
CSE P503:

Principles of

Software

Engineering

David Notkin

Autumn 2007

Requirements and Specifications … or

You can't always get what you want

But if you try sometime, yeah,

You just might find you get what you need!

--Jagger & Richards

When I want to know what France thinks, I ask

myself. --de Gaulle

If you don’t know where you’re going, it doesn’t

matter how you get there. --Anonymous

UW CSE P503 David Notkin ● Autumn 2007 2

Tonight: an experiment

• A few interludes on questions and concerns that have

been raised by the one-minute papers, email, etc.

• What is an engineer?

• An empirical software engineering research result

• A cool tool

UW CSE P503 David Notkin ● Autumn 2007 3

Requirements & specification

• More software systems fail because they don’t meet

the needs of their users than because they aren’t

implemented properly

• Boehm

– Verification: Did we build the system right?

– Validation: Did we build the right system?

UW CSE P503 David Notkin ● Autumn 2007 4

Our plan of attack: this week

• An overview of the key problems in requirements and
specification

• A brief history in proving programs correct

– An expected panacea for software that didn’t pan
out

– But has provided some benefits

– Is a basis for model-based specifications (below)

• A look at formal specifications, with a focus on two
forms

– Model-based specifications (Z)

– Overview of state machine based specifications

UW CSE P503 David Notkin ● Autumn 2007 5

Our plan of attack: next week

• Analysis of state machine based specifications (model checking)

• A brief overview of requirements engineering issues

• MAYBE: Michael Jackson on video: ―The World and the

Machine‖

UW CSE P503 David Notkin ● Autumn 2007 6

Non-functional requirements

• We’re simply going to ignore non-functional requirements

– Performance, ease of change, etc.

• I’m not proud of this, but there is relatively little known about this

issue

– Worthwhile concrete discussion: should an interface’s

specification (documentation) specify the performance of the

operations?

• Pro: Sure, it’s a key property (and people will find it out

anyway)

• Con: No way, since I’m supposed to be able to change

an implementation as long as it behaves the same

• Topic worthy of a research paper

UW CSE P503 David Notkin ● Autumn 2007 7

Dogs and shoes

x  (OnEscalator(x)

y (PairOfShoes(y) IsWearing(x,y))

x  ((OnEscalator(x) IsDog(x))
IsCarried(x)

• Do dogs have to wear shoes?

– What are the types of the variables?

• What are dogs? What does it mean to wear shoes?

– Designation: ―a recognition rule for recognizing some class of
phenomenon that you could observe in a domain.‖ [M. Jackson]

• Why do the formalizations say ―dogs are carried‖ and ―shoes are worn‖
while the signs say ―must be‖?

– The formalizations are in the indicative mood: statements of fact

– The signs are in the optative mood: statements of desire

– Separating facts from desired behavior can reduce confusion

UW CSE P503 David Notkin ● Autumn 2007 8

Calvin and Hobbes: on designations

• ―Explain Newton’s First Law of Motion in your own

words.‖ … ―I love loopholes!‖

UW CSE P503 David Notkin ● Autumn 2007 9

Pick your poison

• Specification languages that

are ―closer‖ to the user

decrease the change of

building the wrong system

– But increase the chance of

building the system wrong

• And specification languages

that are ―closer‖ to the program

do the opposite

• Why might you pick one over

the other?

Program

Specification

UW CSE P503 David Notkin ● Autumn 2007 10

Formalism

• In the mid-1960’s, there was a set of software

research — today we call it programming

methodology — that was intended (in my view) to

solve two problems

– Decrease ambiguity through the use of

mathematics to specify programs

– Allow us to prove programs correct by showing

that a program satisfies a formal specification

• Turing Awards in this area include: Dijkstra (1972),

Floyd (1978), Hoare (1980), Wirth (1984), Milner

(1991), Pnueli (1996)

UW CSE P503 David Notkin ● Autumn 2007 11

Don’t be confused…

• I don’t believe that this is a
practical approach in most
situations

– It may be applicable in
some situations

• But it’s a useful basis for some
other work

– And the historical context
is important

– And the technical
material is of value

UW CSE P503 David Notkin ● Autumn 2007 12

Interlude: what is engineering?

