
11/13/2007 1

CSE P503:

Principles of

Software

Engineering

David Notkin

Autumn 2007

Miscellaneous & Mining Software

Repositories

Experience is that which enables us to

recognize our mistakes when we make them

again. --AM51, 1973

[A]ny fool can make history, but it takes a genius

to write it. --Oscar Wilde

Technology is dominated by two types of

people: those who understand what they do not

manage, and those who manage what they do

not understand. --Putt’s Law

11/13/2007 2

Agenda

• Some left over material (not all, but some), all quickly

– Restructuring and star diagrams

– SeeSoft

• Interludes

– Education

– Testing configurations?

• Mining Software Repositories

11/13/2007 3

Restructuring

• Why don’t people restructure as much as we’d like…?

– Doesn’t make money now

– Introduces new bugs

– Decreases understanding

– Political pressures

– Who wants to do it?

– Hard to predict lifetime costs & benefits

11/13/2007 4

Griswold’s 1st approach

• Griswold developed an approach to meaning-

preserving restructuring

• Make a local change

– The tool finds global, compensating changes that

ensure that the meaning of the program is

preserved

• What does it mean for two programs to have the

same meaning?

– If it cannot find these, it aborts the local change

11/13/2007 5

Simple example

• Swap order of formal

parameters

• It’s not a local change nor a

syntactic change

• It requires semantic

knowledge about the

programming language

• Griswold uses a variant of

the sequence-congruence

theorem [Yang] for

equivalence

– Based on PDGs (program

dependence graphs)

• It’s an O(1) tool

11/13/2007 6

Limited power

• The actual tool and approach has limited power

• Too limited to be useful in practice

– PDGs are limiting

• Big and expensive to manipulate

• Difficult to handle in the face of multiple files,

etc.

• May encourage systematic restructuring in some

cases

11/13/2007 7

Star diagrams [Griswold et al.]

• Meaning-preserving restructuring isn’t going to work

on a large scale

• But sometimes significant restructuring is still

desirable

• Instead provide a tool (star diagrams) to

– record restructuring plans

– hide unnecessary details

• Some modest studies on programs of 20-70KLOC

11/13/2007 8

A star diagram

11/13/2007 9

Interpreting a star diagram

• The root (far left) represents all the instances of the

variable to be encapsulated

• The children of a node represent the operations and

declarations directly referencing that variable

• Stacked nodes indicate that two or more pieces of

code correspond to (perhaps) the same computation

• The children in the last level (parallelograms)

represent the functions that contain these

computations

11/13/2007 10

After some changes

11/13/2007 11

Evaluation

• Compared small teams of programmers on small

programs

– Used a variety of techniques, including videotape

– Compared to vi/grep/etc.

• Nothing conclusive, but some interesting observations

including

– The teams with standard tools adopted more

complicated strategies for handling completeness

and consistency

11/13/2007 12

My view

• Star diagrams may not be “the” answer

• But I like the idea that they encourage people

– To think clearly about a maintenance task,

reducing the chances of an ad hoc approach

– They help track mundane aspects of the task,

freeing the programmer to work on more complex

issues

– To focus on the source code

• Murphy/Kersten and Mylyn and tasktop.com are of the

same flavor….

11/13/2007 13

SeeSoft: Eick et al.

• Visualize text files by

– mapping each line into a thin row

– colored according to a statistic of interest

• Focus on source code, with sample statistics including

– age, programmer, or functionality of each line

– Data extracted from version control systems, static

analysis and profiling

• User can manipulate this representation to find

interesting patterns in software

• Applications include data discovery, project

management, code tuning and analysis of

development methodologies

11/13/2007 14

Code age:
newest code in red, oldest in blue

11/13/2007 15

Execution profile:

red shows hot spots, non-executed lines are gray/black

11/13/2007 16

SeeSoft

• SeeSoft seems excellent for building important,

qualitative understanding of some aspects of source

code

• It also links in effectively with the underlying source

code

• It is flexible in terms of what statistics are viewed

– It’s not entirely clear how much work is needed to

add a new statistic

11/13/2007 17

Interlude: education

• OK, what should (should not) go in an undergraduate

education leading to jobs like yours?

