
Principles of Software Engineering:
 Course Outline

Ethan Jackson And Wolfram Schulte,

Research in Software Engineering (RiSE)

Microsoft Research

Overview

Motivation and Focus

Syllabus

Projects

i. Motivation and Focus

http://www.cs.washington.edu/csep503

http://www.cs.washington.edu/csep503
http://www.cs.washington.edu/csep503

Motivation

Software engineering is more important than ever, from many points-of-view:

Business point-of-view: Need to sell software with few bugs

in the face of ever shorter release cycles. Badly engineered

software is counter-productive.

Consumer point-of-view: Software should perform its

functions quickly, correctly, securely, privately, using little

power… and the list continues to grow.

Societal point-of-view: Software helps to drive our cars,

monitor our health, generate our power. How can we

engineer software that lives up to these applications?

A Journey…

This class will be a journey through state-of-the-art techniques in software

engineering.

Focus: Engineering Correct Software

Our journey has a focus.

Engineering correct software that is:

Likely to be correct, for some properties, by extensive automated

testing.

Provably correct, for some properties, by automated deduction.

Provably correct, for some properties, by automated synthesis.

Breadth: Try Many Techniques…

Our journey has twists and turns.

We don’t know of a single technique that address all SE problems:

Programming in the Small:

How do we design a solitary algorithm without bugs?

Programming in the Large:

How do we orchestrate several concurrent software systems?

Programming in the Real:

How do we write software that controls a physical system?

Mission: Get to Gliese 581

Probe must autonomously travel 20 light years, which translates to 8,645 bug-

free years at 10 times fastest speed ever achieved.

Our journey has a mission.

Design a probe that travels to the nearest earth-size planet in habitable zone.

ii. Syllabus

http://www.cs.washington.edu/csep503

http://www.cs.washington.edu/csep503
http://www.cs.washington.edu/csep503

Part 1: Programming in the Small

First two weeks focus on functionally correct sequential software modules using

pre/post conditions (code contracts):

Class 1: Static verification using code contracts and abstract

interpretation. Experiment with the tool Clousot.

Class 2: Full static verification using object/loop invariants

and automated theorem proving. Experiment with the Dafny

language.

Part 2: Programming in the Large

Second two weeks focus on orchestrating concurrent systems using (timed)

automata theory.

Class 3: Automata-theoretic models - Untimed and timed

automata. Build models of system orchestration using the

tools SMV and Uppaal.

Class 4: Specifying temporal properties with LTL, CTL, CTL*,

and observers. Model checking to verify temporal properties.

Part 3: Programming in the Real

Third two weeks look at synthesizing systems from models.

Class 5: Realizing system synthesis through code generation.

Applying formal verification to code generators.

Class 6: Design-space exploration of software/hardware

architectures in the presence of resource constraints.

Experiment for the FORMULA system.

Part 4: Simulating Systems

Fourth two weeks look at simulation before implementation.

Class 7: Simulation of mixed-domain models. Problems of

combining discrete/continuous systems. Experiment with

Ptolemy II framework.

Class 8: Low-cost prototyping by simulation of virtual

hardware. Experiment with the Giano system.

Part 5: Empirical Software Engineering

Fifth two weeks look at empirical software engineering.

Class 9: Approaches to bug predication. Applying bug data

from other related projects to predict bugs new projects.

Class 10: Using data analytics to make decision. Impact of

organizational structure on bugs.

Projects, Grading, and Homework (I)

Projects: Class is project based. There will be 4 two-week

projects. Leaves one week of start-up time, and one week of

slack in case more time is needed.

Groups: Feel free to work in groups of two.

Tests: None.

Projects, Grading, and Homework (II)

Time: Expect to spend several hours to: (1) get a new tool up-

and-running, (2) think through the problem, (3) solve the

problem. Probably 6 – 8 hours a week is reasonable.

Grading: Historically, this class focuses on the journey. A

strong attempt at projects guarantees a high grade.

TA \ Labs: There is no TA and not set lab times. The class is

small enough that we can meet in a lab if that is helpful.

Projects, Grading, and Homework (III)

Most importantly, have Fun!

iii. Projects

http://www.cs.washington.edu/csep503

http://www.cs.washington.edu/csep503
http://www.cs.washington.edu/csep503

Background (I)

In 1995 the first extra-solar planet was definitely confirmed.

Background (II)

In 2009 the Kepler mission was launched to look for planets among 100,000

stars.

To date Kepler has identified over 2,326 planets.

Background (III)

Dec. 20th, 2011 Kepler finds two earth-size planets.

Jan. 1, 2012 the BBC predicts a habitable earth discovered within the year.

Background (IV)

Jan. 5th, 2012 (today) DARPA leaks that astronaut Mae Jemison will head the

“100 Year Starship” project to develop a starship.

Probe 503

Project 1: Astrometrics Subsystem

Probes must determine their location in space without any help from earth.

Location in ICRF: Probe must find its direction in the ICRF by

matching observed radio-sources with a database of known

radio-sources.

Design and Prove: Write a subsystem that matches a region

of the sky with an database of known markers to determine

space craft orientation. Prove it correct.

Where am I
looking?

Project 2: Command-and-Control

Three probes must move in tandem separated by 1 AU. Devise a command-

and-control system that preserves this requirement.

Command-and-control: Model command-and-control system

as a set of interacting timed automata. These handle the high-

level operations of the probe (e.g. call the astrometrics

subsystem).

Prove: Specify temporal properties of the command-and-

control system. Use Uppaal explicit state model checking to

verify properties.

Project 3: Synthesize Probe System

Generate software and partition onto hardware.

Code generation: Write a code generator that produces an

implementation of the command-and-control-system from

automata models.

System synthesis: Specify software/hardware partitioning

problem as a constraint system over resources and

synthesize candidate architectures.

Navigation

Command/
Control

Project 4: System Simulation

Simulate behavior of synthesized system using Ptolemy II

Plant Model: Build a simple model of probe dynamics using

continuous-time models in Ptolemy II.

Hybrid Model: Combine plant model with synthesized

discrete-time system to simulate complete behavior of probes.

Project 0: Play with Code Contracts

1. Get Visual Studio up and running. CSE students can obtain it for free:

http://www.cs.washington.edu/lab/sw/MSDNAA/ms-sw.html

(Just need Profession version.)

2. Get Code Contracts at:

http://msdn.microsoft.com/en-us/devlabs/dd491992

3. Read the documentation and try some of the samples.

http://www.cs.washington.edu/lab/sw/MSDNAA/ms-sw.html
http://www.cs.washington.edu/lab/sw/MSDNAA/ms-sw.html
http://www.cs.washington.edu/lab/sw/MSDNAA/ms-sw.html
http://www.cs.washington.edu/lab/sw/MSDNAA/ms-sw.html
http://msdn.microsoft.com/en-us/devlabs/dd491992
http://msdn.microsoft.com/en-us/devlabs/dd491992
http://msdn.microsoft.com/en-us/devlabs/dd491992
http://msdn.microsoft.com/en-us/devlabs/dd491992
http://msdn.microsoft.com/en-us/devlabs/dd491992

Thanks And Questions!

http://www.cs.washington.edu/csep503

http://www.cs.washington.edu/csep503
http://www.cs.washington.edu/csep503

