
4/23/2009

1

CSE P503:

Principles of Software Engineering

David Notkin

Spring 2009

Tonight‟s agenda

• Software design: information hiding and layering

• Discussion: software disasters – technical,

managerial, or otherwise … and what can we and

should we do about it?

• Software design: a simple example, patterns,

architecture

• Optional one-minute paper

UW CSE P503 David Notkin ● Spring 2009 2

UW CSE P503 David Notkin ● Spring 2009 3

Functional decomposition

• Divide-and-conquer based on functions

– input; compute; output

• Then proceed to decompose compute

• This is stepwise refinement (Wirth, 1971)

– In essence, refining until implementable directly in

a programming language (or on an architecture)

• There is an enormous body of work in this area,

including many formal calculi to support the approach

– Closely related to proving programs correct

• More effective in the face of stable requirements

UW CSE P503 David Notkin ● Spring 2009 4

Information hiding

• A very common term in software design

• What do you think it is?

4/23/2009

2

UW CSE P503 David Notkin ● Spring 2009 5

Information hiding

• Information hiding is perhaps the most important

intellectual tool developed to support software design

[Parnas 1972]

– Makes the anticipation of change a centerpiece in

decomposition into modules

• Provides the fundamental motivation for abstract data

type (ADT) languages

– And thus a key idea in the OO world, too

• The conceptual basis is key

UW CSE P503 David Notkin ● Spring 2009 6

Basics of information hiding

• Modularize based on anticipated change

– Fundamentally different from Brooks‟ approach in

OS/360 (see old and new MMM)

• Separate interfaces from implementations

– Implementations capture decisions likely to

change

– Interfaces capture decisions unlikely to change

– Clients know only interface, not implementation

– Implementations know only interface, not clients

• Modules are also work assignments

UW CSE P503 David Notkin ● Spring 2009 7

Anticipated changes

• The most common anticipated change is “change of

representation”

– Anticipating changing the representation of data

and associated functions (or just functions)

– Again, a key notion behind abstract data types

• Ex:

– Cartesian vs. polar coordinates; stacks as linked

lists vs. arrays; packed vs. unpacked strings

Information hiding: issues

• Can we effectively anticipate changes?

• What is the underlying cost model and is it

reasonable?

• The semantics of the module remain unchanged

when implementations are changed: the client should

only care if the interface is satisfied

– But what captures the semantics of the module?

The signature of the interface? Performance?

What else?

• One implementation should satisfy multiple clients,

which should only care if the interface is satisfied

UW CSE P503 David Notkin ● Spring 2009 8

4/23/2009

3

Representation change less common

• We have significantly more knowledge about data

structure design than we did 25 years ago

• Memory is less often a problem than it was

previously, since it‟s much less expensive

• Therefore, we should think twice about anticipating

that representations will change

– This is important, since we can‟t simultaneously

anticipate all changes

UW CSE P503 David Notkin ● Spring 2009 9 UW CSE P503 David Notkin ● Spring 2009 10

Other anticipated changes?

• Information hiding isn‟t only ADTs

• Algorithmic changes

– (These are almost always part and parcel of ADT-

based decompositions)

– Monolithic to incremental algorithms

– Improvements in algorithms

• Replacement of hardware sensors

– Ex: better altitude sensors

• …

UW CSE P503 David Notkin ● Spring 2009 11

Best to change implementation?

• Usually, perhaps, but not always the lowest cost

• Changing a local implementation may not be easy

• Some global changes are straightforward:

mechanically or systematically

• Rob Miller‟s simultaneous text editing

• Bill Griswold‟s work on information transparency

Information hiding reprise

• It‟s probably the most important design technique we

know

• And it‟s broadly useful

• It raised consciousness about change

• But one needs to evaluate the premises in specific

situations to determine the actual benefits (well, the

actual potential benefits)

UW CSE P503 David Notkin ● Spring 2009 12

4/23/2009

4

Dependence on implementation

• Gregor Kiczales et al.: clients indeed depend on

some aspects of the underlying implementations in a

broad variety of domains and situations

• What happens when the implementation strategy for

a module depends on how it will be used?

• Aren‟t we supposed to separate policy from

mechanism?

• Example: spreadsheet via many small windows?

