CSE P503:
Principles of
Software
Engineering

David Notkin
Autumn 2007

Miscellaneous & Mining Software
Repositories

Experience is that which enables us to
recognize our mistakes when we make them
again. --AM51, 1973

[A]lny fool can make history, but it takes a genius
to write it. --Oscar Wilde

Technology is dominated by two types of
people: those who understand what they do not
manage, and those who manage what they do
not understand. --Putt’'s Law

11/13/2007

Agenda

« Some left over material (not all, but some), all quickly
— Restructuring and star diagrams
— SeeSoft
* Interludes
— Education
— Testing configurations?
« Mining Software Repositories

11/13/2007

Restructuring

 Why don'’t people restructure as much as we’d like...?
— Doesn’t make money now
— Introduces new bugs
— Decreases understanding
— Political pressures
— Who wants to do it?
— Hard to predict lifetime costs & benefits

11/13/2007

Griswold’s 1st approach

« Griswold developed an approach to meaning-
preserving restructuring

 Make a local change

— The tool finds global, compensating changes that
ensure that the meaning of the program is
preserved

« What does it mean for two programs to have the
same meaning?

— If it cannot find these, it aborts the local change

11/13/2007 4

Simple example

« Swap order of formal
parameters

',I—l—l-——

' procedure pushis, v}
insert (v, s.head)
return s

iEnd
|

pushimyScack, 1)
\

| push(myStack, himyStack))

11/13/2007

It's not a local change nor a
syntactic change

It requires semantic
knowledge about the
programming language
Griswold uses a variant of
the sequence-congruence
theorem [Yang] for
equivalence

— Based on PDGs (program
dependence graphs)

It's an O(1) tool

Limited power

« The actual tool and approach has limited power
« Too limited to be useful in practice
— PDGs are limiting
* Big and expensive to manipulate

« Difficult to handle in the face of multiple files,
etc.

« May encourage systematic restructuring in some
cases

11/13/2007

Star diagrams [Griswold et al.}

« Meaning-preserving restructuring isn’'t going to work
on a large scale

« But sometimes significant restructuring is still
desirable

* |Instead provide a tool (star diagrams) to
— record restructuring plans
— hide unnecessary details
e Some modest studies on programs of 20-70KLOC

11/13/2007

A star diagram

§E| fhome/arnold/bulk/Restructure/Tool/example.s

Picasso File

Undo Search Views Options Experimental

Idle

e* lineno))

{{= wordno mmwords) nil)
{(wector-set! *circ-index* cslineno {list lineno wordno))
{set! cslineno {1+ cslinena)d)iidd)

“Star diagram for variable *“LINE-STORAGE™*

Lindow Options Help

Remove

I Eztract Functon | | | | Turn inte call

J setl[1* |—| if*r]*
cons | set! *line-storage* [| if* [T =" def insline /

alwords |—{ hinding: numcslines | make-vector | set! *circ—index* [] |

*line—storage™® F

fn def. cssetup

hinding: wrdcnt

cons | setlreves [] |

reverse

list—ref

modulo | list—rei F—{tons | setlreves[]
fn def: csword

cons —{ setlreves[] |
cons - setlreves []
reverse

fn def: csline

Interpreting a star diagram

« The root (far left) represents all the instances of the
variable to be encapsulated

« The children of a node represent the operations and
declarations directly referencing that variable

« Stacked nodes indicate that two or more pieces of
code correspond to (perhaps) the same computation

« The children in the last level (parallelograms)
represent the functions that contain these
computations

11/13/2007

After some changes

Window Options Help

Remove Fztract Function Tuninto call

WORDS-IH-LT

setl [1* — I*[1"
£ons H set! *line-storage™ [] if* fn def. insline

= length H binding: numlines }—E—@

ne-srage” alwords | binding: numeslines | make-vector | set! *circ-index*] \/
Y in def casetup [/

/i def csword

cons |— setlreves []

list-ref H list-ref cons |_| setlreves [] |

reverse —/ fn def csline /

L[> |

11/13/2007

10

Evaluation

« Compared small teams of programmers on small
programs

— Used a variety of techniques, including videotape
— Compared to vi/grep/etc.

