
5/28/2009

1

CSE P503:

Principles of Software Engineering

David Notkin

Spring 2009

Tonight’s agenda

• Software reverse engineering, visualization, etc.

• ―So, what happened in Vancouver BC at ICSE

2009?‖

• Dynamic invariants

• ―What is the remaining work for p503 this quarter?‖

5/28/2009 2David Notkin ● Spring 2009

Reverse engineering & visualization

• Do you use any tools for these?

• If so, which, and what is your experience?

• If not, why not?

5/28/2009 David Notkin ● Spring 2009 3

A view of maintenance

5/28/2009 4

When assigned a task to modify

an existing software system,

how does a software engineer

choose to proceed?

When assigned a task to modify

an existing software system,

how does a software engineer

choose to proceed?

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Assigned
Task

David Notkin ● Spring 2009

5/28/2009

2

A task: isolating a subsystem

• Many maintenance tasks require identifying and

isolating functionality within the source

– sometimes to extract the subsystem

– sometimes to replace the subsystem

5/28/2009 5David Notkin ● Spring 2009

Mosaic

• A task might (have

been) to isolate and

replace the TCP/IP

subsystem that

interacts with the

network with a new

corporate standard

interface

• First step in task is to

estimate the difficulty

5/28/2009 6David Notkin ● Spring 2009

Mosaic source code

• After some configuration and perusal, determine the

source of interest is divided among 4 directories with

157 C header and source files

• Over 33,000 lines of non-commented, non-blank

source lines

5/28/2009 7David Notkin ● Spring 2009

Some initial analysis

• The names of the directories suggest the software is

broken into

– code to interface with the X window system

– code to interpret HTML

– two other subsystems to deal with the world-wide-

web and the application (although the meanings of

these is not clear)

5/28/2009 8David Notkin ● Spring 2009

5/28/2009

3

How to proceed?

• What source model – information extracted from the

code – would be useful?

– calls between functions (particularly calls to Unix

TCP/IP library)

– references to global variables

• How do we get this source model?

– statically with a tool that analyzes the source or

dynamically using a profiling tool

– these differ in information characteristics

• False positives, false negatives, etc.

5/28/2009 9David Notkin ● Spring 2009

More...

• What we have

– approximate call and global variable reference

information

• What we want

– increase confidence in source model

• Action:

– collect dynamic call information to augment source

model

5/28/2009 10David Notkin ● Spring 2009

Augment with dynamic calls

• Compile Mosaic with profiling support

• Run with a variety of test paths and collect profile

information

• Extract call graph source model from profiler output

– 1872 calls

– 25% overlap with CIA (an old tool)

– 49% of calls reported by gprof not reported by CIA

5/28/2009 11David Notkin ● Spring 2009

Are we done?

• We are still left with a fundamental problem: how to

deal with one or more ―large‖ source models?

– Mosaic source model:

static function references (CIA) 3966

static function-global var refs (CIA) 541

dynamic function calls (gprof) 1872

Total 6379

5/28/2009 12David Notkin ● Spring 2009

5/28/2009

4

One approach

• Use a query tool against the source model(s)

– maybe grep?

– maybe source model specific tool?

• As necessary, consult source code

– ―It’s the source, Luke.‖

– Mark Weiser. Source Code. IEEE Computer 20,11

(November 1987)

5/28/2009 13David Notkin ● Spring 2009

Other approaches

• Visualization

• Reverse engineering

• Summarization

5/28/2009 14David Notkin ● Spring 2009

Visualization

• e.g., Field, Plum, Imagix 4D, McCabe, etc.

(Field’s flowview is used above and on the

next few slides...)

• Note: several of these are commercial products

5/28/2009 15David Notkin ● Spring 2009

Visualization...

5/28/2009 16David Notkin ● Spring 2009

5/28/2009

5

Visualization...

5/28/2009 17David Notkin ● Spring 2009

Visualization...