UW CSE P503 David Notkin ● Spring 2009 13

Poor performance often leads to…

“hematomas of

duplication”

“coding between the

lines”

UW CSE P503 David Notkin ● Spring 2009 14

Open implementation

• Decompose into base interface (the “real” operations) and the

meta interface (the operations that let the client control aspects

of the implementation)

• Arose from work in (roughly) reflection in the Meta-Object

protocol (MOP) and led to the development of aspect-oriented

programming

UW CSE P503 David Notkin ● Spring 2009 15

Meta interface examples

• C‟s register storage class

– “A declaration of an identifier for an object with
storage-class specifier register suggests that

access to the object be as fast as possible.”

• Unix nice

• High-Performance Fortran

– REAL A(1000,1000),B(998,998)

!HPF$ ALIGN B(I,J) WITH A(I+1,J+1)

!HPF$ DISTRIBUTE A(*,BLOCK)

• …many many more! Quick examples from you?

UW CSE P503 David Notkin ● Spring 2009 16

4/23/2009

5

UW CSE P503 David Notkin ● Spring 2009 17

Information Hiding and OO

• Are these the same? Not really

– OO classes are chosen based on the domain of

the problem (in most OO analysis approaches)

– Not necessarily based on change

• But they are obviously related (separating interface

from implementation, e.g.)

• What is the relationship between sub- and super-

classes?

UW CSE P503 David Notkin ● Spring 2009 18

Layering [Parnas 79]

• A focus on information hiding modules isn‟t enough

• One may also consider abstract machines

– In support of program families, which are systems

that have “so much in common that it pays to

study their common aspects before looking at the

aspects that differentiate them”

• Still a focus on anticipated change

UW CSE P503 David Notkin ● Spring 2009 19

The uses relation

• A program A uses a program B if the correctness of A
depends on the presence of a correct version of B

• Requires specification and implementation of A and
the specification of B

• Again, what is the “specification”? The interface?
Implied or informal semantics?

uses vs. invokes

ipAddr := cache(hostName);

if wrong(ipAddr,hostName) then

ipAddr := lookup(hostName)

endif

• These relations often but do not always coincide

• Invocation without use: name service with cached

hints

• Use without invocation: examples?

UW CSE P503 David Notkin ● Spring 2009 20

4/23/2009

6

UW CSE P503 David Notkin ● Spring 2009 21

Parnas‟ observation

• A non-hierarchical uses relation makes it difficult to

produce useful subsets of a system

• So, it is important to design the uses relation using

these criteria

– A is essentially simpler because it uses B

– B is not substantially more complex because it

does not use A

– There is a useful subset containing B but not A

– There is no useful subset containing A but not B

UW CSE P503 David Notkin ● Spring 2009 22

Modules and layers interact?

• Information hiding

modules and

layers are distinct

concepts

• How and where do

they overlap in a

system?
Process Creation

Segment Mgmt.

Process Mgmt.

Segment Creation

Imprecision in design discussions

• Not all boxes in a design are the same thing

• Not all arrows in a design are the same thing

• Imprecision in communication about these boxes and

arrows can add significant confusion to a software

design process and the resulting design

• Oh, that‟s the issue of clarity again

– We‟ll return to this

UW CSE P503 David Notkin ● Spring 2009 23 UW CSE P503 David Notkin ● Spring 2009 24

Language support?

• We have lots of language support for information

hiding modules

– C++ classes, Ada packages, etc.

• We have essentially no language support for layering

– Operating systems provide support, primarily for

reasons of protection, not abstraction

– Big performance cost to pay for “just” abstraction

• General observation: design ideas not encoded in a

language are less likely to be used

4/23/2009

7

Software disasters

• Technical, managerial, or otherwise?

• And what can we and should we do about it?

• What is our responsibility and how can we reduce the

frequency and consequences of such problems?

UW CSE P503 David Notkin ● Spring 2009 25

A simple system: how to design?

• Consider two sets of integers, A and B

• How would we design a system to ensure that A and

B always had the same elements?

UW CSE P503 David Notkin ● Spring 2009 26

new()

{1, 17, 41, -5,

33333333, 0,

5247695,1666}

insert(int)

delete(int)

isMember()

Key points include…

• Can separate relationship from the base entities –

very much like entity-relationship design in databases

with the addition of behavior

• Need event-based mechanism

• Separate name and invoke relationships

– Registration of interest is still an issue

• Aside: not all event mechanisms are created equally

or used equally – ordering, circularities, etc. tend to

rear their ugly head in many situations

UW CSE P503 David Notkin ● Spring 2009 27

Design patterns

• What are they?