* Nothing conclusive, but some interesting observations
Including

— The teams with standard tools adopted more
complicated strategies for handling completeness
and consistency

11/13/2007 11

My view

« Star diagrams may not be “the” answer
« But | like the idea that they encourage people

— To think clearly about a maintenance task,
reducing the chances of an ad hoc approach

— They help track mundane aspects of the task,
freeing the programmer to work on more complex
Issues

— To focus on the source code

« Murphy/Kersten and Mylyn and tasktop.com are of the
same flavor....

11/13/2007 12

SeeSoft: Eick et al.

Visualize text files by

— mapping each line into a thin row

— colored according to a statistic of interest

* Focus on source code, with sample statistics including
— age, programmer, or functionality of each line

— Data extracted from version control systems, static
analysis and profiling

« User can manipulate this representation to find
Interesting patterns in software

« Applications include data discovery, project
management, code tuning and analysis of

development methodologies
11/13/2007 13

Code age:

newest code In red, oldest in blue

11/13/2007

14

Execution profile:

red shows hot spots, non-executed lines are gray/black

11/13/2007

15

SeeSoft

« SeeSoft seems excellent for building important,
gualitative understanding of some aspects of source
code

|t also links Iin effectively with the underlying source
code

* ltis flexible in terms of what statistics are viewed

— It's not entirely clear how much work is needed to
add a new statistic

11/13/2007 16

Interlude: education

« OK, what should (should not) go in an undergraduate
education leading to jobs like yours?

* A couple of rules

— It's a zero-sum game (something goes in,
something comes out)

— You cannot assume every student is precisely like
yourself

11/13/2007

17

A relatively new, “hot” approach:
Mining Software Repositories

« "Research is now proceeding to uncover the ways in
which mining [software] repositories can help to
understand software development, to support
predictions about software development, and to plan
various aspects of software projects.” [MSR 2007 web

page]

* Repositories are broadly defined to include code,
defect databases, version control information,
programmer communications, etc.

11/13/2007 18

Note: distinct from in-field testing

 ...gathering data from actual usage in the field that
can be used to improve the product

e ...more In a later lecture

11/13/2007

19

What has enabled this approach?

* The Internet

 Open source

« More repositories

« More complex repositories

« Fast/cheap processors

« Big/cheap memories

* Big/cheap disks

« Data mining/machine learning results
 New analyses

...and surely more

11/13/2007 20

Underlying premise

 We believe there is something — actually, a lot of

things — that can be learned from studying these
repositories

« But it presents a paradox — if we think most software

IS low quality, how can we learn by studying the
repositories?

11/13/2007 21

Four ways to resolve this paradox

 The premise Is false — most (or even all) software is
good

 We can learn about good practices from bad software

« We can distinguish good from bad software and only
study the good ones

« Mining software repositories cannot succeed

11/13/2007 22

A pertinent tangent:
science vs. engineering

« Science focuses on learning about the structure and
behavior of the real world

« Engineering focuses on designing useful things

« “Computer science” as a research field tends to do
both in an unusually intermingled way

— At times, the distinction is still instructive

11/13/2007

23

Mining software repositories:
science. engineering, both?

« Mining software repositories is largely a scientific
venture, albeit it with respect to human-engineered
artifacts

« That is, software is a part of our reality, and there Is
enough of it to study it

« There Is no question (to me) that this is valuable and
that we can learn a lot from this

— Belady and Lehman showed this, among others —
statistical results that deepened our understanding
about the relationships among users, program
change and program structure

11/13/2007 24

An important question remains

« Can we learn things that can then be used to improve the
engineering side?
— That is, can we learn specific, concrete things that lead to

better software, better software practices, better software
tools, better ...7?

« Unless we can provide useful feedback to the engineering side, |
believe the long-term value of mining software repositories will be
limited

— Belady and Lehman’s work has not, overall, let us to “better”
software, but rather to a better understanding of software

— Although I am largely uneducated in software metrics, |
believe that this is also a limitation of that approach

11/13/2007 25

Mining software repositories vs. reverse
engineering etc.