Merriam-Webster

“2 a: the application of
science and mathematics by
which the properties of
matter and the sources of
energy in nature are made
useful to people b: the
design and manufacture of
complex products
<software engineering>”

National Academy of Engineering

“Engineering has been
defined in many ways. It is
often referred to as the
„application of science‟
because engineers take
abstract ideas and build
tangible products from
them. Another definition is
„design under constraint,‟
because to „engineer‟ a
product means to construct
it in such a way that it will
do exactly what you want it
to, without any unexpected
consequences.”

UW CSE P503 David Notkin ● Autumn 2007 13

―Engineer‖

• The title ―engineer‖ is controlled by countries and, within the U.S., by
states, in various ways

• In the U.S., with some differences between states, Professional
Engineers are registered or licensed, based on

– a degree from an accredited four-year university engineering
program

– passing a standard Fundamentals of Engineering (FE) test on basic
engineering principles

– gaining engineering experience, of about four years, under the
supervision of a Professional Engineer

– passing the Principles and Practice in Engineering (PE) test in a
specific engineering discipline (plus engineering ethics)

• A Professional Engineer is authorized to "stamp" engineering
documents for a studies, designs, etc.

– This formally takes legal responsibility

• Some states license per discipline, others in general, but…

UW CSE P503 David Notkin ● Autumn 2007 14

Software engineer

• Some states protect all ―engineer‖ titles, some only ―Professional Engineer‖

• Washington State RCW 18.43.010

“In order to safeguard life, health, and property, and to promote the public
welfare, any person in either public or private capacity practicing or offering to
practice engineering or land surveying, shall hereafter be required to submit
evidence that he is qualified so to practice and shall be registered as
hereinafter provided; and it shall be unlawful for any person to practice or to
offer to practice in this state, engineering or land surveying, as defined in the
provisions of this chapter, or to use in connection with his name or otherwise
assume, use, or advertise any title or description tending to convey the
impression that he is a professional engineer or a land surveyor, unless such a
person has been duly registered under the provisions of this chapter.”

• Texas is the only state that requires, under some conditions, software engineers
to be licensed

– About two years ago there were 50,513 licensed professional engineers in
Texas (some inactive)

– Of those only 60 are primarily in software engineering, about .1% of the
total – and of those, a fifth are in universities

UW CSE P503 David Notkin ● Autumn 2007 15

Basics of program correctness

• In a logic, write down (this is often called the specification)

– the effect of the computation that the program is required to
perform (the postcondition Q)

– any constraints on the input environment to allow this
computation (the precondition P)

• Associate precise (logical) meaning to each construct in the

programming language (this is done per-language, not per-

program)

• Reason (usually backwards) that the logical conditions are
satisfied by the program S

• A Hoare triple is a predicate {P}S{Q} that is true whenever P

holds and the execution of S guarantees that Q holds

UW CSE P503 David Notkin ● Autumn 2007 16

Examples

• {true}

y := x * x;

{y >= 0}

• {x <> 0}

y := x * x;

{y > 0}

• {x > 0}

x := x + 1;

{x > 1}

UW CSE P503 David Notkin ● Autumn 2007 17

More examples

• {x = k}

if (x < 0) x := -x endif;

{ ? }

• { ? }

x := 3;

{ x = 8 }

UW CSE P503 David Notkin ● Autumn 2007 18

Strongest postconditions
[example from Aldrich and perhaps from Leino]

The following are all valid Hoare triples

• {x = 5} x := x * 2 { true }

• {x = 5} x := x * 2 { x > 0 }

• {x = 5} x := x * 2 { x = 10 || x = 5 }

• {x = 5} x := x * 2 { x = 10 }

• Which is the most useful, interesting, valuable?

Why?

