
Chapter 2
An Overview of Formal Methods Tools
and Techniques

The goal of this chapter is to give an overview of the different approaches and tools
pertaining to formal methods. We do not attempt to be exhaustive, but focus instead
on the main approaches. After reading the chapter the reader will be familiar with the
terminology of the area, as well as with the most important concepts and techniques.
Moreover the chapter will allow the reader to contextualise and put into perspective
the topics that are covered in detail in the book.

Why do we need an overview of formal methods? Why not just study one rig-
orous method for software development? This is a very pertinent and legitimate
question. The behavioural essence of software is not captured by a unique unified
mathematical theory. Such a general foundation is unlikely to exist.

Think for instance about the diversity of programming language paradigms and
theories, and the resulting jungle of existing computer programming languages. Is
there a definite paradigm (or, even, language) that makes obsolete all the other ones?
Clearly not. Different languages will be chosen by different people to solve the
same problem, and someone may well use different languages to solve different
problems. Similarly, depending on the goals of the software designers and of the
verification process, one may prefer a theory over another one, and even use more
than one theory (and related formal methods techniques and tools), in the context of
the development of a single system.

Even if the theory is fixed, several dialects and related tools may exist for it.
Turning back to the programming language analogy, think for instance of the differ-
ent existing C or Prolog dialects and compilers. A particular compiler may not even
be significantly better than another, but its use will be justified for some users and
some application scenarios. This is also a common situation with formal methods. Is
it desirable? There is an open and vigorous debate about this issue; we simply point
out that the potential user of formal methods should be aware of it and understand
the different flavours available.

Our goal with the present overview is then to draw a map of this jungle of theo-
ries, techniques, and tools, to make some sense of it.

J.B. Almeida et al., Rigorous Software Development,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-018-2_2, © Springer-Verlag London Limited 2011

15

http://dx.doi.org/10.1007/978-0-85729-018-2_2

16 2 An Overview of Formal Methods Tools and Techniques

2.1 The Central Problem

Questions such as “What are formal methods?” or “What added value can be ex-
pected from the use of formal methods?” have been largely debated in the Software
Engineering community [31, 36, 53, 88, 90]. In the following we sum up and discuss
the main ideas.

The central problem of formal methods is to be able to guarantee the behaviour of
a given computing system following some rigorous approach. At the heart of formal
methods one finds the notion of specification. A specification is a model of a system
that contains a description of its desired behaviour—what is to be implemented,
by opposition to how. This specification may be totally abstract (in which case the
model is the description of the behaviour), or it may be more operational, in which
case the description is somehow contained, or implied, by the model. In this context,
the central problem can be seen as being split in the following two aspects:

1. How to enforce, at the specification level, the desired behaviour? This is called
the model validation problem.

2. How to obtain, from a specification, an implementation with the same behaviour?
Or alternatively, given an implementation, how can it be guaranteed that it has the
same behaviour as the specification? This is the formal relation between specifi-
cations and implementations problem.

The different families of formal methods cover a wide range of approaches to
these two questions. This variety encompasses the study of specifications by ani-
mation, by transformation, or by proving properties. Analogously, implementations
may be derived from specifications, or else they may be guaranteed to be correct
with respect to them, either by construction, or by verification, i.e. by presenting a
formal proof.

2.1.1 Some Existing Formal Methods Taxonomies

An interesting characterisation used to classify formal methods is the one that takes
into account the ease of use and automation of the processes involved in their ap-
plication. This gives rise to the taxonomy lightweight versus heavyweight usually
found in the literature. Lightweight formal methods usually do not require deep ex-
pertise, by opposition to heavyweight formal methods, which are more complex,
less automatic, but also more finely grained and powerful. They are typically con-
fined to very specific application areas where their use and cost are justified.

Another existing taxonomy is related to the application of the Balzer software
life cycle, as explained in the previous chapter. One speaks of formally designed
software when formal methodologies and tools are applied in the horizontal fashion.
The vertical application is referred to as the correct-by-construction approach or,
when formal proof facilities are also provided in addition to the generation of code,
as formal development.

2.2 Specifying and Analysing 17

2.1.2 This Overview

This chapter is based on a description of formal methods organised instead by lay-
ers of functionalities. We will first take a tour of the approaches to describing and
analysing (formal) models; we will then cover the different existing proof mech-
anisms, and continue with a description of ways of formally relating models with
programs, i.e. of approaching the second sub-problem identified above. Finally we
will take a look at mechanisms for dealing with scalability issues. For each ap-
proach we will discuss in turn the key concepts and foundations involved and the
corresponding tools.

The following central notions are common to a vast number of formal methods
techniques and tools:

− The operational essence of the modelled systems is usually captured by some
form of transition system (described either logically, relationally, or alge-
braically). The different mechanisms discussed below imply particular inter-
pretations of states, transitions, and state transformations.

− The behavioural essence of the modelled systems is usually captured by some
program logic (such as Hoare logic), a notion that stands at the heart of a large
part of formal methods techniques and tools.

These notions are pervasive in the overview that follows.

2.2 Specifying and Analysing

The definition of a specification and the analysis of its behaviour may be carried out
formally, i.e. in the context of some mathematical formalism. The advantages of this
include the following:

− The formal nature of the specification language employed forces one to reason
about and understand all the fine details of the specified system, and thus clarify
potential hidden ambiguities. Several published case studies confirm such bene-
fits (see Sect. 2.7). For instance the survey [61] reports on work by Don Syme,
that allowed several non trivial errors to be found simply by writing down hand-
built specifications in a formal way.

− The possibility to animate, or even execute, a specification—and thus to directly
observe its behaviour—if an implementation of the underlying mathematical for-
malism exists. Such a functionality allows for the system to be prototyped. The
straightforward advantage of having a prototype is that it is in general simpler
to deploy than the system itself. A prototype makes possible the validation of a
system without actually implementing it.

− A prototype obtained in this way is still a formal entity, amenable to being math-
ematically manipulated. One may thus reason about it (either by hand or with
the assistance of a computer).

18 2 An Overview of Formal Methods Tools and Techniques

A specification essentially describes the manipulated data and how they evolve,
i.e. the operations that transform them. The two main approaches to formal specifi-
cation differ on the focus given to these two aspects:

− The behaviour of the modelled system can be expressed by focusing on its op-
erations, available mechanisms (services), or actions that can be performed. In
this view the crucial element is a clear definition of the modifications or changes
performed by each operation on the internal state of the modelled system. Such
specification languages are referred to as state-based or model-based specifica-
tion languages.

− The behaviour of the target system can instead be expressed by focusing on the
manipulated data, how they evolve, or the way in which they are related. This
class of specifications includes algebraic specifications, sometimes also known
as axiomatic specifications.

In what follows we will consider in turn the characteristics of the specification
languages used for each of these approaches.

2.2.1 Model-Based Specification

The languages used for this class of specifications are characterised by the ability to
describe the notion of internal state of the target system, and by their focus on the
description of how the operations of the system modify this state. The underlying
foundations are in discrete mathematics, set theory, category theory, and logic.

Abstract State Machines Proposed by Gurevich [58], abstract state machines
(ASM), also called evolving algebras, form a specification language in which the no-
tions of state and state transformation are central. A system is described in this for-
malism by the definition of states and by a finite set of (possibly non-deterministic)
state transition rules, which describe the conditions (also called guards) under which
a set of transformations (modifications of the machine’s internal state) take place.
These transitions are not necessarily deterministic: the formalism takes into account
configurations in which several transitions are eligible for a certain state of the ma-
chine.

Given that the ASM formalism has the computational power of a Turing ma-
chine, it can be used as an executable specification language. The notion of execu-
tion of an ASM is the usual notion in the context of transition systems. For instance
ASM_Gopher [94] is an implementation of this formalism that has served as the
basis for a formalisation of the Java programming language and virtual machine.

Another specification methodology based on the notion of ASM is the B Method,
accompanied by its B specification language [2]. The systems modelled in B are
seen, as in many other formal methods, as transition systems. The basic unit is called
an abstract machine, and specifications and programs are represented using a dedi-
cated notation for these abstract machines. In a sense, the B modelling methodology

2.2 Specifying and Analysing 19

Fig. 2.1 An example abstract
machine in B

MACHINE Car_status
SETS

STATUS = {sold,available}
USES Cars
VARIABLES status
INVARIANT

status ∈ CARS �→ STATUS
INITIALISATION status := ∅
OPERATIONS
set_status(x,m) =̂

PRE m ∈ STATUS ∧ x ∈ CARS
THEN
status(x) := m

END
END;

is close to object-oriented modelling. Each machine defines the structure of its in-
ternal state (values), the properties that this state must always comply with (static
properties called machine invariants), and the expected operations (the transitions).
The expected properties are defined in a suitable first-order logic extended with a
particular set theory. An important principle is that each specified operation must
preserve the machine invariants (a property referred to as internal consistency).