* Inreverse engineering, reengineering, program
comprehension, etc. approaches, the information from
a given software system is used to help software
engineers improve that system

« Mining software repositories feedback must provide
Information that is more broadly applicable — probably
not to all software systems, but to some (many) that
have not been analyzed

11/13/2007 26

Field of Dreams:
“If you build it, they will come

« Separate reality from fantasy — just mining software
repositories will not by itself cause significant
advances in software engineering

7

11/13/2007 27

Four ways to resolve this paradox

1. The premise is false — most
(or even all) software Is
good

2. We can learn about good U
practices from bad software] @]
3. We can distinguish good @ W
from bad software and only &@

study the good ones

4. Mining software repositories
cannot succeed

11/13/2007 28

Two ways to resolve the paradox

 We can learn about good practices from bad software

« We can distinguish good from bad software and only
study the good ones

11/13/2007 29

Programming language design

« Many of the advances come from observations that
distinguish “good” programs from “bad” ones

« Classic examples include control constructs, abstract
data types, ...

* A related, but non-language example is design
patterns

« These advances come from studying the “good”
programs, not the “bad” ones

11/13/2007 30

Change support: largely ad hoc

* In contrast, support for software change has been
much less disciplined

+ Relatively little has been done to make it easier to
make good changes and harder to make bad changes

« We are seeing some movement in making this more
systematic: refactoring is perhaps the clearest
example

11/13/2007 31

Unjustified claim

* The key to the (engineering) success of mining
software repositories is identifying “good” changes in
a specific and concrete way

* This appears to be harder than improving languages,
for several reasons

— Doing it automatically is almost surely harder

— Looking at change is harder than looking at
programs, at least at present

— Even with success, we have fewer ways to encode
“good” changes than “good” programs, at least at
present

11/13/2007 32

The way to resolve the paradox

« We can distinguish good from bad software and only
study the good ones ... and hope we can learn from
them!

11/13/2007

33

Change: Now passing the assembly
language phase

* |In general, software changes are applied by stringing
together a set of low-level operations (keystrokes,
macros, operations, etc.)

« Just as people saw useful patterns in assembly
language — leading to, for example, high-level control
constructs — we are beginning to see analogous
patterns in change

— refactoring
— simultaneous text editing/linked editing
— Cc0-evolving entitites

11/13/2007 34

This positions us

« ...to move from low-level and statistical models of
change to a higher-level, specific and concrete model
of change

« A key piece of this shift to a higher-level model is
making change a first-class notion

11/13/2007 35

Co-evolution

* Ying et al. (and several others)

— “To augment existing analyses and to help
developers identify relevant source code during a
modification task, we have developed an approach
that applies data mining techniques to determine
change patterns -- sets of files that were changed
together frequently in the past -- from the change
history of the code base. Our hypothesis is that the
change patterns can be used to recommend
potentially relevant source code to a developer
performing a modification task.”

* Or, “other people who changed this file were also
iInterested in the following files”

11/13/2007 36

Team Tracks: DeLine et al.
Microsoft Research

« Team Tracks guides code exploration

— Records the team’s code navigation during
development

— Mines that data to prune the working set and guide
navigation

« Does navigation frequency indicate importance?
— An empirical study suggests “yes”

 Does Team Tracks help with task completion rates?
— An empirical study suggests “yes”

11/13/2007 37

Other topics (discussed at MSR 2005 etc.)

« Approaches to study the quality of the mined data along with
guidelines to ensure the guality of the recovered data

* Proposals for exchange formats, meta-models, and infrastructure
tools to facilitate the sharing of extracted data and to encourage
reuse and repeatability

* Models for social and development processes that occurin large
software development projects

« Search techniques to assist developers in finding suitable
components for reuse

« Techniques to model reliability and defect occurrences
« Analysis of change patterns to assist in future development

« Case studies on extracting data from repositories of large long
lived projects

 Suggestions for benchmarks, consisting of large software
repositories, to be shared among the community

11/13/2007 38

Another example approach:
Miryung Kim [UW]

* Represent change explicitly using first-order relational
rules

 Infer change rules from pairs of program versions

« May enable new ways to understand software
evolution and to support tools that aid in software
evolution

11/13/2007 39

Cross version matching

P1

move axis drawing classes from
chart t0 chart.axis

add boolean input arg to all chart
creation APIs except GanttChart

Limitation of existing matching approaches:

hard to examine and to extract high-level change intent
11/13/2007 40

Change rule

I\ 3

Change Rule

For all x in (scope - exceptions)

transform(x)
11/13/2007

41

Transformations
(Above the Level of Method Header)

e packageReplace (x:Entity, fr:Text, t:Text)

