
J-1

CSE584: Software Engineering
Lecture 5: Design (B)

David Notkin
Computer Science & Engineering

University of Washington
http://www.cs.washington.edu/education/courses/584/

Design lectures

• Last week
– Basic issues in design, including some

historical background
– Well-understood techniques

• Information hiding, layering, event-based
techniques

• This week: neo-modern design
– Problems with information hiding (and

ways to overcome them)
– Architecture, patterns, frameworks

Software architecture

• An area of significant attention in the
last decade
– Garlan and Shaw
– Perry and Wolf

• There are two basic goals (in my
opinion)
– Capturing, cataloguing and exploiting

experience in software designs
– Allowing reasoning about classes of

designs

Box-and-arrow diagrams:
taken from the web without attribution

These diagrams

• Clearly, these diagrams give value
– You can find them all over the web, in textbooks, in

technical documents, in research papers, over
whiteboards in your office, on napkins in the
cafeteria, etc.

• At the same time, they are generally ill-
defined: what does a box represent? an
arrow? a layer? adjacent boxes? etc.

• One view of software architecture research is
to determine ways to give these diagrams
clearer semantics and thus additional value

An aside: compilers I

• The first compilers had ad hoc designs
• Over time, as a number of compilers

were built, the designs became more
structured
– Experience yielded benefits

• Compiler phases, symbol table, etc.

– Plenty of theoretical advances
• Finite state machines, parsing, ...

J-2

An aside: compilers II

• Compilers are perhaps the best example of shared
experience in design
– Lots of tools that capture common aspects
– Undergraduate courses build compilers
– Most compilers look pretty similar in structure

• But we still don’t fully generate compilers
– Despite lots of effort and lots of money
– In any case, the code in compilers is often less clean

than the designs
• Despite this, the perception of a shared design gives

leverage
– Communication among programmers
– Selected deviations can be explained more concisely and

with clearer reasoning

Other domains?

• Which other domains are as successful in this regard
as compilers?

• Quite a few, but generally much more narrow
– DARPA ran a large project, Domain-Specific Software

Architectures (DSSA) a few years ago
• ISI: Command and control message processing
• Honeywell: Guidance, navigation and control
• …

– Some 4GL approaches are basically domain-specific
systems

• Essentially: (Parnas) program families in which
systems have “so much in common that it pays to
study their common aspects before looking at the
aspects that differentiate them”
– His OS example is tempting but has not really come to

fruition

Back to software architecture

• One hope is that by studying our experiences with a
variety of systems, we can gain leverage as we did
with compilers

• Capture the strengths and weaknesses of various
software structures
– Perhaps enabling designers to select appropriate

architectures more effectively
• Benefit from high-level study of software structure

• D.E. Perry and A.L. Wolf. Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engineering
Notes 17, 4 (Oct 1992)

• D. Garlan and M. Shaw. An Introduction to Software
Architecture. In V. Ambriola and G. Tortora (ed.), Advances
in Software Engineering and Knowledge Engineering (1993).

Another motivation:
architectural mismatch

• Garlan, Allen, Ockerbloom tried to build a toolset to
support software architecture definition from existing
components
– OODB (OBST)
– graphical user interface toolkit (Interviews)
– RPC mechanism (MIG/Mach RPC)
– Event-based tool integration mechanism (Softbench)

• It went to hell in a handbasket, not because the pieces
didn’t work, but because they didn’t fit together

• Architectural Mismatch: Why Reuse Is So Hard. IEEE
Software 12, 6 (Nov. 1995). Best paper of the year in
IEEE Software.

Mismatches included

• Excessive code size
• Poor performance
• Needed to modify out-of-the-box

components (e.g., memory allocation)
• Error-prone construction process
• …

So what?

• The claim is that many of the problems
were of an architectural nature
– What assumptions are made, need they be

made, etc.?

• With some forethought, many of these
mismatches could, in principle, be
avoided

J-3

Some classic definitions:
http://www.sei.cmu.edu/architecture/definitions.html

• …architecture is concerned with the selection of
architectural elements, their interactions, and the
constraints on those elements and the interactions
necessary to provide a framework in which to satisfy the
requirements and serve as a basis for the design [Perry
and Wolf].

