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Requirements and Specifications … or

You can't always get what you want 

But if you try sometime, yeah, 

You just might find you get what you need! 

--Jagger & Richards

When I want to know what France thinks, I ask 

myself. --de Gaulle

If you don’t know where you’re going, it doesn’t 

matter how you get there. --Anonymous
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Tonight: an experiment

• A few interludes on questions and concerns that have 

been raised by the one-minute papers, email, etc.

• What is an engineer?

• An empirical software engineering research result

• A cool tool
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Requirements & specification

• More software systems fail because they don’t meet 

the needs of their users than because they aren’t 

implemented properly

• Boehm

– Verification: Did we build the system right?

– Validation: Did we build the right system?
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Our plan of attack: this week

• An overview of the key problems in requirements and 
specification

• A brief history in proving programs correct

– An expected panacea for software that didn’t pan 
out

– But has provided some benefits

– Is a basis for model-based specifications (below)

• A look at formal specifications, with a focus on two 
forms

– Model-based specifications (Z)

– Overview of state machine based specifications



UW CSE P503 David Notkin ● Autumn 2007 5

Our plan of attack: next week

• Analysis of state machine based specifications (model checking)

• A brief overview of requirements engineering issues

• MAYBE: Michael Jackson on video: ―The World and the 

Machine‖
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Non-functional requirements

• We’re simply going to ignore non-functional requirements

– Performance, ease of change, etc.

• I’m not proud of this, but there is relatively little known about this 

issue

– Worthwhile concrete discussion: should an interface’s 

specification (documentation) specify the performance of the 

operations?

• Pro: Sure, it’s a key property (and people will find it out 

anyway)

• Con: No way, since I’m supposed to be able to change 

an implementation as long as it behaves the same

• Topic worthy of a research paper
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Dogs and shoes

x  (OnEscalator(x)

y (PairOfShoes(y) IsWearing(x,y))

x  ((OnEscalator(x) IsDog(x))
IsCarried(x)

• Do dogs have to wear shoes?

– What are the types of the variables?

• What are dogs?  What does it mean to wear shoes?

– Designation: ―a recognition rule for recognizing some class of 
phenomenon that you could observe in a domain.‖ [M. Jackson]

• Why do the formalizations say ―dogs are carried‖ and ―shoes are worn‖ 
while the signs say ―must be‖?

– The formalizations are in the indicative mood: statements of fact

– The signs are in the optative mood: statements of desire

– Separating facts from desired behavior can reduce confusion 
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Calvin and Hobbes: on designations

• ―Explain Newton’s First Law of Motion in your own 

words.‖ … ―I love loopholes!‖
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Pick your poison

• Specification languages that 

are ―closer‖ to the user 

decrease the change of 

building the wrong system

– But increase the chance of 

building the system wrong

• And specification languages 

that are ―closer‖ to the program 

do the opposite

• Why might you pick one over 

the other?

Program

Specification
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Formalism

• In the mid-1960’s, there was a set of software 

research — today we call it programming 

methodology — that was intended (in my view) to 

solve two problems

– Decrease ambiguity through the use of 

mathematics to specify programs

– Allow us to prove programs correct by showing 

that a program satisfies a formal specification

• Turing Awards in this area include: Dijkstra (1972), 

Floyd (1978), Hoare (1980), Wirth (1984), Milner 

(1991), Pnueli (1996)
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Don’t be confused…

• I don’t believe that this is a 
practical approach in most 
situations

– It may be applicable in 
some situations

• But it’s a useful basis for some 
other work

– And the historical context 
is important

– And the technical 
material is of value
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Interlude: what is engineering?

Merriam-Webster

“2 a: the application of 
science and mathematics by 
which the properties of 
matter and the sources of 
energy in nature are made 
useful to people b: the 
design and manufacture of 
complex products 
<software engineering>”

National Academy of Engineering

“Engineering has been 
defined in many ways. It is 
often referred to as the 
„application of science‟ 
because engineers take 
abstract ideas and build 
tangible products from 
them. Another definition is 
„design under constraint,‟ 
because to „engineer‟ a 
product means to construct 
it in such a way that it will 
do exactly what you want it 
to, without any unexpected 
consequences.”
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―Engineer‖

• The title ―engineer‖ is controlled by countries and, within the U.S., by 
states, in various ways

• In the U.S., with some differences between states, Professional 
Engineers are registered or licensed, based on

– a degree from an accredited four-year university engineering 
program 

– passing a standard Fundamentals of Engineering (FE) test on basic 
engineering principles

– gaining engineering experience, of about four years, under the 
supervision of a Professional Engineer

– passing the Principles and Practice in Engineering (PE) test in a 
specific engineering discipline (plus engineering ethics)

• A Professional Engineer is authorized to "stamp" engineering 
documents for a studies, designs, etc.