Over the years the B method has given rise to more than a dozen implementa-
tions, including Atelier B [87] (a commercial product with a freely available ver-
sion), BRILLANT [40, 41] (an open source platform), ProB [77] (also open source,
includes an animator and a model checker), and Rodin [3] (an open source platform
dedicated to the implementation of a recent and popular dialect called Event-B).

Let us give an example of a B specification. The abstract machine shown in
Fig. 2.1 encapsulates the notion, for a car dealer, of a car being sold or available.
Using the previously defined machine Cars that introduces the notion of CARS, the
machine keeps track of the previously recorded cars and associated status by the use
of a partial function from cars to status. At the level of code, one may expect this to
be implemented by some form of database or container datatype.

This machine also illustrates how the internal state may evolve, by providing
an operation that allows for the status of a car to be introduced or updated. More
precisely, the specification ensures that if the operation set_status is executed in a
state in which the condition m ∈ STATUS ∧ x ∈ CARS holds, then the resulting state
records the previous status updated, by mapping x to m.

Set and Category Theory These two mathematical theories offer similar expres-
siveness at the level of specifications. States are described in terms of mathematical
structures such as sets, relations, or functions. Transitions are expressed as invari-
ants as well as preconditions and postconditions.

Z [93] and VDM [67] are classic examples of formal methods whose specifica-
tion languages rely on set theory. These methods have been at the origin of many
other systems. RAISE [56], for instance, is an evolution of VDM that also includes

20 2 An Overview of Formal Methods Tools and Techniques

Fig. 2.2 One task and one
resource

a concurrency specification layer à la CSP. The B specification method can also be
seen as falling in this category, since it combines the use of ASMs with features in-
herited from both Z and VDM. We may also cite the emerging methodology Alloy
and its related tool Alloy Analyser [65], which adapts and extends declarative lan-
guages like Z to bring in fully automatic (but partial) analysis. Specware [68] and
Charity [38] on the other hand offer formalisms based on category theory.

Automata-Based Modelling A different class of transition systems used for spec-
ification purposes are automata [5, 6, 74, 78, 86, 97, 100]. In this case it is the
concurrent behaviour of the system being specified that stands at the heart of the
model. The main idea is to define how the system reacts to a set of stimuli or events.
A state of the resulting transition system represents a particular configuration of the
modelled system. This formalism is particularly adequate for the specification of re-
active, concurrent, or communicating systems, and also protocols. It is however less
appropriate to model systems where the sets of states and transitions are difficult to
express.

Let us consider for instance a system that allows two tasks to access a shared
resource. For one task, the process of using this resource is depicted by the Büchi
automaton shown in Fig. 2.2. The state N corresponds to the situation in which
the task is idle. The access request is done via the event/transition P , after which
the automaton reaches the state E, which corresponds to waiting for access to the
resource. The transition T represents the authorisation of access, which allows the
task to reach the state L, in which the task can perform any operation that requires
access to the resource. The event F represents the release of the resource, leading
back to state N .

Now if one wants to extend this simple model to two tasks (a and b) that compete
for access to the same resource, this can be done with the automaton of Fig. 2.3,
which is obtained by calculating the Cartesian product of the previous automaton
with itself, and then removing states and transitions that are meaningless or sim-
ply unwanted.1 We remark that we can easily convince ourselves that there is no
deadlock in this schema, but more interestingly this can also be proved. One can

1The remaining transitions are usually called the synchronisation set over the Cartesian product.

2.2 Specifying and Analysing 21

Fig. 2.3 Two tasks and one shared resource

also understand quite easily (and again, also prove) that this sharing policy is not
fair. In fact it is possible that a asks for the resource followed by b, that repeatedly
asks and is given access to it (this corresponds to the repeated execution of the loop
EN − EE − EL). More on this simple example can be found in [19].

Modelling Languages for Real-Time Systems Extending the simple automata
framework gives rise to several interesting formalisms for the specification of real-
time systems. When dealing with such systems, the modelling language must be
able to cope with one or more physical concepts like time (or duration), temperature,
inclination, altitude, etc. In fact, examples of real-time systems include for instance
control systems that react in dynamic environments. Traditionally, time (usually
modelled by means of clocks that follow a very specific progression law) is the
dimension that has attracted most attention from researchers in the field.

For instance in the context of synchronous concurrent models [18, 59], the time
flow is partitioned in discrete instants. An integer variable x can be treated, in fact,
by considering the sequence of all the values that it takes at each discrete instant
(e.g. x = 1,2,3,4,5,6,7, . . .). The modelled systems progress (behave) according
to successive atomic reactions upon the previous and actual values of the involved
variables. Again, this kind of model of a system can be seen as an automaton where
the states correspond to assignments of values to system variables, and where tran-
sitions correspond to system reactions.

Lustre [35] is a (textual) synchronous dataflow language, and SCADE [1] is a
complete modelling environment that provides a graphical notation based on Lustre.
Both provide a notation for expressing synchronous concurrency based on dataflow.
Consider the SCADE example of Fig. 2.4. It introduces an operator (the unit of en-

22 2 An Overview of Formal Methods Tools and Techniques

Fig. 2.4 Two counters in SCADE

capsulation in SCADE) that provides two alternative implementations of a counter:
a dataflow-based counter and a state machine counter. Both counters run concur-
rently.

This operator has four input parameters:

− i_init: initial value of the counter;
− i_increment: value of the increment;
− i_count: counter switch;
− i_reset: reset the counter to the value of i_init;

and two output parameters:

− O_statemachine_counter: records the value of the state machine counter;
− O_dataflow_counter: records the value of the dataflow counter.

Other graphical formalisms have proved to be suitable for the modelling of real-
time systems. One of the most popular is based on networks of timed automata.

2.2 Specifying and Analysing 23

Fig. 2.5 A timed automaton for a requests processor

Basically, timed automata extend classic automata with clock variables (that evolve
continuously but can only be compared with discrete values), communication chan-
nels, and guarded transitions. A theory of timed automata [7] provides the under-
lying foundations of this approach, which gave rise to model checking tools (see
Sect. 2.3.3) like Uppaal [17] or Kronos [32].

The timed automaton represented in Fig. 2.5 models a control system that han-
dles some processing request in a timely fashion. The control system reacts to two
actions, a process request req and a cancel request abort. A process request is taken
into account if a previous request has not taken place less than 5 time units be-
fore. Similarly an abort request is processed only if it is received at least three time
units after a process request. If either of these two rules is not observed then the
control system reaches an alarm state. The control involving time is done via the
clock h. Only simple comparisons and a reset operation are possible. The transition
h ≥ 5; ?req;h := 0 stands for “this transition is possible when h ≥ 5 and a process
request is received; if the transition is chosen, then the clock h is reset to 0”. This
control system is supposed to be executed concurrently with a system (modelled
by another timed automaton) that emits the required signals through the adequate
communication channel (!req and !abort).

Hybrid automata [62] extend timed automata with the possibility to deal with
other physical measures beyond time. Although the general theoretical context is
very difficult (the problems that arise are easily undecidable), the existence of de-
cidable fragments has enabled the creation of tools, such as Hytech [63]. Although
essentially a deductive tool, we should also mention the recent Keymaera plat-
form [85] for modelling and verification of hybrid systems, based on differential
dynamic logic [84]. This is intended to model dynamic systems with interacting
discrete and continuous behaviour, which is classically characterised by differential
equations and discrete transitions. One advantage of the underlying theory is that it
can handle such characterisations and provide proof mechanisms for them.

24 2 An Overview of Formal Methods Tools and Techniques

Fig. 2.6 Algebraic
specification of lists

Spec: LIST0 (ELT)

Extends: Nat0
Sorts: list
Operations:

nil : → list // constructor
cons : elt → list → list // constructor
length : list → nat
hd : list → elt
tl : list → list
append : list → list → list
rev : list → list

Axioms: xs, ys : list, x : elt
length(nil) = 0
length(cons(s, xs)) = 1 + length(xs)
hd(cons(x, xs)) = x

tl(cons(x, xs)) = xs
append(nil, ys) = ys
append(cons(x, xs), ys) = cons(x,append(xs, ys))
rev(nil) = nil
rev(cons(x, xs)) = append(rev(xs), cons(x,nil))

2.2.2 Algebraic Specification

A second classic approach to specification is based on the use of multi-sorted alge-
bras. A multi-sorted algebra consists of a collection of data grouped into sets (one
set for each datatype), a collection of functions on these sets corresponding to func-
tions of the program being modelled, and a set of axioms specifying the basic prop-
erties of the functions in the algebra. Such a formalism allows one to abstract away
from the algorithms used to encode the desired properties, to concentrate on the
representation of data and on the input-output behaviour of functions. In addition to
multi-sorted algebras, the foundations of algebraic specification lie in mathematical
induction and equational logic.