• An architecture is the set of significant decisions about the
organization of a software system, the selection of the
structural elements and their interfaces by which the system
is composed, together with their behavior as specified in the
collaborations among those elements, the composition of
these structural and behavioral elements into progressively
larger subsystems, and the architectural style that guides
this organization---these elements and their interfaces, their
collaborations, and their composition [Booch, Rumbaugh,
and Jacobson, 1999]

More definitions

• ...beyond the algorithms and data structures of the
computation; designing and specifying the overall system
structure emerges as a new kind of problem. Structural
issues include gross organization and global control
structure; protocols for communication, synchronization,
and data access; assignment of functionality to design
elements; physical distribution; composition of design
elements; scaling and performance; and selection among
design alternatives [Garlan and Shaw].

• The structure of the components of a program/system, their
interrelationships, and principles and guidelines governing
their design and evolution over time [Garlan and Perry].

• ...an abstract system specification consisting primarily of
functional components described in terms of their behaviors
and interfaces and component-component interconnections
[Hayes-Roth].

• …

Components and connectors

• (Most people now agree that) software architectures
includes components and connectors

• Components define the basic computations
comprising the system
– Abstract data types, filters, etc.

• Connectors define the interconnections between
components
– Procedure call, event announcement, asynchronous

message sends, etc.

• The line between them may be fuzzy at times
– Ex: A connector might (de)serialize data, but can it

perform other, richer computations?

Architectural style

• Defines the vocabulary of components and connectors
for a family (style)

• Constraints on the elements and their combination
– Topological constraints (no cycles, register/announce

relationships, etc.)
– Execution constraints (timing, etc.)

• By choosing a style, one gets all the known properties
of that style
– For any given architecture in that style

• These properties can be quite broad
– Ex: performance, lack of deadlock, ease of making

particular classes of changes, etc.

Not just boxes and arrows

• Consider pipes & filters, for example (Garlan
and Shaw)

–Pipes must compute local transformations
–Filters must not share state with other filters
–There must be no cycles

• If these constraints are not satisfied, it’s not a
pipe & filter system

–One can’t tell this from a picture
–One can formalize these constraints

scan parse optimize generate

WRIGHT

• WRIGHT provides a formal basis for architectural
description (ADL = architectural description language)

• Language for precisely defining an architectural
specification, as a basis for analyzing the architecture
of individual software systems and families of systems

• Underlying model in CSP (communicating sequential
process, Hoare), checkable using standard model
checking technology

– Defines a set of standard consistency and completeness
checks

• More on WRIGHT

• Allen and Garlan. A formal basis for architectural
connection. ACM TOSEM 6, 3 (1997)

J-4

Defining a connector in
WRIGHT: client-server

connector C-S-connector =

role Client = (request!x → result?y → Client) ∏ §

role Server = (invoke?x → return!y → Server) §

glue =
 (Client.request?x → Service.invoke!x →
 Service.return?y → Client.result!y → glue)

 §

Pipe connector in WRIGHT

Connector Pipe =
role Write = write → Writer ∏ close → √
role Reader =
 let ExitOnly = close → √
 in let DoRead =
 (read → Reader read-eof → ExitOnly)
 in DoRead ExitOnly
glue = let ReadOnly =

 Reader.Read → ExitOnly
 Reader.read-eof → Reader.close → √
 Reader.close → √

• Ensures (among other things) that there is a way to notify
reader than pipe is empty when writer closes the pipe

Decoding a little bit

• Connectors represent links to
components on the roles, which are
ports of the connectors
– The WRIGHT process descriptions

describe the obligations of each connector

• The glue process coordinates the
behavior of the roles
– Essentially, it defines a high-level protocol

• One can then prove properties about
the stated protocols

Benefits

• In the pipes & filters example, the
constraints ensure a lack of deadlock
– In any instantiation of the style that

satisfies the constraints

• One can think of the constraints as
obligations on the designer and on the
implementor
– Some properties can be automatically

checked

Specializations

• Architectural styles can have
specializations
– A pipeline might further constrain an

architecture to a linear sequence of
filters connected by pipes

– A pipeline would have all properties
that the pipe & filter style has, plus
more

C2 Architecture:
UC Irvine (Taylor et al.)