– This formally takes legal responsibility

• Some states license per discipline, others in general, but…
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Software engineer

• Some states protect all ―engineer‖ titles, some only ―Professional Engineer‖

• Washington State RCW 18.43.010

“In order to safeguard life, health, and property, and to promote the public 
welfare, any person in either public or private capacity practicing or offering to 
practice engineering or land surveying, shall hereafter be required to submit 
evidence that he is qualified so to practice and shall be registered as 
hereinafter provided; and it shall be unlawful for any person to practice or to 
offer to practice in this state, engineering or land surveying, as defined in the 
provisions of this chapter, or to use in connection with his name or otherwise 
assume, use, or advertise any title or description tending to convey the 
impression that he is a professional engineer or a land surveyor, unless such a 
person has been duly registered under the provisions of this chapter.”

• Texas is the only state that requires, under some conditions, software engineers 
to be licensed

– About two years ago there were 50,513 licensed professional engineers in 
Texas (some inactive)

– Of those only 60 are primarily in software engineering, about .1% of the 
total – and of those, a fifth are in universities
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Basics of program correctness

• In a logic, write down (this is often called the specification)

– the effect of the computation that the program is required to 
perform (the postcondition Q)

– any constraints on the input environment to allow this 
computation (the precondition P)

• Associate precise (logical) meaning to each construct in the 

programming language (this is done per-language, not per-

program)

• Reason (usually backwards) that the logical conditions are 
satisfied by the program S

• A Hoare triple is a predicate {P}S{Q} that is true whenever P

holds and the execution of S guarantees that Q holds 
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Examples

• {true}

y := x * x;

{y >= 0}

• {x <> 0}

y := x * x;

{y > 0}

• {x > 0}

x := x + 1;

{x > 1}
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More examples

• {x = k}

if (x < 0) x := -x endif;

{    ?    }

• {    ?    }

x := 3;

{ x = 8 }
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Strongest postconditions
[example from Aldrich and perhaps from Leino]

The following are all valid Hoare triples

• {x = 5} x := x * 2 { true }

• {x = 5} x := x * 2 { x > 0 }

• {x = 5} x := x * 2 { x = 10 || x = 5 }

• {x = 5} x := x * 2 { x = 10 }

• Which is the most useful, interesting, valuable?  

Why?



UW CSE P503 David Notkin ● Autumn 2007 19

Weakest preconditions
[example from Aldrich and perhaps from Leino]

Here are a number of valid Hoare Triples

• {x = 5 && y = 10} z := x / y { z < 1 }

• {x < y && y > 0} z := x / y { z < 1 }

• {y ≠ 0 && x / y < 1} z := x / y { z < 1 }

• The last one is the most useful because it allows us to invoke 

the program in the most general condition

• It is called the weakest precondition, wp(S,Q) of S with respect 

to Q

– If {P} S {Q} and for all P’ such that {P’} P’ ⇒ P, then 

P is wp(S,Q)
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Sequential execution

• What if there are multiple 

statements

– {P} S1;S2 {Q}

• We create an intermediate 

assertion

– {P} S1 {A} S2 {Q}

• We reason (usually) 

backwards to prove the 

Hoare triples

• A formalization of this 

approach essential defines 

the ; operator in most 

programming languages

– {x > 0}

y := x*2;

z := y/2

{z > 0}

– {x > 0}

y := x*2;

{y > 0}

z := y/2

{z > 0}
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Conditional execution

• {P}

if C then S1

else S2

endif

{Q}

• Must consider both 

branches

• Ex: compute the 

maximum of two 
variables x and y

{true}

if x >= y then

max := x

else

max := y

fi

{(max >= x  max >= y)}
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Hoare logic rule: conditional

{P} if C then S1 else S2 {Q}



{P  C}S1{Q}  {P   C}S2{Q}
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Be careful!

