
CSE584 (Spring 1997) 4/1/97

Notkin (c) 1997 1

Notkin (c) 1997 1

CSE584: Software Engineering
Lecture 1 (April 1, 1997)

David Notkin
Dept. of Computer Science & Engineering

University of Washington
www.cs.washington.edu/homes/notkin

UW CSE

CSE584: Software
Engineering Notkin (c) 1997 2

UW CSE

CSE584: Software
Engineering

Lecture 1, Outline [approximate minutes]

◆ Introductions—names, professional backgrounds, professional
literature that you read, interest in course [10]

◆ Intent and overview of course [15]

◆ Overview of course work (assignments, projects, etc.) [10]

◆ Videotape clips of Michael Jackson’s keynote talk from ICSE-17 [45]

◆ Break [10]

◆ Software engineering overview [55]

◆ Group discussion— CASE: past, present & future [15]

◆ Administrivia and slop [10 minutes]
– Reschedule lecture, 22 April 1997 (Passover)?

– Reschedule lecture, 20 May 1997 (ICSE-97)

Notkin (c) 1997 3

UW CSE

CSE584: Software
Engineering

Intent of course

◆ Most of you have jobs engineering software
– I don’t

◆ So, what can I teach you?
– Convey the state-of-the-art

– Better understand best and worst practices

– Consider differences in software engineering of
different kinds of software

◆ You provide the context and experience

Notkin (c) 1997 4

UW CSE

CSE584: Software
Engineering

Overview—four topics

◆ Design

◆ Evolution (maintenance, reverse
engineering, reengineering)

◆ Requirements and specification

◆ Quality assurance and testing

◆ (Plus tonight’s overview of software engineering)

Notkin (c) 1997 5

UW CSE

CSE584: Software
Engineering

What’s omitted? Lots

◆ Metrics and measurement
– Some in QA

◆ Tools & environments (CASE)
– Some in evolution and QA (and a bit tonight)

◆ Software process
– CMM, ISO 9000, etc.

◆ Specific methodologies
◆ What else?

Notkin (c) 1997 6

UW CSE

CSE584: Software
Engineering

Design (2 lectures)

◆ 1st lecture—classic topics
– Information hiding

– Layered systems

– Event-based designs (implicit invocation)

◆ 2nd lecture—neo-modern design
– Limitations of classic information hiding

– Design patterns

– Software architecture

CSE584 (Spring 1997) 4/1/97

Notkin (c) 1997 2

Notkin (c) 1997 7

UW CSE

CSE584: Software
Engineering

Evolution (2 lectures)

◆ Why software must change

◆ How and why software structure degrades

◆ Approaches to reducing structural
degradation

◆ Problem-program mapping

◆ Program understanding, comprehension,
summarization

Notkin (c) 1997 8

UW CSE

CSE584: Software
Engineering

Requirements (2 lectures)

◆ Domain analysis

◆ Requirements elicitation

◆ Formal methods
– State-based, algebraic, model-based

◆ Use-case, collaborations, etc.

◆ Analysis techniques

Notkin (c) 1997 9

UW CSE

CSE584: Software
Engineering

Quality assurance (2 lectures)

◆ Verification vs. validation

◆ Formal verification

◆ Testing
– White box, black box, etc.

◆ Reliability

◆ Safety

Notkin (c) 1997 10

UW CSE

CSE584: Software
Engineering

Anything else you want to cover?

Notkin (c) 1997 11

UW CSE

CSE584: Software
Engineering

Overview of course work

◆ Five assignments—working in pairs permitted

– Introduction + one per focus topic

◆ Group (2-3) or individual report
– Groups focus on defining state-of-the-art in one

of the four focus topics

– Individuals negotiate reports (or projects) with
me

◆ Final exam (6/10/97, Sieg 422)

Notkin (c) 1997 12

UW CSE

CSE584: Software
Engineering

Assignment 1

◆ Intentions

◆ Expectations

CSE584 (Spring 1997) 4/1/97

Notkin (c) 1997 3

Notkin (c) 1997 13

UW CSE

CSE584: Software
Engineering

Michael Jackson, ICSE-17

◆ Deep thinker & clear speaker

◆ More focused on requirements topic
– But some general software engineering insights

as well

◆ Better than listening to me

◆ We can stop the video and discuss issues as
they arise

Notkin (c) 1997 14

UW CSE

CSE584: Software
Engineering

Notkin’s Top 10 Observations

◆ About software engineering
– With apologies and appreciation to many

unnamed souls

◆ I’d appreciate help revising this list over the
quarter

Notkin (c) 1997 15

UW CSE

CSE584: Software
Engineering

Number 1

◆ We make a huge mistake by assuming a
priori that there similarity among software
systems
– So, assume differences until proven otherwise

Notkin (c) 1997 16

UW CSE

CSE584: Software
Engineering

Number 2

◆ Intellectual tools still dominate mechanical
tools in importance
– How you think is more important than the

notations, tools, etc. that you use

Notkin (c) 1997 17

UW CSE

CSE584: Software
Engineering

Number 3

◆ Analogies to other engineering disciplines
are attractive but generally fall apart
quickly because of the incredible rate of
change in hardware and software
technology.
– But I’ll make them anyway, I’m sure

Notkin (c) 1997 18

UW CSE

CSE584: Software
Engineering

Number 4

◆ It is often too easy to estimate the benefits
of a “better” approach to engineering
software without assessing its costs
– “If only everyone only built software my way,

it'd be great,” just doesn't work.