• A couple of rules

– It’s a zero-sum game (something goes in,

something comes out)

– You cannot assume every student is precisely like

yourself

11/13/2007 18

A relatively new, “hot” approach:

Mining Software Repositories

• “Research is now proceeding to uncover the ways in

which mining [software] repositories can help to

understand software development, to support

predictions about software development, and to plan

various aspects of software projects.” [MSR 2007 web

page]

• Repositories are broadly defined to include code,

defect databases, version control information,

programmer communications, etc.

11/13/2007 19

Note: distinct from in-field testing

• …gathering data from actual usage in the field that

can be used to improve the product

• …more in a later lecture

11/13/2007 20

What has enabled this approach?

• The Internet

• Open source

• More repositories

• More complex repositories

• Fast/cheap processors

• Big/cheap memories

• Big/cheap disks

• Data mining/machine learning results

• New analyses

• …and surely more

11/13/2007 21

Underlying premise

• We believe there is something – actually, a lot of

things – that can be learned from studying these

repositories

• But it presents a paradox – if we think most software

is low quality, how can we learn by studying the

repositories?

11/13/2007 22

Four ways to resolve this paradox

• The premise is false – most (or even all) software is

good

• We can learn about good practices from bad software

• We can distinguish good from bad software and only

study the good ones

• Mining software repositories cannot succeed

11/13/2007 23

A pertinent tangent:

science vs. engineering

• Science focuses on learning about the structure and

behavior of the real world

• Engineering focuses on designing useful things

• “Computer science” as a research field tends to do

both in an unusually intermingled way

– At times, the distinction is still instructive

11/13/2007 24

Mining software repositories:

science, engineering, both?

• Mining software repositories is largely a scientific

venture, albeit it with respect to human-engineered

artifacts

• That is, software is a part of our reality, and there is

enough of it to study it

• There is no question (to me) that this is valuable and

that we can learn a lot from this

– Belady and Lehman showed this, among others –

statistical results that deepened our understanding

about the relationships among users, program

change and program structure

11/13/2007 25

An important question remains

• Can we learn things that can then be used to improve the

engineering side?

– That is, can we learn specific, concrete things that lead to

better software, better software practices, better software

tools, better …?

• Unless we can provide useful feedback to the engineering side, I

believe the long-term value of mining software repositories will be

limited

– Belady and Lehman’s work has not, overall, let us to “better”

software, but rather to a better understanding of software

– Although I am largely uneducated in software metrics, I

believe that this is also a limitation of that approach

11/13/2007 26

Mining software repositories vs. reverse

engineering etc.

• In reverse engineering, reengineering, program

comprehension, etc. approaches, the information from

a given software system is used to help software

engineers improve that system

• Mining software repositories feedback must provide

information that is more broadly applicable – probably

not to all software systems, but to some (many) that

have not been analyzed

11/13/2007 27

Field of Dreams:

“If you build it, they will come”

• Separate reality from fantasy – just mining software
repositories will not by itself cause significant
advances in software engineering

11/13/2007 28

Four ways to resolve this paradox

1. The premise is false – most
(or even all) software is
good

2. We can learn about good
practices from bad software

3. We can distinguish good
from bad software and only
study the good ones

4. Mining software repositories
cannot succeed

11/13/2007 29

Two ways to resolve the paradox

• The premise is false – most (or even all) software is good

• We can learn about good practices from bad software

• We can distinguish good from bad software and only

study the good ones
• MSR cannot succeed

11/13/2007 30

Programming language design

• Many of the advances come from observations that
distinguish “good” programs from “bad” ones