• Provides a ―direct‖ view of the source model

• View often contains too much information

– Use elision (…)

– With elision you describe what you are not

interested in, as opposed to what you are

interested in

5/28/2009 18David Notkin ● Spring 2009

Reverse engineering

• e.g., Rigi, various clustering algorithms

(Rigi is used above)

5/28/2009 19David Notkin ● Spring 2009

Reverse engineering...

5/28/2009 David Notkin ● Spring 2009 20

5/28/2009

6

Clustering

• The basic idea is to take one or more source models

of the code and find appropriate clusters that might

indicate ―good‖ modules

• Coupling and cohesion, of various definitions, are at

the heart of most clustering approaches

• Many different algorithms

5/28/2009 David Notkin ● Spring 2009 21

Rigi’s approach

• Extract source models (they call them resource

relations)

• Build edge-weighted resource flow graphs

– Discrete sets on the edges, representing the

resources that flow from source to sink

• Compose these to represent subsystems

– Looking for strong cohesion, weak coupling

• The papers define interconnection strength and

similarity measures (with tunable thresholds)

5/28/2009 David Notkin ● Spring 2009 22

Mathematical concept analysis

• Define relationships between (for instance) functions

and global variables [Snelting et al.]

• Compute a concept lattice capturing the structure

– ―Clean‖ lattices = nice structure

– ―ugly‖ ones = bad structure

5/28/2009 David Notkin ● Spring 2009 23

An aerodynamics program

• 106KLOC Fortran

• 20 years old

• 317 subroutines

• 492 global variables

• 46 COMMON blocks

5/28/2009 David Notkin ● Spring 2009 24

5/28/2009

7

Other concept lattice uses

• File and version dependences across C programs

(using the preprocessor)

• Reorganizing class libraries

5/28/2009 David Notkin ● Spring 2009 25

Dominator clustering

• Girard & Koschke

• Based on call graphs

• Collapses using a domination relationship

• Heuristics for putting variables into clusters

5/28/2009 David Notkin ● Spring 2009 26

Aero program

• Rigid body simulation; 31KLOC of C code; 36 files;

57 user-defined types; 480 global variables; 488

user-defined routines

5/28/2009 David Notkin ● Spring 2009 27

Other clustering

• Schwanke

– Clustering with automatic tuning of thresholds

– Data and/or control oriented

– Evaluated on reasonable sized programs

• Basili and Hutchens

– Data oriented

5/28/2009 David Notkin ● Spring 2009 28

5/28/2009

8

Reverse engineering recap

• Generally produces a higher-level view that is

consistent with source

– Like visualization, can produce a ―precise‖ view

– Although this might be a precise view of an

approximate source model

• Sometimes view still contains too much information

leading again to the use of techniques like elision

– May end up with ―optimistic‖ view

5/28/2009 David Notkin ● Spring 2009 29

More recap

• Automatic clustering approaches must try to produce

―the‖ design

– One design fits all

• User-driven clustering may get a good result

– May take significant work (which may be

unavoidable)

– Replaying this effort may be hard

• Tunable clustering approaches may be hard to tune;

unclear how well automatic tuning works

5/28/2009 David Notkin ● Spring 2009 30

Summarization

• e.g., software reflexion models

5/28/2009 David Notkin ● Spring 2009 31

Summarization...

• A map file specifies the correspondence between

parts of the source model and parts of the high-level

model

[file=HTTCP mapTo=TCPIP]

[file=^SGML mapTo=HTML]

[function=socket mapTo=TCPIP]

[file=accept mapTo=TCPIP]

[file=cci mapTo=TCPIP]

[function=connect mapTo=TCPIP]

[file=Xm mapTo=Window]

[file=^HT mapTo=HTML]

[function=.* mapTo=GUI]

5/28/2009 David Notkin ● Spring 2009 32

5/28/2009

9

Summarization...

5/28/2009 David Notkin ● Spring 2009 33

Summarization...