• Do you use them?

• Do you like them?

UW CSE P503 David Notkin ● Spring 2009 28

4/23/2009

8

UW CSE P503 29

Design patterns

• “a „well-proven generic scheme‟ for solving a

recurring design problem”

– Often overcoming limitations of OO hierarchies

• Idioms intended to be “simple and elegant solutions

to specific problems in object-oriented software

design”

– Patterns are a collection of “mini-architectures”

that combine structure and behavior

• They are drawn from examples in existing systems

– Not proposed solutions to possible problems, but

real solutions to real problems

David Notkin ● Spring 2009 UW CSE P503 30

They are an example of chunking

• Advanced chess players are in part superior because they don‟t

see each piece individually

– Instead, they chunk groups of them together

– This reduces the search space they need to assess in

deciding on a move

• This notion of chunking happens in almost every human

endeavor

• Such chunking can lead to the use of idioms

– As it has in programming languages

• The following slides show some parts of a particular pattern:

flyweight

– I won‟t go through the slides, but they give a feel for people

who haven‟t seen more concrete information on patterns

David Notkin ● Spring 2009

Example: flyweight pattern

column

rowrowrow

a tnerapp

UW CSE P503 31

• What happens when you try to represent lots of small

elements as full-fledged objects?

• It‟s often too expensive

• And it‟s pretty common

David Notkin ● Spring 2009

An alternative approach

column

rowrowrow

a tnerapp

a mlkjihgfedcb

n zyxwvutsrqpo

UW CSE P503 32

• Use sharing to support many fine-grained objects

efficiently

– Fixed domain of objects

– Maybe other

constraints

David Notkin ● Spring 2009

4/23/2009

9

UW CSE P503 33

Flyweight structure

GetFlyweight(key)

FlyweightFactory

Operation(extrinsicState)

Flyweight

flyweights

Client

Operation(extrinsicState)

intrinsicState

ConcreteFlyweight

Operation(extrinsicState)

allState

UnsharedConcreteFlyweight

David Notkin ● Spring 2009 UW CSE P503 34

Participants

• Flyweight (glyph in text example)

– Interface through which flyweights can receive and

act on extrinsic state

• ConcreteFlyweight (character)

– Implements flyweight interface, shareable, only

intrinsic state (independent of context)

• UnsharedConcreteFlyweight (row, column)

• FlyweightFactory

– Creates and manages flyweight objects

David Notkin ● Spring 2009

UW CSE P503 35

Sample code

class Glyph {

public:

virtual ~Glyph();virtual

void Draw(…);

virtual void SetFont(…);

…

}

class Character : public Glyph {

Character(char);

virtual void Draw(…);

private:

char _charcode;

};

• The code itself is in

the domain (glyphs,

rows, etc.)

• But it‟s structured

based on the pattern

• The client interacts
with Glyph,
Character

David Notkin ● Spring 2009 UW CSE P503 36

A little more code

Character* GlyphFactory::CreateCharacter(char c)

{

if (!_character[c]) {

_character[c] = new Character();

}

return _character[c];

}

• Explicit code for each of the elements in the flyweight
structure

David Notkin ● Spring 2009

4/23/2009

10

UW CSE P503 37

An historical aside

• The Gang of Four loosely based their initial work on

that of architect Christopher Alexander

– Not a systems or software architect, but an

architecture architect (with planning, too)

– The Timeless Way trilogy

• The Timeless Way of Building (1979), A Pattern

Language: Towns, Buildings, Construction (1977), The

Oregon Experiment (1975)

• Not surprisingly, a focus on idiomatic solutions to

common design problems

David Notkin ● Spring 2009 UW CSE P503 38

A little more

• Alexander and his influence on CS
– www.math.utsa.edu/sphere/salingar/Chris.text.html

• Too much can be (and is) made of the connection to

Alexander

– In particular, Alexander takes the “big” view of

architecture and patterns

– In software, it is important but still the “little” view

David Notkin ● Spring 2009

UW CSE P503 39

An enlightening experience

David Notkin ● Spring 2009

Design patterns: not a silver bullet…

• ..but they are impressive, important and worthy of

attention and study

• I think that some of the patterns have and more will

become part and parcel of designers‟ vocabularies

• This will improve communication and over time

improve the designs we produce

• The relatively disciplined structure of the pattern

descriptions may be a plus

UW CSE P503 David Notkin ● Spring 2009 40

4/23/2009

11

Software architecture

• An area of significant attention in the last decade or

so

– D. Garlan and M. Shaw. An Introduction to Software

Architecture. In V. Ambriola and G. Tortora (ed.), Advances

in Software Engineering and Knowledge Engineering (1993).