• {true}

max := abs(x)+abs(y);

{max >= x  max >= y}

• This predicate holds, but we don’t ―want‖ it to

– The postcondition is written in a way that permits 
satisfying programs that don’t compute the 
maximum 

– In essence, every specification is satisfied by an 
infinite number of programs and vice versa

• The ―right‖ postcondition is

– {(max = x  max = y)

 (max >= x  max >= y)}
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Out of sorts (example from last time)

• ( i,j • i < j  a[i]  a[j]) 

 A = permutation(A’)

• It’s even more complicated if you want to define a 

stable sorting specification – one that leaves equal 

keys in the same order as they were in the original 

array
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Assignment statements

• We’ve been highly informal in dealing with 

assignment statements

• What does the statement x := E mean?

– {Q(E)} x := E {Q(x)}

– If we knew something to be true about E before 

the assignment, then we know it to be true about x

after the assignment (assuming no side-effects)
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Examples

{y > 0}

x := y

{x > 0}

{x > 0} [Q(E)  x + 1 > 1  x > 0 ]

x := x + 1;

{x > 1} [Q(x)  x > 1]
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More examples

{    ?    }

x := y + 5

{x > 0}

{x = A  y = B }

t := x;

x := y;

y := t

{x = B  y = A }
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Loops

• {P} while B do S {Q}

• We can try to unroll this into

– {P   B} S {Q} 

{P  B} S {Q  B} 

{P  B} S {Q  B} S {Q  B}  …

• But we don’t know how far to unroll, since we don’t know how many 

times the loop can execute

• The most common approach to this is to find a loop invariant, which is a 

predicate that

– is true each time the loop head is reached (on entry and after each 

iteration) 

– and helps us prove the postcondition of the loop

– It approximates the fixed point of the loop
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Loop invariant for {P} while B do S {Q}

• Find I such that
– P  I -Invariant is correct on

entry

– {B  I} S {I} –Invariant is maintained

– {B  I}  Q –Loop termination proves Q

• Example

{n > 0}
x := a[1];
i := 2;
while i <= n do

if a[i] > x then x := a[i];
i := i + 1;

end;
{x = max(a[1],…,a[n])
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Termination

• Proofs with loop invariants do not guarantee that the loop 

terminates, only that it does produce the proper postcondition if

it terminates – this is called weak correctness

• A Hoare triple for which termination has been proven is strongly 

correct

• Proofs of termination are usually performed separately from 

proofs of correctness, and they are usually performed through 

well-founded sets 

– In this example it’s easy, since i is bounded by n, and i

increases at each iteration

• Historically, the interest has been in proving that a program 

does terminate: but many important programs now are intended 

not to terminate
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What else?

• Dijkstra’s weakest precondition (wp) formulation is a 

more popular alternative to Hoare triples

– wp(S,Q) is the weakest precondition such that if 

S is executed, Q will be true

•{P}S{Q}  P  wp(S,Q)

• Need logic rules for procedure calls (with different 

parameter passing mechanisms), pointers, gotos, 

concurrency, dynamic dispatch, …
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Correctness of data structures

• Primarily due to Hoare; 
figures from Wulf et al.

• Prove the specifications on 
the abstract operations (e.g., 
Pusha)

• Prove the specifications on 
the concrete operations 
(e.g., Pushc)

• Prove the relation between 
abstract and concrete 
operations (e.g., R), the 
representation mapping

<x
1
,x

2
> <x,x

1
,x

2
>

Push
a
(S,x)

S.sp = 2

S.v =

[x
2,

x
1
,?,?,...]

S.sp = 3

S.v =

[x
2
,x

1
,x,?,...]

Push
c
(S,x)

R R

Example

{full(Sa)} {full(R(Sc))} 

Pusha(Sa,x)      Pushc(Sc,x)

{Sa=<x>||S’a} {R(Sc) = <x>||

R(S’c)}
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So what?

• I just spent time showing you stuff that I said isn’t especially 

useful

– It’s tedious and error-prone

• If we can’t get our programs right, why should we believe 

we get our detailed proofs right?