• Condense (some or all) information in terms of a

high-level view quickly

– In contrast to visualization and reverse

engineering, produce an ―approximate‖ view

– Iteration can be used to move towards a ―precise‖

view

• Some evidence that it scales effectively

• May be difficult to assess the degree of

approximation

5/28/2009 David Notkin ● Spring 2009 34

Case study: A task on Excel

• A series of approximate tools were used by a

Microsoft engineer to perform an experimental

reengineering task on Excel

• The task involved the identification and extraction of

components from Excel

• Excel (then) comprised about 1.2 million lines of C

source

– About 15,000 functions spread over ~400 files

5/28/2009 David Notkin ● Spring 2009 35

The process used

5/28/2009 David Notkin ● Spring 2009 36

5/28/2009

10

An initial Reflexion Model

• The initial Reflexion

Model computed had 15

convergences, 83,

divergences, and 4

absences

• It summarized 61% of

calls in source model

5/28/2009 David Notkin ● Spring 2009 37

An iterative process

• Over a 4+ week period

• Investigate an arc

• Refine the map

– Eventually over 1000 entries

• Document exceptions

• Augment the source model

– Eventually, 119,637 interactions

5/28/2009 David Notkin ● Spring 2009 38

A refined Reflexion Model

• A later Reflexion Model

summarized 99% of

131,042 call and data

interactions

• This approximate view of

approximate information

was used to reason

about, plan and

automate portions of the

task

5/28/2009 David Notkin ● Spring 2009 39

Results

• Microsoft engineer judged the use of the Reflexion

Model technique successful in helping to understand

the system structure and source code

―Definitely confirmed suspicions about the structure

of Excel. Further, it allowed me to pinpoint the

deviations. It is very easy to ignore stuff that is not

interesting and thereby focus on the part of Excel that

I want to know more about.‖ — Microsoft A.B.C.

(anonymous by choice) engineer

5/28/2009 David Notkin ● Spring 2009 40

5/28/2009

11

Open questions

• How stable is the mapping as the source code

changes?

• Should reflexion models allow comparisons

separated by the type of the source model entries?

• ...

5/28/2009 David Notkin ● Spring 2009 41

ICSE?

• What is it?

• When is it?

• What happens?

• How does it work?

5/28/2009 42David Notkin ● Spring 2009

ICSE 2009: semi-random tidbits

• Michael Jackson tribute

– Tony Hoare, Daniel Jackson and others

– Michael Jackson on contrivances

• ICSE N-10 most influential paper: "N Degrees of Separation:

Multi-Dimensional Separation of Concerns" by P Tarr, H Ossher,

W Harrison, SM Sutton Jr.

• Steve McConnell keynote: 10 Most Important Ideas in Software

Development

• Two example research results

– The Secret Life of Bugs: Going Past the Errors and

Omissions in Software Repositories (Jorge Aranda, Gina

Venolia)

– Invariant-Based Automatic Testing of AJAX User Interfaces

(Ali Mesbah, Arie van Deursen)

5/28/2009 David Notkin ● Spring 2009 43

Program invariants

• Invariants can aid in the development of correct programs

– The invariants are defined explicitly as part of the

construction of the program

• Invariants can aid in the evolution of software as well

• In particular, programmers can easily make changes that violate

unstated invariants

– The violated invariants are often far from the site of the

change

– These changes can cause errors

– The presence of invariants can reduce the number of or cost

of finding these violations

5/28/2009 44

http://www.cxone.com/Print.aspx?hid=2927
http://www.cxone.com/Print.aspx?hid=2927

5/28/2009

12

But…

• …most programs have few invariants explicitly

written by programmers

• Ernst’s idea: trace multiple executions of a program

and apply machine learning to discover likely

invariants (such as those found in assert statements

or specifications)

– x > abs(y)

