CSE584 (Spring 1997) 4/1/97

Lecture 1, Outline [approximate minutes]

o Introductions—names, professional backgrounds, professional
literature that you read, interest in course [10]

. H 1 0 Intent and overview of course [15]
CSE584 ijtware Engl neerl ng o0 Overview of course work (assignments, projects, etc.) [10]
Lecture 1 (April 1, 1997) 0 Videotape clips of Michael Jackson’s keynote talk from ICSE-17 [45
o Break [10]
David Notkin o Soﬂwan? engir?eering overview [55]
D . . . 0 Group discussion— CASE: past, present & future [15]
ept. of Computer Science & Engineering A ,
University of Washington 0 Administrivia and slop [10 m!nutes]
! . — Reschedule lecture, 22 April 1997 (Passover)?
www.cs.washi ngwn'edl"/homegnmkm — Reschedule lecture, 20 May 1997 (ICSE-97)
CSES584: Software
Engineering Notkin (c) 1997 1 Notkin (c) 1997 2
Intent of course Overview—four topics
0 Most of you have jobs engineering software 0 Design
-l don't 0 Evolution (maintenance, reverse
0 So, what can | teach you? engineering, reengineering)
— Convey the state-of-the-art 0 Requirements and specification
— Better understand best and worst practices 0 Quality assurance and testing
— Consider differences in software engineering ¢f
different kinds of software I . . .
) . 0 (Plus tonight’s overview of software engineering
0 You provide the context and experience
Notkin (c) 1997 3 Notkin (c) 1997 4
What's omitted? Lots Design (2 lectures)
0 Metrics and measurement 0 1st lecture—classic topics
— Some in QA — Information hiding
0 Tools & environments (CASE) — Layered systems
— Some in evolution and QA (and a bit tonight) — Event-based designs (implicit invocation)
0 Software process 0 2nd lecture—neo-modern design
N CMfM‘ Isohg(zjoﬁ’ ch. — Limitations of classic information hiding
0 Specific rr;et odologies — Design patterns
0 What else? — Software architecture
Notkin () 1997 5 Notkin () 1997 6

Notkin (c) 1997 1

CSE584 (Spring 1997) 4/1/97

Evolution (2 lectures) Requirements (2 lectures)
0 Why software must change 0 Domain analysis
0 How and why software structure degrades 0 Requirements elicitation
0 Approaches to reducing structural 0 Formal methods
degradation — State-based, algebraic, model-based
0 Problem-program mapping 0 Use-case, collaborations, etc.
0 Program understanding, comprehension, 0 Analysis techniques
summarization
Notkin (c) 1997 7 Notkin (c) 1997 8

Quality assurance (2 lectures) Anything else you want to cover?

0 Verification vs. validation
0 Formal verification

0 Testing
— White box, black box, etc. ,

0 Reliability]
0 Safety

Notkin (¢) 1997 9 Notkin (c) 1997 10

Overview of course work Assignment 1
0 Five assignments—working in pairs permitted O Intentions
— Introduction + one per focus topic 0 Expectations

0 Group (2-3) or individual report

— Groups focus on defining state-of-the-art in orfe
of the four focus topics

— Individuals negotiate reports (or projects) with
me

0 Find exam (6/10/97, Sieg 422)

Notkin (¢) 1997 1 Notkin (¢) 1997 12

Notkin (c) 1997 2

CSE584 (Spring 1997)

Michadl Jackson, ICSE-17

0 Deep thinker & clear speaker
0 More focused on requirements topic

— But some general software engineering insigh
as well

0 Better than listening to me

0 We can stop the video and discuss issues as
they arise

0

Notkin (¢) 1997 13

Number 1

0 We make a huge mistake by assuming a
priori that there similarity among software
systems
— So, assume differences until proven otherwisq

Notkin (¢) 1997 15

Number 3

0 Analogies to other engineering disciplines
are attractive but generally fall apart
quickly because of the incredible rate of
change in hardware and software
technol ogy.

— But I'll make them anyway, I'm sure

Notkin (¢) 1997 17

Notkin (c) 1997

Notkin’s Top 10 Observations

0 About software engineering

— With apologies and appreciation to many
unnamed souls

0 I'd appreciate help revising this list over thg
quarter

Notkin (c) 1997 1

Number 2

0 Intellectual tools still dominate mechanical
toolsin importance

— How you think is more important than the
notations, tools, etc. that you use

Notkin (c) 1997 16

Number 4

O It is often too easy to estimate the benefits
of a “better” approach to engineering
software without assessing its costs
— “If only everyone only built software my way,
it'd be great,” just doesn't work.