• One answer: tools, such as proof assistants

– It’s hard with real programming languages and programs

• But it does lay a foundation for

– Thinking about programs more precisely

– Applying techniques like these in limited, critical situations

– Development of some modern specification and analysis 

approaches that seem to have value in more situations
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Interlude: an empirical result (story)

• Reliability in hardware is often improved by 

replicating components

• N-version programming was an attempt by Avizienis 

and colleagues to improve software reliability in a 

similar way

• In particular, the idea was to have independently 

produced software act as replicated components with 

the expectation that there would be a low probability 

of identical software faults occurring in different 

versions
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Knight and Leveson experiment

• Knight & Leveson evaluated the assumption of 

independence in N-version programming through a 

careful experiment

• They found that the assumption of independence of 

failures failed statistically 
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Another empirical result: Votta
―Does every inspection need a meeting?‖

―At each step in large software development, reviewers 
carry out inspections to detect faults. These inspections 
are usually followed by a meeting to collect the faults 
that have been discovered. However, we have found 
that these inspection meetings are not as beneficial as 
managers and developers think they are. Even worse, 
they cost much more in terms of products development 
interval and developer's time than anyone realizes.

―Analysis of the inspection and collection process leads 
us to make the following suggestions. First, at the least, 
the number of participants required at each inspection 
meeting should be minimized. Second, we propose ...‖ 
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Formal methods

• The failure of proof of correctness to meet its promises caused a 
heavy decrease in interest in the late 1970’s and the 1980’s

• There has been a resurgence of interest in formal methods 
starting in the late 1980’s and through the 1990’s

– Mostly due to potential usefulness in specification and a few 
success stories

– Still not entirely compelling to me, in a broad sense, but 
definitely showing more promise

• Key issues to me include

– Partial specifications (―proving little theorems about big 
programs instead of big theorems about little programs‖ –B. 
Scherlis) and incremental benefit

– Tool support (making specifications ―electric‖ — D. Jackson) 
and automated analysis

– What domains, and applied by whom?
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Potential benefits

• Increased clarity

• Ability to check for internal consistency

– This is very different from program correctness, 

where the issue was to show that a program 

satisfied a specification

• Ability to prove properties about the specification

– Related to M. Jackson’s refutable descriptions

• Provides basis for falsification (a fancy word for 

―debugging‖)

– Perhaps more useful than verification
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C.A.R. Hoare, 1988

Of course, there is no fool-proof methodology or magic 

formula that will ensure a good, efficient, or even 

feasible design. For that, the designer needs 

experience, insight, flair, judgement, invention. Formal 

methods can only stimulate, guide, and discipline our 

human inspiration, clarify design alternatives, assist in 

exploring their consequences, formalize and 

communicate design decisions, and help to ensure that 

they are correctly carried out.



UW CSE P503 David Notkin ● Autumn 2007 40

Observation

• From a specification of a small telephone system

– “…a subscriber is a sequence of 

digits.  Let Subs be the set of all 

subscribers …

...certain digit sequences correspond 

to unobtainable numbers, and some are 

neither subscribers, nor are they 

unobtainable.”

• ―Only a mathematician could treat the real world with 

such audacious disdain.‖ —M. Jackson
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Anthony Hall’s view

VS.

And Martyn 

Thomas sez…
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Model-oriented

• Model a system by describing its state together with 

operations over that state

– An operation is a function that maps a value of the 

state together with values of parameters to the 

operation onto a new state value

• A model-oriented language typically describes 

mathematical objects (e.g. data structures or 

functions) that are structurally similar to the required 

computer software
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Z (―zed‖)

• Perhaps the most widely known and used model-

based specification language

• Good for describing state-based abstract descriptions 

roughly in the abstract data type style

– Real ADT-oriented specifications are generally 

does as algebraic specifications

• Based on typed set theory and predicate logic

• A few commercial successes

– I’ll come back to one reengineering story 

afterwards
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Basics

• Static schemas

– States a system can occupy

– Invariants that must be maintained in every 

system state

• Dynamic schemas

– Operations that are permitted 

– Relationship between inputs and outputs of those 

operations

– Changes of states
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The classic example

• A ―birthday book‖ that tracks people’s birthdays and 

can issue reminders of those birthdays

– There are tons of web-based versions of these 

now

• There are two basic types of atomic elements in this 

example

– [NAME,DATE]

– An inherent degree of abstraction: nothing about 

formats, possible values, etc.
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Off to the whiteboard … 

• …for the classic Z BirthdayBook example
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Points about Z

• This isn’t proving correctness between a specification and a 

program

– There isn’t a program!