An algebraic specification then consists in a series of sort declarations, function
signatures, and axioms that declare the basic behaviour of each function symbol.
CASL [22, 39], OBJ [54], Clear [33], Larch [55], and ACT-ONE [51] are all ex-
amples of tools based on algebraic specification languages. LOTOS [24] extends
the algebraic framework with CCS primitives, and thus allows for specifying and
reasoning about concurrent systems.

As an illustrative example, Fig. 2.6 introduces a container datatype for lists,
based on the two usual elementary operations on lists—the constructors nil (the
empty list) and cons (the operation that adds one element at the head of a list). This
datatype relies on some existing algebraic specification of natural numbers. The op-
erations over the datatype are declared by stating their names and signatures; their
behaviour is expressed equationally in terms of their relation with the two construc-
tors. Any implementation complying with this specification must ensure the stated
equational properties hold. Thus, such implementations will also comply with the
inferred properties.

2.2 Specifying and Analysing 25

An interesting point is the ability to infer additional and rich properties from the
stated ones. We will address this issue in the sequel.

2.2.3 Declarative Modelling

An important class of specification languages includes logic-based languages, func-
tional languages, rewriting languages, and languages for defining formal semantics.
All of these rely on well-known mathematical foundations.

Logic programming languages, such as Prolog [95], propose an approach to mod-
elling based on the notion of predicate. Data are represented with the help of some
simple, but sufficiently expressive datatypes, such as lists, and operations are de-
scribed by their behavioural properties, similarly to axioms in algebraic specifica-
tions. Prolog allows for specifications to be executed.

Functional languages on the other hand offer a specification framework in which
the notion of function is the central element. The core of a functional language is
the λ-calculus [10, 11], which has the same expressiveness as Turing machines and
allows for the formulation of any operation, and even any datum, in terms of higher-
order functions.

Languages like Scheme [50], SML [81], Haskell [96] or OCaml [75], and proof
assistants such as ACL2 [69], Coq [79], PVS [91], HOL [57], Isabelle [83], and
Agda [27], are all based on typed variants or extensions of the λ-calculus. These
extensions are easier to use than the original calculus, and all propose a number of
basic data types, powerful type construction operators (such as inductive types), and
mechanisms for the definition of functions.

Execution in these languages relies on the notion of reduction, which resembles
the notion of calculation in mathematics. These languages are all higher-order, and
some (such as Coq) possess even richer extensions. This allows for great flexibility
and expressiveness. The languages underlying proof assistant systems based on type
theory and the Curry-Howard isomorphism [11, 92] may also be used as higher-
order logical languages.

Rewriting systems [8, 21, 72] like ELAN [25] or SPIKE [26] offer languages that
are very close to those used in algebraic specification, with the difference that ax-
ioms are replaced by equations that characterise the behaviour of function symbols
in calculations.2 As in the λ-calculus, execution relies on the notion of reduction,
which is usually defined by sets of equations.

For illustration purposes, the Coq example shown in Fig. 2.7 introduces the ab-
stract syntax of two simple languages. expr denotes simple arithmetic expressions
with variables and assignment; intr corresponds to expressions of a very sim-
ple assembly language. The recursive function compil introduces a compilation
schema, that is a translation of expressions to programs (lists of instructions). Once
these notions have been introduced, one can define the operational semantics via the

2See http://rewriting.loria.fr/ for a list of many other rewriting systems.

http://rewriting.loria.fr/

26 2 An Overview of Formal Methods Tools and Techniques

Inductive expr : Set := | Var : ident -> expr
| Num : nat -> expr
| Atrib: ident -> expr -> expr
| Sum : expr -> expr -> expr
...

Inductive instr : Set := | LOAD : ident -> instr
| STORE : ident -> instr
| PUSH : nat -> instr
| DUP : instr
| ADD : instr
...

Definition program := (list instr).

Fixpoint compil (e : expr) {struct e} : program := match e with
| Var i => (LOAD i)::nil
| Num n => (PUSH n)::nil
| Atrib i e2 => app (compil e2) (DUP::(STORE i)::nil)
| Sum e1 e2 => (app (app (compil e1) (compil e2)) (ADD::nil))
...

end.
...

Theorem correctness : forall e:expr,
(extract_eval (aval e nil)) =
(extract_exec (exec (mkstate nil nil)(compil e))).

Proof.
...

Fig. 2.7 Two simple languages in Coq

notion of execution at source (aval, that depends on a variable environment) and
at machine level (exec, that depends on an execution environment). This allows us
to elegantly define the notion of compiler correctness in this very simple context:
for every expression e, executing e at source level or executing its compiled form
at machine level must always give the same result. This is what is stated by the
correctness theorem.

2.3 Specifying and Proving

Animation and execution are not sufficient to ensure a certain behaviour for a spec-
ification: it is essential to obtain a rigorous demonstration. Rather than simply con-
structing specifications and models one is interested in proving properties about
them. We are thus in the realm of formal verification.

Different notions of verification exist; Rushby [88] proposes a three-level classi-
fication of proof methods as follows:

1. The first level groups formal frameworks that do not offer any computer-based
support for handling proofs. Demonstrations must then be carried out by hand;
proofs are validated when reviewers are convinced of their contents.

2. In the second level we have frameworks that additionally offer a formal system
allowing for a more rigorous formulation of demonstrations. For instance usage
of natural language, which is possible in level 1, is not admissible in level 2. But
demonstrations are still carried out by hand.

2.3 Specifying and Proving 27

3. The third level consists of computer-based tools with support for proofs and for
carrying out demonstrations. This level offers the highest degree of exactitude
and guarantee. The undeniable advantage is that models can be both expressed
and reasoned about in a formal (and possibly mechanical) way.

Whichever method is used, proving properties about specifications presupposes the
use of some logical system. In what follows we first give in Sect. 2.3.1 an overview
of logical concepts. Propositional logic and first-order logic will be the subject of
Chaps. 3 and 4, so our goal here is to give the basic notions necessary for under-
standing the subsequent Sects. 2.3.2 to 2.3.4, in which we discuss different classes
of computer-based proof tools that are often used in formal verification.

2.3.1 Logic in a Nutshell

Logic can be described as the study of the principles of reasoning. Reasoning about
situations means constructing arguments about them. We are interested in doing this
formally, so that the arguments are valid and can be defended rigorously. A formal
logic is a language equipped with rules that allow one to establish when the truth of
a given sentence can be concluded from the truth of other sentences.

Symbolic logic is the branch of mathematics devoted to formal logic, i.e. to the
study of logical languages, their semantics, and their proof theory, and the way in
which these are related.

A logic consists of:

− A logical language in which sentences are expressed. A logical language is a
formal language having a precise, syntactic characterisation of well-formed sen-
tences. A logical language consists of logical symbols, characterised by having
a fixed interpretation, and non-logical ones, whose interpretations are not fixed.
These symbols are combined together to compose well-formed formulas.

− A semantics that differentiates valid sentences from refutable ones. The seman-
tics is defined in terms of the truth values of sentences. This is done using an in-
terpretation function that assigns meaning to the basic components, given some
domain of objects that our reasoning is concerned with.

− An inference system (or proof system) that supports the formalisation of argu-
ments justifying the validity of sentences. The inference system is composed
of a set of axioms (sentences of the logic that are accepted as true) and infer-
ence rules (that give ways of deriving the right conclusions from a given set of
premises).

Of course, extreme care must be taken regarding the definition of an inference
system, since it is expected that all the derived formulas are indeed justified se-
mantically (this is usually called a soundness criterion), and that all consequences
justified semantically are derivable by the system (a completeness criterion).

28 2 An Overview of Formal Methods Tools and Techniques

Propositional Logic, First-Order Logic, and Higher-Order Logic Let us
briefly describe these three well-known logics. Each is a richer logic than the previ-
ous; all of them are widely used in the context of formal verification, so it is useful
to have some understanding of their characteristics.

Propositional logic (also known as the propositional calculus) is the simplest of
the three. The formulas of propositional logic are built from atomic propositions,
which are sentences with no internal structure and which one can classify as be-
ing “true” or “false”. Propositions are declarative sentences such as “Mary is the
mother of John” or “3 < 5”. Propositions are combined using Boolean operators
that capture notions like “not”, “and”, “or”, “implies”, etc. In fact, the content of
the propositions is not relevant. Propositional logic is not the study of the truth of
individual formulas, but rather of the way in which the truth of one statement affects
that of another.