* classReplace(x:Entity, fr:Text, t:Text)

e procedureReplace (x:Entity, fr:Text, t:Text)
e returnReplace(x:Entity, fr:Text, t:Text)

e inputSignatureReplace (x:Entity, fr:List[Text],
t:List[Text])

« argReplace (x:Entity, fr:Text, t:Text)
e argAppend(x:Entity, t:List[Text])

« argDelete(x:Entity, t:Text)

« typeReplace(x:Entity, fr:Text, t:Text)

11/13/2007

42

Example change rule

Factory.createChart ()

Factory.createChart (int)

Factory.createBarChart ()

Factory.createBarChart (int)

Factory.createPieChart ()

Factory.createLineChart () Factory.createPieChart ()

Factory.createlLineChart (int)

For all x
in Factory.create*Chart (*)
except {(Factory.createPieChart()}
argAppend(x, [int])

11/13/2007 14 matches and 1 exception 43

Initial results

—e— JFreeChart
jEdit

—m JHotDraw

S 100%
©
3 90%
£ 8 80%
oS

o
E g 70%
T 60% A
U O
% é 50% -
w S 40% o
O -
<
ST 30% 1
@M o !
Eo 20% f
o=

a
5 10% 8
8
= 0%
O 0% 20% 40% 60% 80% 100%
(D)
o

Percentage of rules found after each iteration of the total number of rules

Top 20% of the rules find over 55% of the matches

T
11/ 13/2009

p 40% of the rules find over 70% of the matches

An Initial step...

 ...in making change a first class notion
« Many other choices of

— transformations

— Inference algorithms

— rule representations

« Haven't yet showed benefit of rules to drive
applications: documentation assistant, bug finding,
API evolution analysis, APl update, ...

11/13/2007

45

Can it help with mining software
repositories?

« Maybe
 In particular, it may be the more effective rules that

provide insight and potential for representing higher-
level changes

11/13/2007

46

Discovering and Representing Logical

Structure in Code [Kim, Beall, Notkin]

Follow-up work to matching: logical structured delta (LSD)

A significant gap between how programmers think about code

change and how change is represented in widely used tools such
as diff.

LSD explicitly and concisely captures systematic changes to a
program’s dependency structure, along with an engine that
automatically infers such changes as logic rules

Each rule represents a set of atomic transformations that share
similar structural characteristics: e.g., crosscutting concerns,
refactorings, consistent updates of code, clones, etc.

Initial evaluation on several open source projects shows that
LSDs are orders of magnitude more concise than diff outputs

11/13/2007 47

Sample rules: inferred

* added type (“"AbsRegistry”)

* current inheritedmethod(m, "“AbsRegistry”, t)
=> added inheritedmethod(m, "“AbsRegistry”, t)

« past subtype (“"NameSvc”, t) * past field(f,
“host”, t)
=> deleted field(f, “host”, t) except t =
“LmiRegistry”

« past subtype (“NameSvc”, t) * past method(m,
“getHost”, t)

=> deleted method(m, “host”, t) except t =
“LmiRegistry”. ..

 host related fields and methods are pulled up from NameSvc’s
subclasses to AbsRegistry class except from LmiRegistry.

11/13/2007 48

Sample rules

* current calls(m,
“NamingExceptionHelper.create (Exception)”
=> added calls(m,
“NamingExceptionHelper.create (Exception)”

« past calls (m, “JNDIRemoteSource.getResouce()"”)
=> deleted calls(m,
“Throwable.printStackTrace()”)

* current inheritedmethod(m, “AbsContext”, t)
=> added inheritedmethod(m, “AbsContext”, t)

* past method(m, mn, “JRMPContext”)
=> deleted method(m, mn,“JRMPContext”)

* All calls to NameExceptionHelper are newly added ones, and
all methods that called getResource no longer call
printStackTrace.

 Create AbsContext by extracting common methods from
Context classes.

11/13/2007 49

Conclusion

* There Is no paradox
* Mining software repositories is promising

 We need to focus on change as an explicit, first-class
notion ...

« Lots of opportunities, but with a focus on the
engineering

11/13/2007 50

Interlude: configuration testing

 How do you test and/or analyze software that runs in
many different configurations?

11/13/2007

o1