– D.E. Perry and A.L. Wolf. Foundations for the Study of

Software Architecture. ACM SIGSOFT Software Engineering

Notes 17, 4 (Oct 1992).

• There are two basic goals (in my opinion)

– Capturing, cataloguing and exploiting experience

in software designs

– Allowing reasoning about classes of designs

Box-and-arrow diagrams:
taken from the web without attribution

These diagrams

• Clearly, these diagrams give value

– You can find them all over the web, in textbooks,

in technical documents, in research papers, over

whiteboards in your office, on napkins in the

cafeteria, etc.

• At the same time, they are generally ill-defined: what

does a box represent? an arrow? a layer? adjacent

boxes? etc.

• One view of software architecture research is to

determine ways to give these diagrams clearer

semantics and thus additional value

Compilers

• The first compilers had ad hoc designs

• Over time, as a number of compilers were built, the

designs became more structured

– Experience yielded benefits

• Compiler phases, symbol table, etc.

– Plenty of theoretical advances

• Finite state machines, parsing, ...

4/23/2009

12

Compilers

• Compilers are perhaps the best example of shared experience

in design

– Lots of tools that capture common aspects

– Undergraduate courses build compilers

– Most compilers look pretty similar in structure

• But we still don‟t fully generate compilers

– Despite lots of effort and lots of money

– In any case, the code in compilers is often less clean than

the designs

• Despite this, the perception of a shared design gives leverage

– Communication among programmers

– Selected deviations can be explained more concisely and

with clearer reasoning

So…

• One hope is that by studying our experiences with a

variety of systems, we can gain leverage as we did

with compilers

• Capture the strengths and weaknesses of various

software structures

– Perhaps enabling designers to select appropriate

architectures more effectively

• Benefit from high-level study of software structure

Some classic definitions:
http://www.sei.cmu.edu/architecture/definitions.html

• …architecture is concerned with the selection of architectural
elements, their interactions, and the constraints on those
elements and the interactions necessary to provide a framework
in which to satisfy the requirements and serve as a basis for the
design [Perry and Wolf].

• An architecture is the set of significant decisions about the
organization of a software system, the selection of the structural
elements and their interfaces by which the system is composed,
together with their behavior as specified in the collaborations
among those elements, the composition of these structural and
behavioral elements into progressively larger subsystems, and
the architectural style that guides this organization---these
elements and their interfaces, their collaborations, and their
composition [Booch, Rumbaugh, and Jacobson, 1999]

More definitions

• ...beyond the algorithms and data structures of the computation;
designing and specifying the overall system structure emerges
as a new kind of problem. Structural issues include gross
organization and global control structure; protocols for
communication, synchronization, and data access; assignment
of functionality to design elements; physical distribution;
composition of design elements; scaling and performance; and
selection among design alternatives [Garlan and Shaw].

• The structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their
design and evolution over time [Garlan and Perry].

• ...an abstract system specification consisting primarily of
functional components described in terms of their behaviors and
interfaces and component-component interconnections [Hayes-
Roth].

4/23/2009

13

Components and connectors

• (Most people now agree that) software architectures

includes components and connectors

• Components define the basic computations

comprising the system: abstract data types, filters,

etc.

• Connectors define the interconnections between

components: procedure call, event announcement,

asynchronous message sends, etc.

• The line between them may be fuzzy at times

– Ex: A connector might (de)serialize data, but can it

perform other, richer computations?

Architectural style

• Defines the vocabulary of components and

connectors for a family (style)

• Constraints on the elements and their combination

– Topological constraints (no cycles,

register/announce relationships, etc.)

– Execution constraints (timing, etc.)