• Even the specification without the implementation has value

• The most obvious example is when a theorem is posited and 

then is proven from the rest of the specification

– known’ = known  {name?}

• The actual notation seems more effective that some others

• The Z is intended to be in bite-sized chucks (schema), 

interspersed with natural language explanations
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Schema calculus: sweet!

• The schema calculus allows us to combine 

specifications using logical operators

(e.g., , , , )

– This allows us to define the common and error 

cases separately, for example, and then just -ing 

them together

• In some sense, it allows us to get a cleaner, smaller 

specification
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But don’t try this on programs!

• Wouldn’t it be fantastic if we had the equivalent of the schema 

calculus on programs?

– Write your error cases separately and then just  them 

together

– Write a text editor and a spell checker and integrate them by 

-ing them together

– So you want to build a program that doesn’t blow up a 

nuclear power plant?

• Just build one that does, and then negate it !

• Programs are not logic

– Some classes of programming languages – largely 

functional languages – come closer than imperative and OO 

languages
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Z used to improve CICS/ESA_V3.1

• A broadly used IBM transaction processing system

• Integrated into IBM's existing and well-established 

development process

• Many measurements of the process indicated that 

they were able to reduce their costs for the 

development by almost five and a half million dollars

• Early results from customers also indicated 

significantly fewer problems, and those that have 

been detected are less severe than would be 

expected otherwise
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1992 Queen’s Award

for Technological Achievement

• ―Her Majesty the Queen has been graciously pleased 

to approve the Prime Minister's recommendation that 

The Queen's Award for Technological Achievement 

should be conferred this year upon Oxford University 

Computing Laboratory. 

• ―Oxford University Computing Laboratory gains the 

Award jointly with IBM United Kingdom Laboratories 

Limited for the development of a programming 

method based on elementary set theory and logic 

known as the Z notation, and its application in the 

IBM Customer Information Control System (CICS) 

product. …‖
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...

• ―The use of Z reduced development costs 

significantly and improved reliability and quality. 

Precision is achieved by basing the notation on 

mathematics, abstraction through data refinement, 

re-use through modularity and accuracy through the 

techniques of proof and derivation. 

• ―CICS is used worldwide by banks, insurance 

companies, finance houses and airlines etc. who rely 

on the integrity of the system for their day-to-day 

business.‖ 
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Other success stories

• There are a few other success stories, too (not all Z!)

– Ex: Garlan and Delisle. "Formal Specification of an 

Architecture for a Family of Instrumentation Systems" (1995)

– Aided Tektronix in unifying their understanding and 

development processes for a broad range of oscilloscopes, 

function generators, etc.

• Clarke and Wing. Formal methods: state of the art and future 

directions. ACM Computing Surveys 28(4), 1996. 

• Craigen, Gerhart, Ralston. An International Survey of Industrial 

Applications of Formal Methods, Volumes I & II (Purpose, 

Approach, Analysis and Conclusions; Case Studies), NIST, 

1993.
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Tool support for Z?

• Some commercial, some freeware

• Formatting (handling all those 

characters)

– html extensions

– ZML

• Type checkers

• Proof editors, proof assistants, provers

• Specification animations

• …
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Analyzing specifications

• It is easy to write specifications that are inconsistent

• Daniel Jackson and colleagues have developed a sequence of tools 

that check Z-like specifications for inconsistencies

• You feed a specification to the tool and it says either

– Here’s a problem, and here’s a specific (counter)example of it, or

– I can’t find one (although there may be one)

• Examples include paragraph style mechanisms, telephone switch 

structures, many more (generally relatively small)