UW CSE P503 David Notkin ● Autumn 2007 19

Weakest preconditions
[example from Aldrich and perhaps from Leino]

Here are a number of valid Hoare Triples

• {x = 5 && y = 10} z := x / y { z < 1 }

• {x < y && y > 0} z := x / y { z < 1 }

• {y ≠ 0 && x / y < 1} z := x / y { z < 1 }

• The last one is the most useful because it allows us to invoke

the program in the most general condition

• It is called the weakest precondition, wp(S,Q) of S with respect

to Q

– If {P} S {Q} and for all P’ such that {P’} P’ ⇒ P, then

P is wp(S,Q)

UW CSE P503 David Notkin ● Autumn 2007 20

Sequential execution

• What if there are multiple

statements

– {P} S1;S2 {Q}

• We create an intermediate

assertion

– {P} S1 {A} S2 {Q}

• We reason (usually)

backwards to prove the

Hoare triples

• A formalization of this

approach essential defines

the ; operator in most

programming languages

– {x > 0}

y := x*2;

z := y/2

{z > 0}

– {x > 0}

y := x*2;

{y > 0}

z := y/2

{z > 0}

UW CSE P503 David Notkin ● Autumn 2007 21

Conditional execution

• {P}

if C then S1

else S2

endif

{Q}

• Must consider both

branches

• Ex: compute the

maximum of two
variables x and y

{true}

if x >= y then

max := x

else

max := y

fi

{(max >= x  max >= y)}

UW CSE P503 David Notkin ● Autumn 2007 22

Hoare logic rule: conditional

{P} if C then S1 else S2 {Q}



{P  C}S1{Q}  {P   C}S2{Q}

UW CSE P503 David Notkin ● Autumn 2007 23

Be careful!

• {true}

max := abs(x)+abs(y);

{max >= x  max >= y}

• This predicate holds, but we don’t ―want‖ it to

– The postcondition is written in a way that permits
satisfying programs that don’t compute the
maximum

– In essence, every specification is satisfied by an
infinite number of programs and vice versa

• The ―right‖ postcondition is

– {(max = x  max = y)

 (max >= x  max >= y)}

UW CSE P503 David Notkin ● Autumn 2007 24

Out of sorts (example from last time)

• ( i,j • i < j  a[i]  a[j])

 A = permutation(A’)

• It’s even more complicated if you want to define a

stable sorting specification – one that leaves equal

keys in the same order as they were in the original

array

UW CSE P503 David Notkin ● Autumn 2007 25

Assignment statements

• We’ve been highly informal in dealing with

assignment statements

• What does the statement x := E mean?

– {Q(E)} x := E {Q(x)}

– If we knew something to be true about E before

the assignment, then we know it to be true about x

after the assignment (assuming no side-effects)

UW CSE P503 David Notkin ● Autumn 2007 26

Examples

{y > 0}

x := y

{x > 0}

{x > 0} [Q(E)  x + 1 > 1  x > 0]

x := x + 1;

{x > 1} [Q(x)  x > 1]

UW CSE P503 David Notkin ● Autumn 2007 27

More examples

{ ? }

x := y + 5

{x > 0}

{x = A  y = B }

t := x;

x := y;

y := t

{x = B  y = A }

UW CSE P503 David Notkin ● Autumn 2007 28

Loops

• {P} while B do S {Q}

• We can try to unroll this into

– {P   B} S {Q} 

{P  B} S {Q  B} 

{P  B} S {Q  B} S {Q  B}  …

• But we don’t know how far to unroll, since we don’t know how many

times the loop can execute

• The most common approach to this is to find a loop invariant, which is a

predicate that

– is true each time the loop head is reached (on entry and after each

iteration)

– and helps us prove the postcondition of the loop

– It approximates the fixed point of the loop

UW CSE P503 David Notkin ● Autumn 2007 29

Loop invariant for {P} while B do S {Q}

• Find I such that
– P  I -Invariant is correct on

entry

– {B  I} S {I} –Invariant is maintained

– {B  I}  Q –Loop termination proves Q

• Example

{n > 0}
x := a[1];
i := 2;
while i <= n do

if a[i] > x then x := a[i];
i := i + 1;

end;
{x = max(a[1],…,a[n])

UW CSE P503 David Notkin ● Autumn 2007 30

Termination

• Proofs with loop invariants do not guarantee that the loop

terminates, only that it does produce the proper postcondition if

it terminates – this is called weak correctness

• A Hoare triple for which termination has been proven is strongly

correct

• Proofs of termination are usually performed separately from

proofs of correctness, and they are usually performed through

well-founded sets

– In this example it’s easy, since i is bounded by n, and i

increases at each iteration

• Historically, the interest has been in proving that a program

does terminate: but many important programs now are intended

not to terminate

UW CSE P503 David Notkin ● Autumn 2007 31

What else?