• By choosing a style, one gets all the known

properties of that style (for any architecture in that

style)

• These properties can be quite broad

– Ex: performance, lack of deadlock, ease of making

particular classes of changes, etc.

Not just boxes and arrows

• Consider pipes & filters, for example (Garlan and Shaw)

– Pipes must compute local transformations

– Filters must not share state with other filters

– There must be no cycles

• If these constraints are not satisfied, it‟s not a pipe & filter

system

– One can‟t tell this from a picture

– One can formalize these constraints

scan parse optimize generate

WRIGHT

• WRIGHT provides a formal basis for architectural

description (ADL = architectural description

language)

• Language for precisely defining an architectural

specification, as a basis for analyzing the architecture

of individual software systems and families of

systems

• Underlying model in CSP (communicating sequential

process, Hoare), checkable using standard model

checking technology

– Defines a set of standard consistency and

completeness checks

4/23/2009

14

Defining a connector in WRIGHT:
client-server

connector C-S-connector =

role Client = (request!x  result?y  Client)

 §

role Server = (invoke?x  return!y  Server) 

§

glue = (Client.request?x  Service.invoke!x 

Service.return?y  Client.result!y 

glue)

 §

Pipe connector in WRIGHT

Connector Pipe =

role Write = write  Writer  close  
role Reader =

let ExitOnly = close  
in let DoRead =

(read  Reader  read-eof  ExitOnly)

in DoRead  ExitOnly

glue = let ReadOnly =

Reader.Read  ExitOnly

Reader.read-eof  Reader.close  
Reader.close  

• Ensures (among other things) that there is a way to notify reader than
pipe is empty when writer closes the pipe

Decoding a little bit

• Connectors represent links to components on the

roles, which are ports of the connectors

– The WRIGHT process descriptions describe the

obligations of each connector

• The glue process coordinates the behavior of the

roles

– Essentially, it defines a high-level protocol

• One can then prove properties about the stated

protocols

Benefits

• In the pipes & filters example, the constraints ensure

a lack of deadlock

– In any instantiation of the style that satisfies the

constraints

• One can think of the constraints as obligations on the

designer and on the implementor

– Some properties can be automatically checked

4/23/2009

15

Specializations

• Architectural styles can have specializations

– A pipeline might further constrain an architecture

to a linear sequence of filters connected by pipes

– A pipeline would have all properties that the pipe

and filter style has, plus more

Blackboard architectures

• The knowledge sources: separate,

independent units of application

dependent knowledge. No direct

interaction among knowledge sources

• The blackboard data structure:

problem-solving state data.

Knowledge sources make changes to

the blackboard that lead incrementally

to a solution to the problem.

• Control: driven entirely by state of

blackboard. Knowledge sources

respond opportunistically to changes

in the blackboard.

CSE403 Wi09 58

Blackboard systems have traditionally been used for applications requiring

complex interpretations of signal processing, such as speech and pattern

recognition.

Hearsay-II: blackboard

CSE403 Wi09 59

Well, do they help?

• I like the basic software architecture research as an

intellectual tool

– The work is helping us better understand classes

of software structures that have shown themselves

as useful

– Simply improving our shared terminology is a

benefit

4/23/2009

16

Open questions

• What properties can be analyzed?

– Of these, which are sufficiently important to justify

the investment: the investment is high, but in

theory amortized

• How and when does one produce new architectural

styles?

• What is the relationship between architectural and

implementation?

– Does architectural information aid in going from

design to implementation?

– What happens if and when the implementation

evolves in ways inconsistent with the architecture?

Forcing discussions

• In some ways, the primary benefit of architecture is

that it forces discussions of some critical issues

– The Xerox PARC Mesa/Cedar group did roughly

the equivalent by spending enormous amounts of

times in defining and clarifying interfaces, before

coding

• Finding errors earlier is generally considered to be

better, of course

• I‟m unsure the degree to which the formalism per se

helps, although there are some supporting examples

Design questions/topics/insights?

UW CSE P503 David Notkin ● Spring 2009 63

Next week: aspect-oriented design

UW CSE P503 David Notkin ● Spring 2009 64

4/23/2009

17

Optional…

• One-minute paper: Key point? Open question? Mid-

course correction?

UW CSE P503 David Notkin ● Spring 2009 65 UW CSE P503 David Notkin ● Spring 2009 66