– Pieces of the ideas appear in Jackson and Chapin.  Redesigning 

Air-Traffic Control: A Case Study in Software Design.  IEEE 

Software, May/June 2000 

• His Alloy system is the most recent of these tools – we’ll play with it 

some for an assignment (most likely)
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An example (skipping lots of steps): 
Jackson & Vaziri

class List {List next; Val val;}

…

void static delete (List l, Val v) {

List prev = null;

while (l != NULL)

if (l.val == v) {

prev.next = l.next ;

return; }

else {

prev = l ;

l = l.next ;

}

• Procedure for deleting all 

elements with a given value 

from a singly linked list

• Relational formulae are 

automatically extracted
• Fields of List treated as binary 

relations
• next: List  List

• val: List  Val
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Desired properties of delete

1. No cells are added

– l.*next’ in l.*next

2. No cell with value v afterwards

– no c:l.*next’|c.val’=v

3. All cells with value v removed

– l.*next’ = l.*next-{c|c.val=v}

4. No cells mutated

– all c|c.val = c.val’

5. No cycles introduced

– no c:l.*next|c in c.+next ->

no c:l.*next’|c in c.+next’

Running the tool shows that

• Properties 1, 4 and 5 

appear to hold

• But not properties 2 and 3

• Property 2 fails because 

the first list cell cannot 

be deleted

• Even a simple fix shows 

another error, in which 

the last two cells share 

a value equal to v
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Underlying technologies

• The Jackson et al. tools have been based on (primarily) two 

different technologies

– Model checking: explicit state space enumeration, BDD-

based symbolic model checking

– Constraint satisfaction (boolean satisfiability): stochastic 

(WalkSAT), deterministic (Davis-Putnam, SATO, RelSAT)

• They generally use some form of bounded checking based on 

the small scope hypothesis, which ―argues that a high proportion 

of bugs can be found by testing the program for all test inputs 

within some small scope. … If the hypothesis holds, it follows 

that it is more effective to do systematic testing within a small 

scope than to generate fewer test inputs of a larger scope.‖ 

[Andoni et al.]
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Interlude: mylyn from tasktop.com

• Note: co-developed and co-founded by my former student, Gail 

Murphy

• ―Mylyn is the Task-Focused UI for Eclipse that reduces 

information overload and makes multi-tasking easy. It does this 

by making tasks a first class part of Eclipse, and integrating rich 

and offline editing for repositories such as Bugzilla, Trac, and 

JIRA. Once your tasks are integrated, Mylyn monitors your work 

activity to identify information relevant to the task-at-hand, and 

uses this task context to focus the Eclipse UI on the interesting 

information, hide the uninteresting, and automatically find what's 

related. This puts the information you need to get work done at 

your fingertips and improves productivity by reducing searching, 

scrolling, and navigation.‖ 
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Finite state machines

• There is a large class of specification languages 

based on finite state machines

– A finite set of states

– A finite alphabet of symbols

– A start state and zero or more final states

– A transition relation

• Often used for describing the control aspects of 

reactive systems (and much, much more!)

• The theoretical basis is very firm
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Many, many models

• Petri nets 

• Communicating finite state machines

• Statecharts

• RSML

• …
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Walkman example
(due to Alistair Kilgour, Heriot-Watt University) 
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A common problem

• It is often the case that conventional finite state machines blow-

up in size for big problems, in two senses

– The actual description of the machine can get very large

– The state space represented by the machine can get to be 

enormous

• This is especially true for

– deterministic machines (which are usually desirable) and

– machines capturing concurrency (because of the potential 

interleavings that must be captured)
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Statecharts (Harel)

• A visual formalism for defining finite state machines

• A hierarchical mechanism allows for complex 

machines to be defined by smaller descriptions

– Parallel states (AND decomposition)

– Conventional OR decomposition

• Now part of UML
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Tools

• Statecharts have a set of supporting tools from i-

Logix (STATEMATE, Rhapsody)

– Editors

– Simulators

– Code generators

• C, Ada, Verilog, VHDL

– Some analysis support

• UML tools and environments…



UW CSE P503 David Notkin ● Autumn 2007 67

i-Logix screenshot (old)
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Analysis

• Given a Statecharts description, how can one tell if it 

has some desirable properties?

– For instance, is it deterministic?

– Are there deadlocks?

– And domain-specific properties, too

• The most promising technology for helping with this is 

model checking, which we’ll look at next week

– Model checking has also moved into applications 

to code as well as specifications