– x = 16*y + 4*z + 3

– array a contains no duplicates

– for each node n, n = n.child.parent

– graph g is acyclic

– …
CSE403 Wi09 45 5/28/2009 46

Example: Recover formal specification

// Sum array b of length n into

// variable s

i := 0; s := 0;

while i  n do

{ s := s + b[i]; i := i + 1 }

• Precondition: n  0

• Postcondition: S = 
0  j < n

b[j]

• Loop invariant:

0  i  n and S = 
0  j < i

b[j]

Test suite: first guess

• 100 randomly-generated arrays

– length uniformly distributed from 7 to 13

– elements uniformly distributed from –100 to 100

5/28/2009 47 5/28/2009 48

Inferred invariants

ENTRY:

N = size(B)

N in [7..13]

B: All elements in [-100..100]

EXIT:

N = I = orig(N) = size(B)

B = orig(B)

S = sum(B)

N in [7..13]

B: All elements in [-100..100]

5/28/2009

13

5/28/2009 49

Inferred loop invariants

LOOP:

N = size(B)

S = sum(B[0..I-1])

N in [7..13]

I in [0..13]

I <= N

B: All elements in [-100..100]

B[0..I-1]: All elements in [-100..100]

Example: Code without explicit invariants

• 563-line C program: regular expression search &

replace [Hutchins][Rothermel]

• Task: modify to add Kleene +

• Complementary use of both detected invariants and

traditional tools (such as grep)

5/28/2009 50

5/28/2009 51

Programmer use of invariants

• Helped explain use of data structures

– regexp compiled form (a string)

• Contradicted some maintainer expectations

– anticipated lj < j in makepat

– queried for counterexample

– avoided introducing a bug

• Revealed a bug

– when lastj = *j in stclose, array bounds error

5/28/2009 52

More invariant uses

• Showed procedures used in limited ways

– makepat

start = 0 and delim = ’\0’

• Demonstrated test suite inadequacy

– #calls(in_set_2) = #calls(stclose)

• Changes in invariants validated program changes

– stclose: *j = orig(*j)+1

– plclose: *j  orig(*j)+2

5/28/2009

14

Experiment 2 conclusions

• Invariants

– effectively summarize value data

– support programmer’s own inferences

– lead programmers to think in terms of invariants

– provide serendipitous information

• Additional useful components of Daikon

– trace database (supports queries)

– invariant differencer

5/28/2009 53

Dynamic invariant detection

Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect

invariants

• Look for patterns in values the program computes

– Instrument the program to write data trace files

– Run the program on a test suite

– Invariant engine reads data traces, generates

potential invariants, and checks them

• Roughly, machine learning over program traces

Requires a test suite

• Standard test suites are adequate

• Relatively insensitive to test suite (if large enough)

• No guarantee of completeness or soundness

• Complementary to other techniques and tools

5/28/2009 55 5/28/2009 56

Sample invariants

• x,y,z are variables; a,b,c are constants

• Invariants over numbers

– unary: x = a, a  x  b, x  a(mod b), …

– n-ary: x  y, x = ay + bz + c,
x = max(y, z), …

• Invariants over sequences

– unary: sorted, invariants over all elements

– with sequence: subsequence, ordering

– with scalar: membership

5/28/2009

15

5/28/2009 57

Checking invariants

• For each potential invariant:

– Instantiate

• That is, determine constants like a and b in y =
ax + b

– Check for each set of variable values

– Stop checking when falsified

• This is inexpensive

– Many invariants, but each cheap to check

– Falsification usually happens very early

Relevance

• Our first concern was whether we could find any

invariants of interest

• When we found we could, we found a different

problem

– We found many invariants of interest

– But most invariants we found were not relevant

5/28/2009 58

Find relationships over non-variables

• array: length, sum, min, max

• array and scalar: element at index, subarray

• number of calls to a procedure

• …

5/28/2009 59

Unjustified properties

• Given three samples for x:

– x = 7

– x = –42

– x = 22

• Potential invariants:

