSE

CSE584: Software
Engineering

Quantitative Results

❷ No two tools extracted the same calls for
any of the three programs

❷ In several cases, tools extracted large sets
of non-overlapping calls

❷ For each program, the extractor that found
the most calls varied (but remember, more
isn’t necessarily better)

❷ Can’t determine the relationship to the ideal

62

UW CSE

CSE584: Software
Engineering

Qualitative results

❷ Sampled elements to identify false positives
and false negatives

❷ Mapped the tuples back to the source code
and performed manual analysis by
inspection

❷ Every extractor produced some false
positives and some false negatives

63

UW CSE

CSE584: Software
Engineering

Call graph characterization

ideal
none

conservative
compilers

optimistic
profilers

approximate
software

engineering tools

no false positives false positives

no
 fa

ls
e

ne
ga

tiv
es

fa
ls

e
ne

ga
tiv

es

64

UW CSE

CSE584: Software
Engineering

Back to the isolation task

Assigned
Task

Source
ModelSource

Model
Source
Model

65

UW CSE

CSE584: Software
Engineering

Back to the isolation task...

❷ What we have
– approximate call and global variable reference

information

❷ What we want
– increase confidence in source model

❷ Action:
– collect dynamic call information to augment

source model

66

UW CSE

CSE584: Software
Engineering

Augmenting with dynamic calls

❷ Compile Mosaic with profiling support

❷ Run with a variety of test paths and collect
profile information

❷ Extract CG source model from profiler
output
– 1872 calls

– 25% overlap with CIA

– 49% of calls reported by gprof not reported by CIA

CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 12

67

UW CSE

CSE584: Software
Engineering

Alternative action

❷ Alternatively, we may have wanted to
augment with calls information extracted
using a lexical technique

❷ For example, lexical source model
extraction tool:

[<type>] <fn> \([{ <arg> }+] \)
 [{ { <ty> }+ ; }+] \{

 <cf> \([{ <arg> [,] }+] \)

68

UW CSE

CSE584: Software
Engineering

Are we done?

❷ We are still left with a fundamental
problem: how to deal with one or more
large source models?
– Mosaic source model:

static function references (CIA) 3966
static function-global var refs (CIA) 541
dynamic function calls (gprof) 1872

Total 6379

69

UW CSE

CSE584: Software
Engineering

One approach

❷ Use a query tool
against the source
model(s)
– maybe grep?

– maybe source model
specific tool?

❷ As necessary, consult
source code

Assigned
Task

Source
Model
Source
Model

Source
Model

70

UW CSE

CSE584: Software
Engineering

Other approaches

❷ Visualization

❷ Reverse engineering

❷ Summarization

Assigned
Task

Source
Model
Source
Model

Source
Model

71

UW CSE

CSE584: Software
Engineering

Visualization

❷ e.g., Field, Plum, Imagix 4D, McCabe, etc.
(Field’s flowview is used above and on the
next few slides...)

72

UW CSE

CSE584: Software
Engineering

Visualization...

CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 13

73

UW CSE

CSE584: Software
Engineering

Visualization...

74

UW CSE

CSE584: Software
Engineering

Visualization...

• provides a “direct” view of the source
model
• can produce a “precise” view

− view often contains too much information
• use elision, producing an “optimistic” view

75

UW CSE

CSE584: Software
Engineering

Reverse engineering

❷ e.g., Rigi, various clustering algorithms
(Rigi is used above)

76

UW CSE

CSE584: Software
Engineering

Reverse engineering...

77

UW CSE

CSE584: Software
Engineering

Reverse engineering...

+ generally produces a higher-level view that
is consistent with source
• similar to visualization, can produce a

“precise” view (although this might be a
precise view of an approximate source model)

- sometimes view still contains too much
information leading again to the use of
techniques like elision
• may end up with “optimistic” view

78

UW CSE

CSE584: Software
Engineering

Summarization

❷ e.g., software reflexion models

CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 14

79

UW CSE

CSE584: Software
Engineering

Summarization...

❷ a map file specifies the correspondence
between parts of the source model and parts
of the high-level model

[file=HTTCP mapTo=TCPIP]
[file=^SGML mapTo=HTML]
[function=socket mapTo=TCPIP]
[file=accept mapTo=TCPIP]
[file=cci mapTo=TCPIP]
[function=connect mapTo=TCPIP]
[file=Xm mapTo=Window]
[file=^HT mapTo=HTML]
[function=.* mapTo=GUI]

80

UW CSE

CSE584: Software
Engineering

Summarization...

81

UW CSE

CSE584: Software
Engineering

Summarization...

+ condense (some or all) information in terms
of a high-level view quickly
• in contrast to visualization and reverse

engineering, produce an “approximate” view
• iteration can be used to move towards a

“precise” view

+ some evidence that it scales effectively
– may be difficult to assess the degree of

approximation

82

UW CSE

CSE584: Software
Engineering

Case study: A task on Excel

❷ A series of approximate tools were used by
a Microsoft engineer to perform an
experimental reengineering task on Excel

❷ The task involved the identification and
extraction of components from Excel

❷ Excel comprises about 1.2 million lines of
C source
– about 15,000 functions spread over ~400 files

83

UW CSE

CSE584: Software
Engineering

The process used

Model
Mapping

Extraction
Tool

1

2

3

4

RM
Tools

Reflexion
Model

System
Artifacts

Source
Model

77,746
calls

170 entries

13 nodes
~19 arcs

84

UW CSE

CSE584: Software
Engineering

An initial Reflexion Model

❷ The initial Reflexion
Model computed had
15 convergences, 83,
divergences, and 4
absences

❷ It summarized 61% of
calls in source model

Graph

Sheet

File

0

36734

912

1210

...

...

CSE584 (Spring 1997) 4/22/97

Notkin (c) 1997 15

85

UW CSE

CSE584: Software
Engineering

An iterative process (over 4 wks)

❷ Investigate an arc

❷ Refine the map
– eventually over 1000

entries

❷ Document exceptions

❷ Augment the source
model
– eventually, 119,637

interactions

Model
Mapping

Extraction
Tool

1

2

3

4

RM
Tools

Reflexion
Model

System
Artifacts

Source
Model

86

UW CSE

CSE584: Software
Engineering

A refined Reflexion Model

Sheet

File

Wks_File

4975

1242

2207

88

69

1160

87

713

...

...

...

❷ A later Reflexion Model
summarized 99% of
131,042 call and data
interactions

❷ This approximate view of
approximate information
was used to reason about,
plan and automate portions
of the task

87

UW CSE

CSE584: Software
Engineering

Results

❷ Microsoft engineer judged the use of the Reflexion
Model technique successful in helping to understand
the system structure and source code

“Definitely confirmed suspicions about the structure
of Excel. Further, it allowed me to pinpoint the
deviations. It is very easy to ignore stuff that is not
interesting and thereby focus on the part of Excel
that I want to know more about.” — Microsoft
engineer

Notkin (c) 1997 88

UW CSE

CSE584: Software
Engineering

Wrap up

❷ Maintenance is done in a relatively ad hoc
way
– Much more ad hoc than design, I think

❷ Putting some intellectual structure on the
problem might help