First-order logic is a considerably richer logic than propositional logic. In addi-
tion to the symbols of propositional logic, a first-order language contains elements
that allow us to reason about individuals of a given domain of discourse. These
include functions, predicates, and quantification over individuals, dealing with the
notions of “there exists” and “for all”. There are two sorts of things involved in a
first-order logic formula: terms, which are interpreted as individuals in the domain
of discourse; and formulas, which are interpreted as truth values. First-order logic is
also known as the predicate calculus in the sense that it is a calculus for reasoning
about predicates such as “x is the mother of y” or “x < x + 1”. While proposi-
tions are either true or false, predicates evaluate to true or false depending on the
values given to their parameters (x and y in the previous examples). Quantification
over individuals makes possible to express concepts such as “every person has a
mother”.

Higher-order logic is distinguished from first-order logic in several ways. It has
both individual and relational variables, and both types of variables can be quanti-
fied, so quantifiers may apply to variables standing for predicates. There is a typing
discipline to distinguish individuals from predicates; predicates can take as argu-
ments both individual symbols and predicate symbols (these are higher-order pred-
icates). Concepts such as “every property that holds for x also holds for y” can be
naturally expressed in higher-order logic.

First-order logic is more expressive than propositional logic: it has more rules,
that allow one to construct more complex formulas. In turn, higher-order logic is
more expressive than first-order logic.

Classical versus Intuitionistic Logic There are two different branches of formal
logic: the classical (based on the notion of truth) and the intuitionistic (based on the
notion of proof). The classical branch of logic is based on the understanding that
the truth of a statement is absolute: statements are either true or false. In a classical
setting, “false” and “not true” mean the same thing. This is expressed by the law
of the excluded middle, which states that A ∨ ¬A must hold independently of the
meaning assigned to A. Classically, in order to prove a proposition A, it is valid to
assume ¬A and obtain a contradiction as result. This classic practice of proving a

2.3 Specifying and Proving 29

statement by contradiction is captured by an inference rule known as reductio ad
absurdum.

The intuitionistic (or constructive) branch of logic rejects the law of the excluded
middle. A statement A is “true” if we can prove it, or is “false” if we can show that
if we have a proof of A we get a contradiction. If neither of these can be shown, then
there exists no justification for the presumed truth of the disjunction A ∨ ¬A. In an
intuitionistic setting, judgements about a statement are based on the existence of a
proof (or “construction”) of that statement. Mathematicians are typically inclined
to resort to classical reasoning, in spite of the fact that most standard mathematics
fit within the framework of intuitionistic logic. In some cases the inability to use
classical proof methods such as proofs by contradiction make reasoning much more
difficult.

The guiding principle of intuitionistic logic is however very attractive to com-
puter scientists, due to the algorithmic nature of constructive proofs. The importance
of the relationship between logic and computer science cannot be overstated. Each
field is of paramount importance to the other: logic plays a crucial role in computer
science since it supplies the tools to formalise many important concepts in this field,
in such a way that they can be reasoned about formally. On the other hand computers
are useful tools for logic: formal logic makes it possible to calculate consequences
at the symbolic level, and computers can be used to automate such symbolic calcu-
lations.

One of the most remarkable manifestations of this interplay between logic an
computer science is the correspondence between systems of intuitionistic logic and
typed lambda calculi, known as the Curry-Howard isomorphism. This correspon-
dence establishes a connection between proof theory and type theory that is visible
in many aspects: propositions correspond to types, proofs correspond to terms, the
provability of a formula corresponds to the inhabitation of a type, proof normaliza-
tion corresponds to term reduction, and so on. On a practical level, this correspon-
dence give us ways to extract computer programs from constructive proofs, or even
to view proofs as programs themselves. Moreover, the Curry-Howard isomorphism
is at the core of some proof assistant tools (see also Sect. 2.4.2).

Propositional and first-order logic are essential tools for the verification of pro-
grams in the sense explained in Sect. 2.3.4, which is the main theme of this book.
As such they will be covered in detail in Chaps. 3 and 4.

Temporal Logic The examples we gave to illustrate the expressive power of the
different calculi where chosen because the truth value of the statements are static
and cannot vary over time (i.e. they are always true or always false). Consider now
the statement: “It is raining”. Although the meaning of this statement is stable over
time, its truth value can vary, sometimes it is true and sometimes it is false. One can
capture this dependence by considering time as an object of discourse and making
statements depend on a time variable, but the result is very clumsy.

The expression temporal logics is used to refer to logics that implicitly include
a notion of time, providing a way to represent temporal information in the logical
framework. In temporal logics the truth of a formula is not fixed in the semantics but

30 2 An Overview of Formal Methods Tools and Techniques

depends on the point in time in which it its considered. Temporal logics have two
kinds of operators: the usual logical connectives (such as “not”, “and” or “implies”)
and temporal connectives (such as “eventually”, “always” or “until”), allowing one
to express statements like “It will be raining until the end of the race” or “It will
eventually rain”.

There exist many different sorts of temporal logics. Concerning the way time is
viewed they are classified as linear-time, when time is represented by a sequence
of time instants, or branching-time, when time is viewed as a tree of time instants,
having the present instant as root, and with each branch corresponding to one pos-
sible future evolution. Temporal logics have found important applications in formal
methods, in modeling behavioural aspects of the execution of computer systems.

2.3.2 Proof Tools

We have mentioned that computers can be used to calculate logical consequences.
Let use discuss in some detail the ways in which this can be done.

Two opposing factors have an impact on the deductive behaviour of proof en-
gines. On one hand, logical expressiveness permits studying complex properties and
deductions; on the other hand, the simplicity of the logical formalism facilitates the
automation of deductions. The two families of proof tools presented below represent
choices that lead to different trade-offs between expressiveness and automation.

Automated Theorem Provers These tools favour automation of deduction rather
than expressiveness. Construction of proofs is automatic, once the proof engine has
been adequately parameterised. Naturally these systems must rely on the decidabil-
ity of at least a large fragment of the underlying theory. This is the case for Horn
clauses as used in Prolog; for the first-order rewriting used for instance by ELAN;
and for the fragment of first-order logic used by ACL2. Satisfiability Modulo Theory
(SMT) solvers also fall in this category: tools like Yices [48], CVC3 [13], Z3 [46],
or Alt-Ergo3 [42] provide decision procedures for several theories of real numbers,
integers, and of various data structures such as lists, arrays, bit vectors and so on.
A historically important theorem prover with an almost unbeatable reputation in
the program verification community is Simplify [47], an ancestor of modern SMT
solvers.

Unlike model checkers (covered in Sect. 2.3.3), theorem provers may be able to
employ techniques that allow for reasoning about infinite sets. Inductive reasoning
techniques are an example of these.

Proof Assistants Unlike theorem provers, proof assistants elect highly expressive
(and thus undecidable) underlying logics, such as higher-order logic. There exist no
decision procedures capable of proving arbitrary properties in such logics. If this

3Among others; see http://www.smtlib.org/ for a more complete list.

http://www.smtlib.org/

2.3 Specifying and Proving 31

sounds restrictive, it must be emphasized that many properties need the power and
elegance of higher-order logic to be adequately expressed and proved.

Proof assistants typically combine the following two modules:

− a proof-checker, responsible for verifying the well-formedness of the theories
defined in the modeling process, and for checking the correctness of proofs;

− an interactive proof development system, to help (error-prone) users developing
proofs. When the construction of a proof is finished, a proof script can be stored,
describing that construction.

In most proof assistants proofs are interactively constructed by applying high-level
proof-manipulation functions, usually known as tactics. Each tactic encodes a proof
step. The proof state is usually represented as a stack of sequents (a pair of a se-
quence of hypotheses and a conclusion to be proved from them). A proof of a prop-
erty φ is established by applying (in an appropriate order and with the right param-
eters) a set of tactics, in order to construct a proof tree linking axioms and theorems
to the conclusion φ. In its simplest form, a tactic expresses a basic proof step, such
as modus ponens. Tactics are however not restricted to such atomic steps—there is
scope for complex reasoning and even for complete proofs, as is the case with tactics
implementing decision procedures on decidable fragments of higher-order logic.

Two approaches are possible in the world of proof assistants. The first consists
in giving users the possibility to define the logic in which they desire to express
proofs. This logic is usually called the object logic. This axiomatic approach has
been adopted for instance by the Isabelle system. The other approach is to offer
a basic language that is sufficiently expressive to formulate most of mathematics.
This integrated approach can be found in systems like Coq. In Coq proofs are first-
class citizens of the language, at the same level as propositions and specifications. In
these systems, proofs can be directly written by the user—but they are not in general
necessarily easy to write. In practice, proof terms are more often generated as the
result of a successful proof process, in addition to a proof script. Proof terms can
be independently checked, which finds applications notably in the proof-carrying
code techniques mentioned in Chap. 1. Other advantages of this approach will be
discussed below.