– x  0

– x  22

– x  –42

5/28/2009 60

5/28/2009

16

Statistically check hypothesized distribution

• Probability of no zeroes (to show x  0) for v values

of x in range of size r

• Range limits (e.g., x  22)

– same number of samples as neighbors (uniform)

– more samples than neighbors (clipped)

5/28/2009 61

v

r










1
1

variable value

#
 o

f
s
a
m

p
le

s

variable value

#
 o

f
s
a
m

p
le

s

5/28/2009 62

Duplicate values

• Array sum program:

i := 0; s := 0;

while i  n do

{ s := s + b[i]; i := i + 1 }

• b is unchanged inside loop

• Problem: at loop head

– –88  b[n – 1]  99

– –556  sum(b)  539

• Reason: more samples inside loop

Disregard duplicate values

• Idea: count a value only if its variable was just

modified

• Result: eliminates undesired invariants

5/28/2009 63

Redundant invariants

• Given

0  i  j

• Redundant

a[i]  a[0..j]

max(a[0..i])  max(a[0..j])

• Redundant invariants are logically implied

• Implementation contains many such tests

5/28/2009 64

5/28/2009

17

Suppress redundancies

• Avoid deriving variables: suppress 25-50%

– equal to another variable

– nonsensical

• Avoid checking invariants:

– false invariants: trivial improvement

– true invariants: suppress 90%

• Avoid reporting trivial invariants: suppress 25%

5/28/2009 65

Unrelated variables

5/28/2009 66

b < p

myweight < mybirthyear

int myweight, mybirthyear;

bool b;

int *p;

Limit comparisons

• Check relations only over comparable variables

– declared program types: 60% as many

comparisons

– Lackwit [O’Callahan]: 5% as many comparisons;

scales well

• Runtime: 40-70% improvement

• Few differences in reported invariants

5/28/2009 67 5/28/2009 68

Richer types of invariant

• Object/class invariants

– node.left.value < node.right.value

– string.data[string.length] = ’\0’

• Pointers (recursive data structures)

– tree is sorted

• Conditionals

– if proc.priority < 0 then

proc.status = active

– ptr = null or *ptr > i

5/28/2009

18

Conditionals mechanism

• Split the data into parts

• Compute invariants over

each subset of data

• Compare results, produce

implications

5/28/2009 69

x even?

x=1, y=2

x=0, y=0

x=3, y=8

x=4, y=0

x=0, y=0

x=4, y=0

x=1, y=2

x=3, y=8

yes no

if even(x)then

y = 0

else

y = 2x

Data splitting criteria

• Static analysis

• Distinguished values: zero, source literals, mode,

outliers, extrema

• Exceptions to detected invariants

• User-selected

• Exhaustive over random sample

5/28/2009 70

Summary

• Dynamic invariant detection is feasible

• Dynamic invariant detection is accurate & useful

– Techniques to improve basic approach

– Experiments provide preliminary support

• Daikon can detect properties in C, C++, Eiffel, IOA,

Java, and Perl programs; in spreadsheet files; and in

other data sources.

• Easy to extend Daikon to other applications

• http://groups.csail.mit.edu/pag/daikon/ (but

http://www.cs.washington.edu/homes/mernst/)

5/28/2009 71

So, what work is left for p503?

• Staff: grading of Alloy and research papers

• You

– I didn’t provide assignment #4, which is ―Due

6:00PM on Monday June 8, 2009‖

– Here it is (soon on web page): a choice of

• Proposed curriculum per last week’s email

• A shorter (5 page) additional research paper on

a different topic (no approval is needed, but be

reasonable)

• An Alloy model for something you work on and

want to understand better (no need to break

NDA)
5/28/2009 David Notkin ● Spring 2009 72

http://groups.csail.mit.edu/pag/daikon/

5/28/2009

19

See you next week…

5/28/2009 David Notkin ● Spring 2009 73 5/28/2009 74David Notkin ● Spring 2009