• Classic examples include control constructs, abstract
data types, …

• A related, but non-language example is design
patterns

• These advances come from studying the “good”
programs, not the “bad” ones

11/13/2007 31

Change support: largely ad hoc

• In contrast, support for software change has been

much less disciplined

• Relatively little has been done to make it easier to

make good changes and harder to make bad changes

• We are seeing some movement in making this more

systematic: refactoring is perhaps the clearest

example

11/13/2007 32

Unjustified claim

• The key to the (engineering) success of mining

software repositories is identifying “good” changes in

a specific and concrete way

• This appears to be harder than improving languages,

for several reasons

– Doing it automatically is almost surely harder

– Looking at change is harder than looking at

programs, at least at present

– Even with success, we have fewer ways to encode

“good” changes than “good” programs, at least at

present

– …

11/13/2007 33

The way to resolve the paradox

• The premise is false – most (or even all) software is good

• We can learn about good practices from bad software

• We can distinguish good from bad software and only

study the good ones … and hope we can learn from

them!
• MSR cannot succeed

11/13/2007 34

Change: Now passing the assembly

language phase

• In general, software changes are applied by stringing

together a set of low-level operations (keystrokes,

macros, operations, etc.)

• Just as people saw useful patterns in assembly

language – leading to, for example, high-level control

constructs – we are beginning to see analogous

patterns in change

– refactoring

– simultaneous text editing/linked editing

– co-evolving entitites

– …

11/13/2007 35

This positions us

• …to move from low-level and statistical models of

change to a higher-level, specific and concrete model

of change

• A key piece of this shift to a higher-level model is

making change a first-class notion

11/13/2007 36

Co-evolution

• Ying et al. (and several others)

– “To augment existing analyses and to help
developers identify relevant source code during a
modification task, we have developed an approach
that applies data mining techniques to determine
change patterns -- sets of files that were changed
together frequently in the past -- from the change
history of the code base. Our hypothesis is that the
change patterns can be used to recommend
potentially relevant source code to a developer
performing a modification task.”

• Or, “other people who changed this file were also
interested in the following files”

11/13/2007 37

Team Tracks: DeLine et al.

Microsoft Research

• Team Tracks guides code exploration

– Records the team’s code navigation during

development

– Mines that data to prune the working set and guide

navigation

• Does navigation frequency indicate importance?

– An empirical study suggests “yes”

• Does Team Tracks help with task completion rates?

– An empirical study suggests “yes”

11/13/2007 38

Other topics (discussed at MSR 2005 etc.)

• Approaches to study the quality of the mined data along with
guidelines to ensure the quality of the recovered data

• Proposals for exchange formats, meta-models, and infrastructure
tools to facilitate the sharing of extracted data and to encourage
reuse and repeatability

• Models for social and development processes that occurin large
software development projects

• Search techniques to assist developers in finding suitable
components for reuse

• Techniques to model reliability and defect occurrences

• Analysis of change patterns to assist in future development

• Case studies on extracting data from repositories of large long
lived projects

• Suggestions for benchmarks, consisting of large software
repositories, to be shared among the community

11/13/2007 39

Another example approach:
Miryung Kim [UW]

• Represent change explicitly using first-order relational

rules

• Infer change rules from pairs of program versions

• May enable new ways to understand software

evolution and to support tools that aid in software

evolution

11/13/2007 40

P1 P2

Limitation of existing matching approaches:

hard to examine and to extract high-level change intent

move axis drawing classes from
chart to chart.axis

add boolean input arg to all chart

creation APIs except GanttChart

Cross version matching

11/13/2007 41

Change Rule

For all x in (scope - exceptions)

transform(x)

Change rule

11/13/2007 42

Transformations
(Above the Level of Method Header)

• packageReplace(x:Entity, fr:Text, t:Text)

• classReplace(x:Entity, fr:Text, t:Text)

• procedureReplace(x:Entity, fr:Text, t:Text)

• returnReplace(x:Entity, fr:Text, t:Text)

• inputSignatureReplace(x:Entity, fr:List[Text],

t:List[Text])

• argReplace(x:Entity, fr:Text, t:Text)

• argAppend(x:Entity, t:List[Text])

• argDelete(x:Entity, t:Text)

• typeReplace(x:Entity, fr:Text, t:Text)

11/13/2007 43

Example change rule

.