To finish the section, let us remark that it is possible to combine automatic the-
orem proving with interactive proof facilities—this is the case in implementations
of the B Method, whose (first order) proof mechanism allows for the interactive
demonstration of lemmas that could not be proved mechanically.

2.3.3 Model Checking

Model checking [9, 19, 37] is a technique for the verification of finite-state (concur-
rent) systems (typically modelled by automata, see Sect. 2.2.1). It is one of the most
widely used families of formal methods tools.

The idea of model checking is that the expected properties of the model are ex-
pressed by formulae of a temporal logic, and efficient symbolic algorithms are used

32 2 An Overview of Formal Methods Tools and Techniques

to traverse the model in its entirety, so as to verify if all possible configurations val-
idate those properties. The set of all states is called the model’s state space. When a
system possesses a finite state space, model-checking algorithms may in theory be
used to realise the automatic demonstration of properties. If a property is not valid,
a counterexample is exhibited.

A serious drawback of this approach is state space explosion: the transition graph
typically grows exponentially on the size of the system, with the immediate conse-
quence that no matter how efficient the checking algorithms are, the exploration of
the state space eventually becomes impracticable.

Different techniques have been proposed that try to solve this problem. Abstrac-
tion is one such technique: a simplified version of the model is proposed, called an
abstract model, whose state space may be explored within reasonable time. The ab-
stract model must respect certain properties, in order to ensure that if a property is
valid in it, then it is valid in the original model.

2.3.4 Program Logics and Program Annotation

To finish off with proof techniques, let us now consider tools based on program
annotations. A program annotation is a formula placed together with the code of a
program whose behaviour one wants to verify. The annotation of a program func-
tion, method, or piece of code in general, is supposed to indicate the conditions that
should be met before the said code is executed, as well as describe the logical state of
the program after its execution. The logical formalisms underlying this approach are
program logics like Hoare logic. This family of formalisms is very diverse: even if
the basis of the annotation languages is quite standard, the semantics of annotations
is specific to the programming language at hand.

Note that this is a somewhat different setting with respect to what we have been
considering in Sect. 2.3: we are no longer discussing properties of formal mod-
els of systems in general, but instead behavioural properties of programs (in par-
ticular source code) written as annotations. Roughly speaking, an annotation is a
code-aware version of the requirements. The rationalisation of the code annotation
methodology, coupled with its integration within the software engineering disci-
pline, gave rise to a software development paradigm based on the notion of con-
tract (a specific form of annotation), as pioneered in the Eiffel programming lan-
guage [80], which implements the notion of runtime or dynamic verification of con-
tracts.

This paradigm has nowadays become very popular, in fact almost every
widespread programming language benefits from a contracts layer. Let us cite for
instance the programming languages SPEC# [12] (which can be seen as a superset
of C#) or SPARK [34], a carefully chosen subset of ADA targeted to the devel-
opment of safety critical systems. Like Eiffel, both languages natively support the
paradigm, but they additionally support the static verification of contracts. In the
context of the Java programming language, different annotation systems exist that

2.4 Specifying and Deriving 33

are based on the JML annotation language [66], such as Esc/Java [52], KeY [4] and
Krakatoa [73].

The last programming language we consider here (and many are left out of this
discussion) is C. Along with ADA, C is a popular choice in the safety critical in-
dustry, and the contract-based approach fits well the need for the static assurance of
safety properties. A complete analysis and validation platform for C that provides
a contracts layer is the Frama-C toolset [43], based on the ACSL annotation lan-
guage [16], which in turn was inspired by JML. ACSL and the program verification
functionality of Frama-C will be covered in Chaps. 9 and 10 of this book respec-
tively. Another interesting contracts layer for C is provided by the VCC toolset [45].
The VCC approach allows for the verification of concurrent aspect of C programs.

Tools for statically checking the correspondence between the code and the an-
notations can be totally proof-based, but they can also associate the use of model-
checking with a proof assistant. This is the case of the Loop [20] and Bandera [49]
tools.

The undeniable advantage of the annotation-based approach is that it is the
source-language implementation, and not some specification, that serves as the basis
for the verification. In fact, a model is here constructed by taking as inputs a pro-
gram and its annotations, together with an underlying model of the programming
language. This approach is more and more seen as providing a satisfying alternative
to the central problem of formal methods. This book covers the foundations of this
approach, from Hoare logic to the generation of verification conditions for programs
consisting of annotated routines.

2.4 Specifying and Deriving

We have to this point considered tools and techniques that address the first part
of the central problem of formal methods. We now turn to the second part of this
problem; given a specification that enjoys the desired properties, how to obtain an
implementation whose behaviour matches the specification?

Again, different solutions exist to this problem. The solutions fit in two cate-
gories: either the specification is itself a program that can be directly executed (and
the problem is immediately solved), or an implementation is produced from the
specification, in which case the problem of the correctness of derivations must be
dealt with.

One approach to dealing with this problem focuses on the derivation mecha-
nisms, which can be restricted in appropriate ways, to ensure that the derived code
satisfies the properties of the original specification. A second approach is to make
the (not necessarily correct) derivation process generate a set of proof obligations
such that, if all these obligations can be proved, this guarantees the correctness of
the implementation with respect to the specification. Correction may then be en-
sured either manually, or preferably by machine, using level 3 formal verification
tools (see Sect. 2.3). Formal verification is important even if the first approach is
followed: in this case, it is the derivation process itself that has to be validated. If

34 2 An Overview of Formal Methods Tools and Techniques

level 3 verification can be applied successfully to the derivation mechanism, then a
universally valid procedure is obtained for all derivations.

Thus either the derivation mechanism or individual derivations must be subject to
formal verification, which is in fact omnipresent at all stages of the central problem
of formal methods. Both these approaches are sometimes referred to as correct-by-
construction software development. We remark that some authors use this expres-
sion for the first approach only, when the derivation mechanism has been verified
once and for all and specific derivations do not require proof. Other authors use it
for development based on successive verified refinement steps, as will be described
in Sect. 2.4.1.

We remark that in the program annotation approach discussed in Sect. 2.3.4, an
internal model is deduced from the annotated code; the code is correct with respect
to the annotations if the proof obligations that arise from this translation process and
inspection of the model can be proved. So although the perspective is slightly dif-
ferent, the correctness properties still concern the relation between implementation
and model.

2.4.1 Refinement

Refinement is the technique that synthesizes a program from a specification step by
step, such that each step increases the degree of precision with respect to the initial
specification. Each additional step represents an implementation choice, such as the
choice of algorithm for implementing a given function, or the choice of a concrete
datatype to implement an abstract type (say the implementation of a set as a linked
list) or even the weakening of a precondition of an operation.

Individual refinement steps must be proved correct, i.e. the effect of the concrete
specification must not contradict the effect of the abstract/refined specification, in
order for the final program to enjoy the same properties as the original specification.
Each step thus generates a number of refinement proof obligations that must be dis-
charged. The good news is that the correctness of each individual step is in principle
much easier to establish than the overall correctness.

This is the technique followed by approaches like Z, VDM, and B. This very
special ability to link a high level view to the resulting code via a chain of design
choices and proofs is particularly suitable (and has been used) in the context of a
vertical application of the Balzer life cycle. Refinement is a very popular and suc-
cessful example of application of formal methods in industry. It is well supported
in terms of tools, and what is more it provides the simplest way to realize Balzer’s
vision of the software development process. As mentioned before, software devel-
oped through a chain of formally verified refinement steps is sometimes referred to
as correct-by-construction.

In order to illustrate this concept, we consider in Fig. 2.8 the very classic example
of a B machine that introduces the notion of a finite subset of the natural numbers
with cardinal less than or equal to a given parameter (maxelem). Using the set-
theoretic foundations of the method, the internal state includes the set in question,

2.4 Specifying and Deriving 35

Fig. 2.8 Finite sets of natural
numbers in B

MACHINE Set1(maxelem)

CONSTRAINTS maxelem ∈ N1
VARIABLES set
INVARIANT

set ⊆ N

∧ card(set) ≤ maxelem
INITIALISATION set := ∅
OPERATIONS
add(n) =̂

PRE n ∈ N − set ∧ card(set) < maxelem
THEN set := set ∪ {n}
END

END;

Fig. 2.9 Refinement of finite
sets in B

REFINEMENT Set2
REFINES Set1
VARIABLES tab, index
INVARIANT

index ∈ 0..maxelem
∧ tab ∈ 1..index � N

∧ ran(tab) = set
INITIALISATION index, tab := 0,∅
OPERATIONS
add(n) =̂

PRE n ∈ N − ran(tab) ∧ index < maxelem
THEN index := index + 1||tab(index + 1) := n

END
END;

that is initialised to the empty set. The machine has an invariant (a property that
must hold before and after the execution of any operation) stating that the variable
set is indeed a subset of the natural numbers, and has a cardinality that is less than or
equal to the parameter. The only provided operation adds a new element n to the set,
provided that n is not already an element, and that the set can in fact be augmented
(in terms of its cardinality).