CSE584 (Spring 1997) 4/1/97

Notkin (c) 1997 4

Notkin (c) 1997 19

UW CSE

CSE584: Software
Engineering

Number 5

◆ The properties that programming languages
can ensure are still distant from the
properties we require software systems to
have
– Programming languages can help a lot, but they

can't solve the "software engineering" problem

Notkin (c) 1997 20

UW CSE

CSE584: Software
Engineering

Number 6

◆ The total software lifecycle cost will always
be 100%
– Software development and maintenance will

always cost too much

– Software engineering researchers will always
have jobs

Notkin (c) 1997 21

UW CSE

CSE584: Software
Engineering

Number 7

◆ Software engineering draws on
mathematics, cognitive psychology,
management, etc., but it is engineering, not
mathematics, nor cognitive psychology, nor
management (nor etc.)
– If somebody is talking about software without

ever mentioning “software”, run away

Notkin (c) 1997 22

UW CSE

CSE584: Software
Engineering

Number 8

◆ Tradeoffs are at the heart of software
engineering, but we’re not very good at
making tradeoffs yet
– Getting something for nothing is great, but it

isn't usually possible

– At the least, it takes a great designer

Notkin (c) 1997 23

UW CSE

CSE584: Software
Engineering

Number 9

◆ It’s always good to read and re-read
anything written by Brooks, Jackson, and
Parnas
– Don’t fall into Mark Twain’s trap:

» “A classic is something everyone wants to have
read, but nobody wants to read.”

Notkin (c) 1997 24

UW CSE

CSE584: Software
Engineering

Number 10

◆ Software engineering researchers must have
a bit of the practitioner in them, and
software engineering practitioners must
have a bit of the researcher in them

CSE584 (Spring 1997) 4/1/97

Notkin (c) 1997 5

Notkin (c) 1997 25

UW CSE

CSE584: Software
Engineering

Software is critical to society

◆ Economically important

◆ Essential for running more enterprises

◆ Key part of most complex systems

◆ Essential for designing many engineering
products

Notkin (c) 1997 26

UW CSE

CSE584: Software
Engineering

(Old) sample code sizes [Jon Jacky]

Bar code scanners 10-50KLOC

4-speed transmissions 20KLOC

ATC ground system 130KLOC

Automated teller machine 600KLOC

Call router 2.1MLOC

B-2 Stealth bomber 3.5MLOC

Seawolf submarine combat 3.6MLOC

NT 4.0 6MLOC + 4MLOC scaffolding

Notkin (c) 1997 27

UW CSE

CSE584: Software
Engineering

Delivered source lines per person

◆ Common estimates are that a person can
deliver about 1000 source lines per year
– Including documentation, scaffolding, etc.

◆ Obviously, most complex systems require
many people to build

◆ Even an order of magnitude increase
doesn’t eliminate the need for coordination

Notkin (c) 1997 28

UW CSE

CSE584: Software
Engineering

Inherent & accidental complexity

◆ Brooks distinguishes these kinds of
software complexity
– We cannot hope to reduce the inherent

complexity
– We can hope to reduce the accidental

complexity

◆ Some (much?) of the inherent complexity
comes from the incredible breadth of
software we build

Notkin (c) 1997 29

UW CSE

CSE584: Software
Engineering

“The Software Crisis”

◆ We’ve been in the midst of a “software
crisis” ever since the 1968 NATO meeting
– We are unable to produce or maintain high-

quality software at reasonable price and on
schedule

» Wayt’s Scientific American article

– “Software systems are like cathedrals; first we
build them and they we pray” —Redwine

Notkin (c) 1997 30

UW CSE

CSE584: Software
Engineering

Notkin’s view—“mostly hogwash”

◆ Given the context, we do pretty well
– We surely can, should and must improve

◆ Some so-called software “failures” are not
– They are often management errors (Ariane,

Denver airport, etc.)

◆ In some areas, in particular safety-critical
real-time embedded systems, we may
indeed have a looming crisis

CSE584 (Spring 1997) 4/1/97

Notkin (c) 1997 6

Notkin (c) 1997 31

UW CSE

CSE584: Software
Engineering

Some “crisis” issues
◆ Relative cost of hardware/software
◆ Low productivity
◆ “Wrong” products

◆ Poor quality
– Importance depends on the domain

◆ Constant maintenance
– “If it doesn’t change, it becomes useless”

◆ Technology transfer is slow

Notkin (c) 1997 32

UW CSE

CSE584: Software
Engineering

SE <> PL

◆

◆

◆

◆

◆

◆

Notkin (c) 1997 33

UW CSE

CSE584: Software
Engineering

Why is it hard?

◆ There is no single reason software
engineering is hard—it’s a “wicked problem”

◆ Lack of well-understood representations of
software [Brooks] makes customer and
engineer interactions hard

◆ Relatively young field

◆ Software intangibility is deceptive

Notkin (c) 1997 34

UW CSE

CSE584: Software
Engineering

Law XXIII, Norman Augustine [Wulf]

“Software is like entropy. It is difficult to
grasp, weighs nothing, and obeys the
second law of thermodynamics; I.e., it
always increases.”

Notkin (c) 1997 35

UW CSE

CSE584: Software
Engineering

Dominant discipline

◆ As the size of the
software system
grows, the key
discipline changes

◆ Due to Stu Feldman

Code Size Discipline

103 Mathematics

104 Science

105 Engineering

106 Social Science

107 Politics

Notkin (c) 1997 36

UW CSE

CSE584: Software
Engineering

“Is software engineering” engineering?