• Dijkstra’s weakest precondition (wp) formulation is a

more popular alternative to Hoare triples

– wp(S,Q) is the weakest precondition such that if

S is executed, Q will be true

•{P}S{Q}  P  wp(S,Q)

• Need logic rules for procedure calls (with different

parameter passing mechanisms), pointers, gotos,

concurrency, dynamic dispatch, …

UW CSE P503 David Notkin ● Autumn 2007 32

Correctness of data structures

• Primarily due to Hoare;
figures from Wulf et al.

• Prove the specifications on
the abstract operations (e.g.,
Pusha)

• Prove the specifications on
the concrete operations
(e.g., Pushc)

• Prove the relation between
abstract and concrete
operations (e.g., R), the
representation mapping

<x
1
,x

2
> <x,x

1
,x

2
>

Push
a
(S,x)

S.sp = 2

S.v =

[x
2,

x
1
,?,?,...]

S.sp = 3

S.v =

[x
2
,x

1
,x,?,...]

Push
c
(S,x)

R R

Example

{full(Sa)} {full(R(Sc))}

Pusha(Sa,x) Pushc(Sc,x)

{Sa=<x>||S’a} {R(Sc) = <x>||

R(S’c)}

UW CSE P503 David Notkin ● Autumn 2007 33

So what?

• I just spent time showing you stuff that I said isn’t especially

useful

– It’s tedious and error-prone

• If we can’t get our programs right, why should we believe

we get our detailed proofs right?

• One answer: tools, such as proof assistants

– It’s hard with real programming languages and programs

• But it does lay a foundation for

– Thinking about programs more precisely

– Applying techniques like these in limited, critical situations

– Development of some modern specification and analysis

approaches that seem to have value in more situations

UW CSE P503 David Notkin ● Autumn 2007 34

Interlude: an empirical result (story)

• Reliability in hardware is often improved by

replicating components

• N-version programming was an attempt by Avizienis

and colleagues to improve software reliability in a

similar way

• In particular, the idea was to have independently

produced software act as replicated components with

the expectation that there would be a low probability

of identical software faults occurring in different

versions

UW CSE P503 David Notkin ● Autumn 2007 35

Knight and Leveson experiment

• Knight & Leveson evaluated the assumption of

independence in N-version programming through a

careful experiment

• They found that the assumption of independence of

failures failed statistically

UW CSE P503 David Notkin ● Autumn 2007 36

Another empirical result: Votta
―Does every inspection need a meeting?‖

―At each step in large software development, reviewers
carry out inspections to detect faults. These inspections
are usually followed by a meeting to collect the faults
that have been discovered. However, we have found
that these inspection meetings are not as beneficial as
managers and developers think they are. Even worse,
they cost much more in terms of products development
interval and developer's time than anyone realizes.

―Analysis of the inspection and collection process leads
us to make the following suggestions. First, at the least,
the number of participants required at each inspection
meeting should be minimized. Second, we propose ...‖

UW CSE P503 David Notkin ● Autumn 2007 37

Formal methods

• The failure of proof of correctness to meet its promises caused a
heavy decrease in interest in the late 1970’s and the 1980’s

• There has been a resurgence of interest in formal methods
starting in the late 1980’s and through the 1990’s

– Mostly due to potential usefulness in specification and a few
success stories

– Still not entirely compelling to me, in a broad sense, but
definitely showing more promise

• Key issues to me include

– Partial specifications (―proving little theorems about big
programs instead of big theorems about little programs‖ –B.
Scherlis) and incremental benefit

– Tool support (making specifications ―electric‖ — D. Jackson)
and automated analysis

– What domains, and applied by whom?