This machine can be refined by the following design choice: we opt for a scalar
representation of the recorded values instead of a set. The resulting machine Set2
is shown in Fig. 2.9. Here, the injective function tab assumes the role of the vari-
able set. The invariant of the refined machine now states, and this is an important
point, the relation between set and tab. The variable index records the cardinal of
the set and indeed is used as the index of the last added element, if one sees tab as
an array. The proof obligations generated by any implementation of B will establish,
when discharged, that the behaviour of machine Set2 is indistinguishable from the
behaviour of machine Set1.

36 2 An Overview of Formal Methods Tools and Techniques

2.4.2 Extraction

The Calculus of Inductive Constructions (CIC), that stands at the foundation of the
Coq system, is an extension of the typed λ-calculus. By the Curry-Howard isomor-
phism [11, 92], this calculus is also a constructive minimal higher-order logic, with
the consequence that every logical proposition can also be seen as a specification,
and every proof expressible in the CIC can be seen as a program that obeys a speci-
fication. Indeed, this strong paradigm allows for the extraction of the computational
contents of the proof (the program it contains) in a given programming language.
As an example, let φ be the following theorem

∀x, y ∈ N. ∃q, r ∈ N. (y = (q × x + r) ∧ 0 ≤ r < x)

A proof of φ is, in this context, a function that takes two integers x and y and
computes the pair (q, r) that testifies the validity of (y = (q × x + r) ∧ 0 ≤ r < x).
This pair is of course (y ÷x, y modx). In general the proof of a theorem of the form
∀x.∃y. (R x y), if it exists, is a function that maps x into a value y such that (R x y)

holds.
Coq is capable of performing extractions into the untyped functional language

Scheme or into the typed functional languages Haskell and OCaml. The extraction
of the program corresponding to the proof t of a property φ is done automatically
and in a single step.

2.4.3 Execution

Specifying with the help of (declarative) programming languages is a de facto
method for obtaining implementations. Logic-based languages like Prolog and func-
tional languages like Scheme, ACL2, Haskell, SML, and OCaml can all be seen as
offering scope for both specification and implementation in the same language.

The simple problem faced by these languages is their relevance in terms of
industry-strength applications. It is arguable whether, say, Prolog can in fact be re-
garded by industry as a viable implementation language.

2.5 Specifying and Transforming

When discussing model checking we mentioned that it is sometimes desirable to
transform a specification in order to make it amenable to manipulation by verifi-
cation methods. This is true also outside the context of model checking: it is often
useful, and even necessary, to construct variations of a specification in order to hide
details that obscure the verification, or conversely to enrich the specification with an
extra level of detail to take into account new behaviour. The main and general foun-
dation for such transformations is the theory of abstract interpretation [44], which
provides a framework for defining sound approximations.

2.6 Conclusions 37

In general, the possibility of constructing variations of the initial model allows for
the modularity of formal verification. Behaviours may be decomposed in a number
of different views, each of which concerns a well-defined part of the global model.
In principle, studying each individual aspect of the model is easier than studying the
global behaviour, and under certain conditions it may be equivalent in terms of the
results obtained.

Surprisingly there is no popular and well established tool support for such trans-
formations; in fact, even the definition of “tool-supported model transformation” is
still an open issue. This is due in part to the fact that the abstraction problems, in
their general form, are easily undecidable, and transformations are deeply tied to
the properties to be proved and the modelling language used. Designing appropri-
ate and sound approximations is not an easy task, and is usually undertaken in an
ad-hoc fashion.

The JaKarTa toolset [14] for reasoning about JavaCard specifications is an early
example of this approach. It provides a (rule-based) language and mechanisms for
the specification of ad-hoc model transformations, based on their effects on the data
structures of the model under analysis. For instance, when modelling the opera-
tional semantics of a virtual machine one may want to focus on the typing policy.
In this case, the manipulated values by themselves are not relevant for the analysis.
Given the specification of the effect of the transformation to be performed on the
data manipulated by the virtual machine (forgetting the values, keeping the types),
JaKarTa is able to automatically pass this transformation on to the operations of the
machine, and to produce proof obligations (in Coq) that ensure the soundness of the
transformation.

2.6 Conclusions

Clarke et al. [36] claim that no single tool seems to solve in a completely satisfying
manner the central problem of formal methods. While proof assistants are solid tools
for formal verification, they are hard to use and lack automation. Some tools propose
a vertical approach, complete from specifications to programs, but they miss proof-
support functionality. Hardly any proof tool offers support for transformation of
specifications. Some efforts have been made to integrate functionally vertical spec-
ification methods with proof capabilities, such as B. Also, model checking modules
have been proposed for both PVS and Coq [98], but the results cannot be considered
to be entirely satisfying.

The obvious conclusion to draw from these observations is that in the current
state of development, resorting to a combination of methods and tools is an appeal-
ing alternative. Code-oriented platforms like Key or Frama-C propose rich envi-
ronments that integrate several tools. For instance, Frama-C allows the integration
and interaction of several static analyses (slicing, value, interval, dead-code anal-
ysis, etc.) with deductive methods. The deductive facility itself allows for formal
verification using several proof tools like Coq or SMT-solvers.

We finish the chapter with a discussion of the applicability of formal methods in
industry.

38 2 An Overview of Formal Methods Tools and Techniques

2.6.1 Are Formal Methods Tools Ready for Industry?

After the discussion in the previous chapter and the overview of the present chapter
we may now attempt to answer this question. We saw how both the horizontal and
vertical application of the Balzer life cycle are addressed by formal methods tools—
recall for instance the use of the correct by construction paradigm, or tool-supported
approaches like SCADE or the B Method. In these last few years there has been a
dramatic increase in the maturity of several tools, thus one can reasonably expect an
even better context for formal methods in the coming years.

Nevertheless, even if it is now more reasonable, the use and application of formal
methods still requires a solid knowledge of basic mathematics, and can still be con-
sidered to be challenging to the average software engineer (if not simply frightening
or a waste of time). The reasons for this are multiple and complex, and include for
instance

− the lack of adequate mathematical training;
− a software development context that is under the strong commitments of a re-

duced time to market; or
− the simple absence of proper planning, due to the development process being

subject to constantly changing requirements.

The first argument is a fairly difficult foundational issue, but the variable geome-
try of the development process can at least in part be addressed by formal methods
instruments; think for instance of the contract-based approach to software devel-
opment. Nevertheless, there is undoubtedly a question of image at the heart of the
problem. Any training or dissemination activity is a valuable contribution to the im-
provement of visibility, understanding, and acceptance of formal methods. This is
especially important to demonstrate that, as we have already noted, formal methods
are now sufficiently mature and usable.

The adequate use of most formal methods tools in an industrial context requires
that the development team contains only one specialist in the field.4 We refer the
reader to [70] for a recent remark in this direction. A notable exception is the use of
heavyweight formal methods (involving proof assistants, for instance) that clearly
require specialised mathematical skills, but whose application is only justified in
very specific contexts.

Nevertheless, while formal methods in general still have to improve their ability
to cope with modularity and scalability, we have been seeing with increasing fre-
quency the announcement of several tours de force in formal verification5 which
strengthen our belief that formal methods now possess all the arguments to change
the state of affairs. As stated by Jim Woodcock in the context of the software verifi-
cation grand challenge,

4In the same way that it takes only a single Linux guru in a team to disseminate and properly use
this operating system.
5Consider for instance the published results on the formal verification of compilers [76], operating
systems [71], avionic control systems [23] or cryptographic software [15], among many others.

2.7 To Learn More 39

1000000 of verified lines of code: you can’t say any more it can’t be done! Here, we’ve
done it!

2.6.2 Is Industry Ready to Use Formal Methods?

An important aspect when considering the use of formal methods is that they are not
a mere product. Using these methods is not like installing and applying an antivirus.
As stated by J.-R. Abrial in several tutorials and documents about the B Method,
adopting formal methods in a software company is more a strategical and method-
ological issue than a technical one. We do not believe or advocate the widespread
use of these methods in the software industry in general; their application should in-
stead be considered when reliability, safety or security are a concern. Conscientious
industrial applications of formal methods have already been conducted successfully
in key areas, that have become flagship application areas.