Notkin (¢) 1997 18

4/1/97

CSE584 (Spring 1997) 4/1/97

Number 5 Number 6

0 The properties that programming languages 0 Thetotal software lifecycle cost will aways
can ensure are still distant from the be 100%
properties we require software systems to — Software development and maintenance will
have always cost too much
— Programming languages can help a lot, but they — Software engineering researchers will always

can't solve the "software engineering" problen have jobs
Notkin (c) 1997 19 Notkin (c) 1997 20
Number 7 Number 8

0 Software engineering draws on 0 Tradeoffs are at the heart of software
mathematics, cognitive psychology, engineering, but we're not very good at
management, etc., but it is engineering, not making tradeoffs yet
mathematics, nor cognitive psychology, nor — Getting something for nothing is great, but it
management (nor etc.) isn't usually possible

— If somebody is talking about software without — At the least, it takesgreat designer
ever mentioning “software”, run away

Notkin (¢) 1997 21 Notkin (c) 1997 2

Number 9 Number 10
0 It's always good to read and re-read 0 Software engineering researchers must have
anything written by Brooks, Jackson, and ahit of the practitioner in them, and
Parnas software engineering practitioners must
— Don't fall into Mark Twain’s trap: have a bit of the researcher in them

» “A classic is something everyone wants to have
read, but nobody wants to read.”

Notkin (¢) 1997 23

Notkin (¢) 1997 2

Notkin (c) 1997

CSE584 (Spring 1997)

Softwareis critical to society

0 Economically important

0 Essential for running more enterprises

0 Key part of most complex systems

0 Essential for designing many engineering
products

Notkin (¢) 1997 2

(Old) sample code sizes [Jon Jacky]

Bar code scanners 10-50KLOC

4-speed transmissions 20KLOC

ATC ground system 130KLOC

Automated teller machine 600KLOC

Call router 21MLOC

B-2 Stealth bomber 35MLOC

Seawolf submarine combat 3.6MLOC

NT 4.0 6MLOC + amLoC scaffolding

Notkin (c) 1997 2%

Delivered source lines per person

0 Common estimates are that a person can
deliver about 1000 source lines per year
— Including documentation, scaffolding, etc.
0 Obviously, most complex systems require
many people to build

0 Even an order of magnitude increase
doesn’t eliminate the need for coordination

Notkin (¢) 1997 27

Inherent & accidental complexity

0 Brooks distinguishes these kinds of
software complexity
— We cannot hope to reduce the inherent
complexity
— We can hope to reduce the accidental
complexity
0 Some (much?) of the inherent complexity
comes from the incredible breadth of
software we build

Notkin (c) 1997 28

“The Software Crisis”

0 We've been in the midst of a “software
crisis” ever since the 1968 NATO meeting
— We are unable to produce or maintain high-

quality software at reasonable price and on
schedule
» Wayt's Scientific American article
— “Software systems are like cathedrals; first we
build them and they we pray” —Redwine

Notkin (¢) 1997 2

Notkin’s view—‘mostly hogwash”

0 Given the context, we do pretty well
— We surely can, should and must improve

0 Some so-called software “failures” are not
— They are often management errors (Ariane,

Denver airport, etc.)

O In some areas, in particular safety-critica
real-time embedded systems, we may
indeed have alooming crisis

Notkin (¢) 1997 30

Notkin (c) 1997

4/1/97

CSE584 (Spring 1997)

Some “crisis” issues

0 Relative cost of hardware/software
O Low productivity

0 “Wrong” products
0 Poor quality
— Importance depends on the domain
0 Constant maintenance
—“If it doesn’t change, it becomes useless”
0 Technology transfer is slow

Notkin (¢) 1997 31

SE <> PL

u]
O
O
O
O
O

Notkin (c) 1997 2

Why isit hard?

0 Thereisno single reason software
engineering is hard—it's a “wicked problem”

0 Lack of well-understood representations of
software [Brooks] makes customer and
engineer interactions hard

0 Relatively young field
0 Software intangibility is deceptive

Notkin (¢) 1997 33

Law XXI1I, Norman Augustine (wulf]

“Software is like entropy. It is difficult to
grasp, weighs nothing, and obeys the
second law of thermodynamics; l.e., it
always increases.”

Notkin (c) 1997 ")

Dominant discipline

0 Asthesize of the Code Sze Discipline
software system 10° Mathematics
grows, the key 104 Science
discipline changes 108 Engineering

0 Dueto Stu Feldman | 10° Social Science

107 Politics

Notkin (¢) 1997 35

“Is software engineering” engineering?

Notkin (c) 1997

Notkin (¢) 1997 36

4/1/97