UW CSE P503 David Notkin ● Autumn 2007 38

Potential benefits

• Increased clarity

• Ability to check for internal consistency

– This is very different from program correctness,

where the issue was to show that a program

satisfied a specification

• Ability to prove properties about the specification

– Related to M. Jackson’s refutable descriptions

• Provides basis for falsification (a fancy word for

―debugging‖)

– Perhaps more useful than verification

UW CSE P503 David Notkin ● Autumn 2007 39

C.A.R. Hoare, 1988

Of course, there is no fool-proof methodology or magic

formula that will ensure a good, efficient, or even

feasible design. For that, the designer needs

experience, insight, flair, judgement, invention. Formal

methods can only stimulate, guide, and discipline our

human inspiration, clarify design alternatives, assist in

exploring their consequences, formalize and

communicate design decisions, and help to ensure that

they are correctly carried out.

UW CSE P503 David Notkin ● Autumn 2007 40

Observation

• From a specification of a small telephone system

– “…a subscriber is a sequence of

digits. Let Subs be the set of all

subscribers …

...certain digit sequences correspond

to unobtainable numbers, and some are

neither subscribers, nor are they

unobtainable.”

• ―Only a mathematician could treat the real world with

such audacious disdain.‖ —M. Jackson

UW CSE P503 David Notkin ● Autumn 2007 41

Anthony Hall’s view

VS.

And Martyn

Thomas sez…

UW CSE P503 David Notkin ● Autumn 2007 42

Model-oriented

• Model a system by describing its state together with

operations over that state

– An operation is a function that maps a value of the

state together with values of parameters to the

operation onto a new state value

• A model-oriented language typically describes

mathematical objects (e.g. data structures or

functions) that are structurally similar to the required

computer software

UW CSE P503 David Notkin ● Autumn 2007 43

Z (―zed‖)

• Perhaps the most widely known and used model-

based specification language

• Good for describing state-based abstract descriptions

roughly in the abstract data type style

– Real ADT-oriented specifications are generally

does as algebraic specifications

• Based on typed set theory and predicate logic

• A few commercial successes

– I’ll come back to one reengineering story

afterwards

UW CSE P503 David Notkin ● Autumn 2007 44

Basics

• Static schemas

– States a system can occupy

– Invariants that must be maintained in every

system state

• Dynamic schemas

– Operations that are permitted

– Relationship between inputs and outputs of those

operations

– Changes of states

UW CSE P503 David Notkin ● Autumn 2007 45

The classic example

• A ―birthday book‖ that tracks people’s birthdays and

can issue reminders of those birthdays

– There are tons of web-based versions of these

now

• There are two basic types of atomic elements in this

example

– [NAME,DATE]

– An inherent degree of abstraction: nothing about

formats, possible values, etc.

UW CSE P503 David Notkin ● Autumn 2007 46

Off to the whiteboard …

• …for the classic Z BirthdayBook example

UW CSE P503 David Notkin ● Autumn 2007 47

Points about Z

• This isn’t proving correctness between a specification and a

program

– There isn’t a program!

• Even the specification without the implementation has value

• The most obvious example is when a theorem is posited and

then is proven from the rest of the specification

– known’ = known  {name?}

• The actual notation seems more effective that some others

• The Z is intended to be in bite-sized chucks (schema),

interspersed with natural language explanations

UW CSE P503 David Notkin ● Autumn 2007 48

Schema calculus: sweet!

• The schema calculus allows us to combine

specifications using logical operators

(e.g., , , , )

– This allows us to define the common and error

cases separately, for example, and then just -ing

them together

• In some sense, it allows us to get a cleaner, smaller

specification

UW CSE P503 David Notkin ● Autumn 2007 49

But don’t try this on programs!

• Wouldn’t it be fantastic if we had the equivalent of the schema

calculus on programs?