Nevertheless, every software company has favoured and adopted some particular
development process, and is unlikely to renounce it in favour of a completely new
development process based on the use of formal methods. In order to adopt these
methods, software companies have to reshape and adapt their in-house software
design savoir-faire. This brings us again to the arguments stated in the previous
chapter, and in particular to the Balzer life cycle.

Formal specification and verification are not easy or cheap, but the real cost has
to be considered in the long term. One the other hand, their conclusions have to be
taken with care: formal methods can only be used to specify or prove what was care-
fully stated beforehand, and cannot be used to reason about what was not. Formally
specifying and verifying a whole system is then unlikely to be feasible or even rea-
sonable. The advisable practice is then to determine the important (or critical) parts
of the system do be designed and validated, and to apply formal methods on these
parts.

2.7 To Learn More

Formal methods are the subject of numerous books, surveys and technical overviews.
Many of them have already been cited in this chapter. We highlight here some gen-
eral popular references. The most widely cited references [28–30, 60] report on the
use of formal methods in the general context of software engineering. More techni-
cal surveys can be found in [36, 89] or in the more recent [64], dedicated to software
verification. The latter special issue includes the already cited overview [99] that
covers an important aspect barely touched in this chapter: the practice and industrial
use of formal methods.

Several specialised books are also dedicated to formal methods, for instance [82]
provides a nice introduction to the subject. [19] complements the previous reference
by giving an overview of model checking tools.

40 2 An Overview of Formal Methods Tools and Techniques

References

1. Abdulla, P.A., Deneux, J.: Designing safe, reliable systems using scade. In: Proc. ISoLA
2004 (2004)

2. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (1996)

3. Abrial, J.-R.: Modeling in Event-B System and Software Engineering. Cambridge University
Press, Cambridge (2010)

4. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W., Mostowski,
W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Softw. Syst. Model. 4, 32–54 (2005)

5. Alur, R., Dill, D.: Automata-theoretic verification of real-time systems. In: Formal Methods
for RealTime Computing. Trends in Software Series, pp. 55–82. Wiley, New York (1996)

6. Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
7. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235

(1994)
8. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cam-

bridge (1998)
9. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)

10. Barendregt, H.P.: The Lambda Calculus, its Syntax and Semantics. Studies in Logic and the
Foundations of Mathematics, vol. 103. North-Holland, Amsterdam (1984)

11. Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gabbay, D., Maibaum, T.
(eds.) Handbook of Logic in Computer Science, vol. 2, pp. 117–310. Oxford University
Press, New York (1992)

12. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview.
In: CASSIS: Construction and Analysis of Safe, Secure, and Interoperable Smart Devices,
vol. 3362, pp. 49–69. Springer, Berlin (2004)

13. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) Proceedings of the 19th
International Conference on Computer Aided Verification (CAV ’07). Lecture Notes in Com-
puter Science, vol. 4590, pp. 298–302. Springer, Berlin (2007)

14. Barthe, G., Courtieu, P., Dufay, G., de Sousa, S.M.: Tool-assisted specification and verifica-
tion of typed low-level languages. J. Autom. Reason. 35(4), 295–354 (2005)

15. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryptographic
proofs. In: Shao, Z., Pierce, B.C. (eds.) POPL, pp. 90–101. ACM, New York (2009)

16. Baudin, P., Fillitre, J.-C., March, C., Monate, B., Moy, Y., Prevosto, V.: ACSL: ANSI/ISO
C Specification Language. Preliminary Design (version 1.4). From the Frama-C website,
http://frama-c.com (2010)

17. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo, M., Corradini,
F. (eds.) Formal Methods for the Design of Real-Time Systems: 4th International School
on Formal Methods for the Design of Computer, Communication, and Software Systems,
SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Berlin (2004)

18. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone, R.: The
synchronous languages 12 years later. Proc. IEEE 91(1), 64–83 (2003)

19. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, P.:
Systems and Software Verification. Model-Checking Techniques and Tools. Springer, Berlin
(2001)

20. van den Berg, J., Jacobs, B.: The LOOP compiler for Java and JML. In: Margaria, T., Yi, W.
(eds.) Proceedings of TACAS’01. Lecture Notes in Computer Science, vol. 2031, pp. 299–
312. Springer, Berlin (2001)

21. Bezem, M., Klop, J.W., de Vrijer, R. (eds.): Term Rewriting Systems. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge (2002)

22. Bidoit, M., Mosses, P.D.: CASL User Manual. LNCS (IFIP Series), vol. 2900. Springer,
Berlin (2004). With chapters by T. Mossakowski, D. Sannella, and A. Tarlecki

23. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: A static analyzer for large safety-critical software. CoRR, abs/cs/0701193 (2007)

http://frama-c.com

References 41

24. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language Lotos. Comput.
Netw. ISDN Syst. 14(1), 25–59 (1987)

25. Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.-E., Ringeissen, C.: An overview of
ELAN. In: Kirchner, C., Kirchner, H. (eds.) Proceedings of the International Workshop on
Rewriting Logic and its Applications. Electronic Notes in Theoretical Computer Science,
vol. 15. Pont-à-Mousson, France, September 1998. Elsevier, Amsterdam (1998)

26. Bouhoula, A., Kounalis, E., Rusinowitch, M.: SPIKE, an automatic theorem prover. In:
Voronkov, A. (ed.) Proceedings of the International Conference on Logic Programming and
Automated Reasoning (LPAR’92). Lecture Notes in Artificial Intelligence, vol. 624, pp. 460–
462. Springer, Berlin (1992)

27. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda—a functional language with
dependent types. In: TPHOLs ’09: Proceedings of the 22nd International Conference on
Theorem Proving in Higher Order Logics, pp. 73–78. Springer, Berlin (2009)

28. Bowen, J.P., Hinchey, M.G.: Seven more myths of formal methods. IEEE Softw. 12(4), 34–
41 (1995)

29. Bowen, J.P., Hinchey, M.G.: Ten commandments of formal methods. Computer 28(4), 56–63
(1995)

30. Bowen, J.P., Hinchey, M.G.: Ten commandments of formal methods . . . ten years later. Com-
puter 39(1), 40–48 (2006)

31. Bowen, J.P., Stavridou, V.: Safety-critical systems, formal methods and standards. IEE/BCS
Softw. Eng. J. 8(4), 189–209 (1993)

32. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A model-
checking tool for real-time systems (1998)

33. Burstall, R.M., Goguen, J.A.: An informal introduction to specification using CLEAR. In:
Boyer, R.S., Moore, J.S. (eds.) The Correctness Problem in Computer Science, pp. 185–213.
Academic Press, New York (1981)

34. Carré, B., Garnsworthy, J.: Spark—an annotated Ada subset for safety-critical programming.
In: TRI-Ada ’90: Proceedings of the Conference on TRI-ADA ’90, pp. 392–402. ACM, New
York (1990)

35. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: Lustre: A declarative language for real-time
programming. In: POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, pp. 178–188. ACM, New York (1987)

36. Clarke, E.M., Wing, M.J.: Formal methods: State of the art and future directions. ACM Com-
put. Surv. 28(4), 626–643 (1996)

37. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
38. Cockett, R., Fukushima, T.: About Charity. Technical Report 92/480/18, University of Cal-

gary (June 1992)
39. CoFI (The Common Framework Initiative): CASL Reference Manual. LNCS (IFIP Series),

vol. 2960. Springer, Berlin (2004)
40. Colin, S., Petit, D., Mariano, G., Poirriez, V.: BRILLANT: An open source platform for B.

In: Workshop on Tool Building in Formal Methods (held in conjunction with ABZ2010),
February 2010

41. Colin, S., Petit, D., Poirriez, V., Rocheteau, J., Marcano, R., Mariano, G.: BRILLANT:
An open source and XML-based platform for rigourous software development. In: SEFM
’05: Proceedings of the Third IEEE International Conference on Software Engineering and
Formal Methods, Washington, DC, USA, 2005, pp. 373–382. IEEE Computer Society, Los
Alamitos (2005)

42. Conchon, S., Contejean, E., Kanig, J.: Ergo: A theorem prover for polymorphic first-order
logic modulo theories (2006)

43. Correnson, L., Cuoq, P., Puccetti, A., Signoles, J.: Frama-C user manual. From the Frama-C
website, http://frama-c.com (2010)

44. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis
of programs. In: Proceedings of the 4th ACM Symposium on Principles of Programming
Languages, pp. 238–252. ACM, New York (1977)

http://frama-c.com

42 2 An Overview of Formal Methods Tools and Techniques

45. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: VCC: Contract-based modular
verification of concurrent C

46. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS) (2008)

47. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. J.
ACM 52(3), 365–473 (2005)

48. Dutertre, B., De Moura, L.: The Yices SMT solver. Technical report, SRI (2006)
49. Dwyer, M., Hatcliff, J., Joehanes, R., Laubach, S., Pasareanu, C., Visser, R.W., Zheng, H.:

Tool-supported program abstraction for finite-state verification. In: Proceedings of ICSE’01
(2001)

50. Dybvig, R.K.: The Scheme Programming Language: ANSI Scheme, 2nd edn. Prentice-Hall
International, Upper Saddle River (1996)

51. Ehrig, H., Fey, W., Hansen, H.: ACT ONE: An algebraic specification language with two
levels of semantics. Technical Report 83–03, Technical University of Berlin, Fachbereich
Informatik (1983)

52. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In: International
Symposium on FME 2001: Formal Methods for Increasing Software Productivity. Lecture
Notes in Computer Science, vol. 2021, pp. 500–517. Springer, Berlin (2001)

53. Formal methods ressources. http://www.afm.sbu.ac.uk/
54. Futatsugi, K., Goguen, J., Jouannaud, J.-P., Meseguer, J.: Principles of OBJ-2. In: Reid, B.