Factory.createChart()

Factory.createBarChart()

...

Factory.createPieChart()

Factory.createLineChart()

.

Factory.createChart()

Factory.createBarChart()

...

Factory.createPieChart()

Factory.createLineChart()

Factory.createChart(int)

Factory.createBarChart(int)

...

Factory.createPieChart()

Factory.createLineChart(int)

Factory.createChart(int)

Factory.createBarChart(int)

...

Factory.createPieChart()

Factory.createLineChart(int)

For all x

in Factory.create*Chart(*)

except {Factory.createPieChart()}

argAppend(x, [int])

14 matches and 1 exception

11/13/2007 44

Initial results

Percentage of rules found after each iteration of the total number of rulesP
e
rc

e
n

ta
g

e
 o

f
m

a
tc

h
e

s
 f

o
u

n
d

 a
ft

e
r

e
a
c
h

 i
te

ra
ti

o
n

o
f

th
e

 t
o

ta
l
n

u
m

b
e

r
o

f
m

a
tc

h
e
s

Top 20% of the rules find over 55% of the matches

Top 40% of the rules find over 70% of the matches

11/13/2007 45

An initial step…

• …in making change a first class notion

• Many other choices of

– transformations

– inference algorithms

– rule representations

– …

• Haven’t yet showed benefit of rules to drive

applications: documentation assistant, bug finding,

API evolution analysis, API update, …

11/13/2007 46

Can it help with mining software

repositories?

• Maybe

• In particular, it may be the more effective rules that

provide insight and potential for representing higher-

level changes

11/13/2007 47

Discovering and Representing Logical

Structure in Code [Kim, Beall, Notkin]

• Follow-up work to matching: logical structured delta (LSD)

• A significant gap between how programmers think about code

change and how change is represented in widely used tools such

as diff.

• LSD explicitly and concisely captures systematic changes to a

program’s dependency structure, along with an engine that

automatically infers such changes as logic rules

• Each rule represents a set of atomic transformations that share

similar structural characteristics: e.g., crosscutting concerns,

refactorings, consistent updates of code, clones, etc.

• Initial evaluation on several open source projects shows that

LSDs are orders of magnitude more concise than diff outputs

11/13/2007 48

Sample rules: inferred

• added_type(“AbsRegistry”)

• current_inheritedmethod(m, “AbsRegistry”, t)

=> added_inheritedmethod(m, “AbsRegistry”, t)

• past_subtype(“NameSvc”, t) ^ past_field(f,

“host”, t)

=> deleted_field(f, “host”, t) except t =

“LmiRegistry”

• past_subtype(“NameSvc”, t) ^ past_method(m,

“getHost”, t)

=> deleted_method(m, “host”, t) except t =

“LmiRegistry”...

• host related fields and methods are pulled up from NameSvc’s
subclasses to AbsRegistry class except from LmiRegistry.

11/13/2007 49

Sample rules

• current_calls(m,
“NamingExceptionHelper.create(Exception)”
=> added_calls(m,
“NamingExceptionHelper.create(Exception)”

• past_calls (m, “JNDIRemoteSource.getResouce()”)
=> deleted_calls(m,
“Throwable.printStackTrace()”) ...

• current_inheritedmethod(m, “AbsContext”, t)
=> added_inheritedmethod(m, “AbsContext”, t)

• past_method(m, mn, “JRMPContext”)
=> deleted_method(m, mn,“JRMPContext”)

• All calls to NameExceptionHelper are newly added ones, and
all methods that called getResource no longer call
printStackTrace.

• Create AbsContext by extracting common methods from
Context classes.

11/13/2007 50

Conclusion

• There is no paradox

• Mining software repositories is promising

• We need to focus on change as an explicit, first-class

notion …

• Lots of opportunities, but with a focus on the

engineering

11/13/2007 51

Interlude: configuration testing

• How do you test and/or analyze software that runs in

many different configurations?