– Write your error cases separately and then just  them

together

– Write a text editor and a spell checker and integrate them by

-ing them together

– So you want to build a program that doesn’t blow up a

nuclear power plant?

• Just build one that does, and then negate it !

• Programs are not logic

– Some classes of programming languages – largely

functional languages – come closer than imperative and OO

languages

UW CSE P503 David Notkin ● Autumn 2007 50

Z used to improve CICS/ESA_V3.1

• A broadly used IBM transaction processing system

• Integrated into IBM's existing and well-established

development process

• Many measurements of the process indicated that

they were able to reduce their costs for the

development by almost five and a half million dollars

• Early results from customers also indicated

significantly fewer problems, and those that have

been detected are less severe than would be

expected otherwise

UW CSE P503 David Notkin ● Autumn 2007 51

1992 Queen’s Award

for Technological Achievement

• ―Her Majesty the Queen has been graciously pleased

to approve the Prime Minister's recommendation that

The Queen's Award for Technological Achievement

should be conferred this year upon Oxford University

Computing Laboratory.

• ―Oxford University Computing Laboratory gains the

Award jointly with IBM United Kingdom Laboratories

Limited for the development of a programming

method based on elementary set theory and logic

known as the Z notation, and its application in the

IBM Customer Information Control System (CICS)

product. …‖

UW CSE P503 David Notkin ● Autumn 2007 52

...

• ―The use of Z reduced development costs

significantly and improved reliability and quality.

Precision is achieved by basing the notation on

mathematics, abstraction through data refinement,

re-use through modularity and accuracy through the

techniques of proof and derivation.

• ―CICS is used worldwide by banks, insurance

companies, finance houses and airlines etc. who rely

on the integrity of the system for their day-to-day

business.‖

UW CSE P503 David Notkin ● Autumn 2007 53

Other success stories

• There are a few other success stories, too (not all Z!)

– Ex: Garlan and Delisle. "Formal Specification of an

Architecture for a Family of Instrumentation Systems" (1995)

– Aided Tektronix in unifying their understanding and

development processes for a broad range of oscilloscopes,

function generators, etc.

• Clarke and Wing. Formal methods: state of the art and future

directions. ACM Computing Surveys 28(4), 1996.

• Craigen, Gerhart, Ralston. An International Survey of Industrial

Applications of Formal Methods, Volumes I & II (Purpose,

Approach, Analysis and Conclusions; Case Studies), NIST,

1993.

UW CSE P503 David Notkin ● Autumn 2007 54

Tool support for Z?

• Some commercial, some freeware

• Formatting (handling all those 

characters)

– html extensions

– ZML

• Type checkers

• Proof editors, proof assistants, provers

• Specification animations

• …

UW CSE P503 David Notkin ● Autumn 2007 55

Analyzing specifications

• It is easy to write specifications that are inconsistent

• Daniel Jackson and colleagues have developed a sequence of tools

that check Z-like specifications for inconsistencies

• You feed a specification to the tool and it says either

– Here’s a problem, and here’s a specific (counter)example of it, or

– I can’t find one (although there may be one)

• Examples include paragraph style mechanisms, telephone switch

structures, many more (generally relatively small)

– Pieces of the ideas appear in Jackson and Chapin. Redesigning

Air-Traffic Control: A Case Study in Software Design. IEEE

Software, May/June 2000

• His Alloy system is the most recent of these tools – we’ll play with it

some for an assignment (most likely)

UW CSE P503 David Notkin ● Autumn 2007 56

An example (skipping lots of steps):
Jackson & Vaziri

class List {List next; Val val;}

…

void static delete (List l, Val v) {

List prev = null;

while (l != NULL)

if (l.val == v) {

prev.next = l.next ;

return; }

else {

prev = l ;

l = l.next ;

}

• Procedure for deleting all

elements with a given value

from a singly linked list

• Relational formulae are

automatically extracted
• Fields of List treated as binary

relations
• next: List  List

• val: List  Val

UW CSE P503 David Notkin ● Autumn 2007 57

Desired properties of delete

1. No cells are added

– l.*next’ in l.*next

2. No cell with value v afterwards

– no c:l.*next’|c.val’=v

3. All cells with value v removed

– l.*next’ = l.*next-{c|c.val=v}

4. No cells mutated

– all c|c.val = c.val’