(ed.) Proceedings 12th ACM Symp. on Principles of Programming Languages, pp. 52–66.
Association for Computing Machinery, New York (1985)

55. Garland, S.J., Guttag, J.V., Horning, J.: An Overview of Larch. Lecture Notes in Computer
Science, vol. 693, pp. 329–348. Springer, Berlin (1993)

56. George, C., Haxthausen, A.E., Hughes, S., Milne, R., Prehn, S., Pedersen, J.S.: The Raise
Development Method. Prentice-Hall International, London (1995)

57. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment
for Higher-Order Logic. Cambridge University Press, Cambridge (1993)

58. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Börger, E. (ed.) Specification and
Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

59. Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer Academic, Norwell
(1993)

60. Hall, A.: Seven myths of formal methods. IEEE Softw. 7(5), 11–19 (1990)
61. Hartel, P.H., Moreau, L.: Formalizing the safety of Java, the Java virtual machine, and Java

card. ACM Comput. Surv. 33(4), 517–558 (2001)
62. Henzinger, T.A.: The theory of hybrid automata. In: LICS ’96: Proceedings of the 11th An-

nual IEEE Symposium on Logic in Computer Science, Washington, DC, USA, 1996, p. 278.
IEEE Computer Society, Los Alamitos (1996)

63. Henzinger, T.A., Ho, P.-H., Wong-toi, H.: Hytech: A model checker for hybrid systems.
Softw. Tools Technol. Transf. 1, 460–463 (1997)

64. Hoare, C.A.R., Misra, J.: Preface to special issue on software verification. ACM Comput.
Surv. 41(4), 1–3 (2009)

65. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge
(2006)

66. JML Specification Language. http://www.jmlspecs.org
67. Jones, C.B.: Software Development. A Rigorous Approach. Prentice-Hall International, En-

glewood Cliffs (1980)
68. Juellig, R., Srinivas, Y., Liu, J.: SPECWARE: An advanced environment for the formal de-

velopment of complex software systems. In: Proceedings of AMAST’96. Lecture Notes in
Computer Science, vol. 1101, pp. 551–554. Springer, Berlin (1996)

69. Kaufmann, M., Strother Moore, J.: ACL2: An industrial strength version of Nqthm.
COMPASS—Proceedings of the Annual Conference on Computer Assurance, pp. 23–34
(1996). IEEE catalog number 96CH35960

70. Klein, G.: Correct os kernel? proof? done! USENIX ;login: 34(6), 28–34 (2009)

http://www.afm.sbu.ac.uk/
http://www.jmlspecs.org

References 43

71. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: sel4: Formal
verification of an os kernel. In: Matthews, J.N., Anderson, T.E. (eds.) SOSP, pp. 207–220.
ACM, New York (2009)

72. Klop, J.W.: Term-rewriting systems. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Hand-
book of Logic in Computer Science, vol. 2, pp. 1–116. Oxford Science Publications, New
York (1992)

73. Krakatoa. http://www.lri.fr/marche/krakatoa/
74. Krauss, K.G.: Petri Nets Applied to the Formal Verification of Parallel and Communicating

Processes. Lehigh University, Dissertation, Bethlehem, PA (1987)
75. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml system,

release 3.06 (2002). http://caml.inria.fr
76. Leroy, Xavier: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115

(2009)
77. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method. Int. J.

Softw. Tools Technol. Transf. (STTT) 10(2), 185–203 (2008)
78. Mazzeo, A., Mazzocca, N., Russo, S., Savy, C., Vittorini, V.: Formal specification of concur-

rent systems: a structured approach. Comput. J. 41(3), 145–162 (1998)
79. The Coq development team. The Coq proof assistant reference manual. LogiCal Project

(2008). Version 8.2
80. Meyer, B.: Eiffel: The Language. Prentice Hall, Hemel Hempstead (1992)
81. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML (Revised).

MIT Press, Cambridge (1997)
82. Monin, J.F.: Understanding Formal Methods. Springer, New York (2001)
83. Paulson, L.: Isabelle: A Generic Theorem Prover. Lecture Notes in Computer Science,

vol. 828. Springer, Berlin (1994)
84. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

Springer, Heidelberg (2010)
85. Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems. In:

Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. LNCS, vol. 5195, pp. 171–178.
Springer, Berlin (2008)

86. Reisig, W.: Petri nets and algebraic specifications. Theor. Comput. Sci. 80, 1–34 (1991)
87. Requet, A.: An overview of Atelier B 4.0. In: Proceedings of the Conference The B Formal

Method: From Research to Teaching’2008, Nantes (June 2008)
88. Rushby, J.: Formal methods and their role in the certification of critical systems. Technical

Report SRI-CSL-95-1, Computer Science Laboratory, SRI International, Menlo Park, CA
(March 1995)

89. Rushby, J.: Formal specification and verification for critical systems: Tools, achievements,
and prospects. In: Suri, N., Walter, C.J., Hugue, M.M. (eds.) Advances in Ultra-Dependable
Distributed Systems, pp. 282–296. IEEE Computer Society, Los Alamitos (1995)

90. Sannella, D.: A survey of formal software development methods. Technical Report ECS-
LFCS-88-56, University of Edinburgh (July 1988)

91. Shankar, N., Owre, S., Rushby, J.M.: The PVS Proof Checker: A Reference Manual. Com-
puter Science Laboratory, SRI International (February 1993)

92. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Studies in Logic
and the Foundations of Mathematics, vol. 149. Elsevier, Amsterdam (2006)

93. Spivey, J.: An introduction to Z and formal specification. IEEE Softw. Eng. J. 4(1), 40–50
(1989)

94. Stärk, R., Schmid, J., Börger, E.: Java and the Java Virtual Machine—Definition, Verification,
Validation. Springer, Berlin (2001)

95. Sterling, L., Shapiro, E.: The Art of Prolog, 2nd edn. MIT Press, Cambridge (1994)
96. Thompson, S.: Haskell: The Craft of Functional Programming. Int. Comupt. Sci. Pearson

Edn (1999)

http://www.lri.fr/marche/krakatoa/
http://caml.inria.fr

44 2 An Overview of Formal Methods Tools and Techniques

97. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: Symposium on Logic in Computer Science (LICS’86), pp. 332–345. IEEE Computer
Society Press, Los Alamitos (1986)

98. Verma, K.N., Goubault-Larrecq, J.: Reflecting BDDs in Coq. Technical Report RR3859,
INRIA projet Coq (January 2000)

99. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice and ex-
perience. ACM Comput. Surv. 41(4), 1–36 (2009)

100. Wu, W., Saeki, M.: Specifying software architectures based on colored petri nets. IEICE
Trans. Inf. Syst. E83-D(4), 701–712 (2000)

http://www.springer.com/978-0-85729-017-5

	An Overview of Formal Methods Tools and Techniques
	The Central Problem
	Some Existing Formal Methods Taxonomies
	This Overview

	Specifying and Analysing
	Model-Based Specification
	Abstract State Machines
	Set and Category Theory
	Automata-Based Modelling
	Modelling Languages for Real-Time Systems

	Algebraic Specification
	Declarative Modelling

	Specifying and Proving
	Logic in a Nutshell
	Propositional Logic, First-Order Logic, and Higher-Order Logic
	Classical versus Intuitionistic Logic
	Temporal Logic

	Proof Tools
	Automated Theorem Provers
	Proof Assistants

	Model Checking
	Program Logics and Program Annotation

	Specifying and Deriving
	Refinement
	Extraction
	Execution

	Specifying and Transforming
	Conclusions
	Are Formal Methods Tools Ready for Industry?
	Is Industry Ready to Use Formal Methods?

	To Learn More
	References