5. No cycles introduced

– no c:l.*next|c in c.+next ->

no c:l.*next’|c in c.+next’

Running the tool shows that

• Properties 1, 4 and 5

appear to hold

• But not properties 2 and 3

• Property 2 fails because

the first list cell cannot

be deleted

• Even a simple fix shows

another error, in which

the last two cells share

a value equal to v

UW CSE P503 David Notkin ● Autumn 2007 58

Underlying technologies

• The Jackson et al. tools have been based on (primarily) two

different technologies

– Model checking: explicit state space enumeration, BDD-

based symbolic model checking

– Constraint satisfaction (boolean satisfiability): stochastic

(WalkSAT), deterministic (Davis-Putnam, SATO, RelSAT)

• They generally use some form of bounded checking based on

the small scope hypothesis, which ―argues that a high proportion

of bugs can be found by testing the program for all test inputs

within some small scope. … If the hypothesis holds, it follows

that it is more effective to do systematic testing within a small

scope than to generate fewer test inputs of a larger scope.‖

[Andoni et al.]

UW CSE P503 David Notkin ● Autumn 2007 59

Interlude: mylyn from tasktop.com

• Note: co-developed and co-founded by my former student, Gail

Murphy

• ―Mylyn is the Task-Focused UI for Eclipse that reduces

information overload and makes multi-tasking easy. It does this

by making tasks a first class part of Eclipse, and integrating rich

and offline editing for repositories such as Bugzilla, Trac, and

JIRA. Once your tasks are integrated, Mylyn monitors your work

activity to identify information relevant to the task-at-hand, and

uses this task context to focus the Eclipse UI on the interesting

information, hide the uninteresting, and automatically find what's

related. This puts the information you need to get work done at

your fingertips and improves productivity by reducing searching,

scrolling, and navigation.‖

UW CSE P503 David Notkin ● Autumn 2007 60

Finite state machines

• There is a large class of specification languages

based on finite state machines

– A finite set of states

– A finite alphabet of symbols

– A start state and zero or more final states

– A transition relation

• Often used for describing the control aspects of

reactive systems (and much, much more!)

• The theoretical basis is very firm

UW CSE P503 David Notkin ● Autumn 2007 61

Many, many models

• Petri nets

• Communicating finite state machines

• Statecharts

• RSML

• …

UW CSE P503 David Notkin ● Autumn 2007 62

Walkman example
(due to Alistair Kilgour, Heriot-Watt University)

UW CSE P503 David Notkin ● Autumn 2007 63

A common problem

• It is often the case that conventional finite state machines blow-

up in size for big problems, in two senses

– The actual description of the machine can get very large

– The state space represented by the machine can get to be

enormous

• This is especially true for

– deterministic machines (which are usually desirable) and

– machines capturing concurrency (because of the potential

interleavings that must be captured)

UW CSE P503 David Notkin ● Autumn 2007 64

Statecharts (Harel)

• A visual formalism for defining finite state machines

• A hierarchical mechanism allows for complex

machines to be defined by smaller descriptions

– Parallel states (AND decomposition)

– Conventional OR decomposition

• Now part of UML

UW CSE P503 David Notkin ● Autumn 2007 66

Tools

• Statecharts have a set of supporting tools from i-

Logix (STATEMATE, Rhapsody)

– Editors

– Simulators

– Code generators

• C, Ada, Verilog, VHDL

– Some analysis support

• UML tools and environments…

UW CSE P503 David Notkin ● Autumn 2007 67

i-Logix screenshot (old)

UW CSE P503 David Notkin ● Autumn 2007 68

Analysis

• Given a Statecharts description, how can one tell if it

has some desirable properties?

– For instance, is it deterministic?

– Are there deadlocks?

– And domain-specific properties, too

• The most promising technology for helping with this is

model checking, which we’ll look at next week

– Model checking has also moved into applications

to code as well as specifications