• Based on generalization of a collection of designs of
user interface systems

• Informally, a C2 architecture is a network of
concurrent components linked together by connectors

• http://www.ics.uci.edu/pub/c2/c2.html

J-5

C2 Composition

• The top of a component may be connected to the
bottom of a single connector

• The bottom of a component may be connected to the
top of a single connector

• There is no bound on the number of components or
connectors that may be attached to a single connector

• When two connectors are attached to each other, it
must be from the bottom of one to the top of the other

C2 Communication

• Solely by exchanging messages
• Each component has a top and bottom

domain
– The top specifies the set of notifications to which a

component responds, and the set of requests it
emits upwards

– The bottom specifies the set of notifications that a
component emits downwards and the set of
requests to which it responds

• Central principle: limited visibility (substrate
independence)
– A component within the hierarchy can only be

aware of components “above” it and is completely
unaware of the components “beneath” it

Well, do they help?

• I like the basic software architecture
research as an intellectual tool
– The work is helping us better understand

classes of software structures that have
shown themselves as useful

– Simply improving our shared terminology
is a benefit

• It may not be fully distinct from
Parnas’ families of systems, but
enough to benefit

Open question I

• What properties can be analyzed?
– WRIGHT [Allen & Garlan]

• Reason about architectures in terms of
protocols, using a CSP-like language

• Roughly, type-checking of architectural styles

– Of these, which are sufficiently important
to justify the investment

• The investment is high, but in theory amortized

– What about across heterogeneous
architectures?

Open question II

• How does one produce new
architectural styles?

• When?

Open question III

• What is the relationship between
architectural and implementation?
– Does architectural information aid in going

from design to implementation?
– What happens as the implementation

evolves in ways inconsistent with the
architecture?

• Which properties still hold, and how do we
know this?

J-6

Experience

• It’s a hot area, with lots of companies
paying attention

• Allen & Garlan reported on a case
study in applying architectural
modeling to the AEGIS Weapons
System
– Used formalism to help “expose and

resolve some of the architectural problems
that arose in implementing the system”

• Similar advantages for the HLA project
– Distributed simulation for the DoD

AEGIS

• AEGIS Weapons System, control of US
Navy ships

– Model problem for work in software
architecture

Experiment
Control

Doctrine
Validation

Display
Server

Doctrine
Authoring

Track Server

GeoServer
Doctrine

Reasoning
CS10

CS7

CS4 CS5

CS1 CS3

CS8

CS2

CS9CS6

Example benefits in AEGIS

• Clarifying client-server
misconceptions
– Which party initiated interactions?
– Re-established after every request?
– Synchronous or asynchronous?

• WRIGHT used to clarify
– Avoiding deadlocks
– Reducing unnecessary synchronization
– And to simplify instrumentation of the

architecture

Forcing discussions

• In some ways, the primary benefit of
architecture Garlan is that it forces
discussions of some critical issues
– The Xerox PARC Mesa/Cedar group did roughly the

equivalent by spending enormous amounts of
times in defining and clarifying interfaces, before
coding

• Finding errors earlier is generally considered
to be better, of course

• I’m unsure the degree to which the formalism
per se helps, although there are surely some
supporting examples

On-going research

• Environments to support the design of
architectural styles and architectures

• Architectural design languages (ADLs)
• Formal models of architectures
• Architectural case studies
• Use of informal architectures
• ...

Design patterns

• Design patterns are idioms that are
intended to be “simple and elegant
solutions to specific problems in
object-oriented software design.”

• They are drawn from actual software
systems

• They are intended to be language-
independent

J-7

A weak analogy

• I view high-level control structures in
programming languages as quite the same
– For example, a while loop is an idiomatic collection

of machine instructions

• Knuth’s 1974 article (“Structured
Programming with go to Statements”) shows
that this is not a language issue alone

• Patterns are a collection of “mini-
architectures” that combine structure and
behavior

Example: flyweight [Gamma et al.]

•Intent
–Use sharing to
support many fine-
grained objects
efficiently
–Can’t usually afford to
have small elements
(like characters) be full-
fledged objects

•Separate logical
model from physical
model

column

rowrowrow

a tnerapp

column

rowrowrow

a tnerapp

a mlkjihgfedcb

n zyxwvutsrqpo

Flyweight structure

GetFlyweight(key)

FlyweightFactory

Operation(extrinsicState)

Flyweight

flyweights

Client

Operation(extrinsicState)

intrinsicState

ConcreteFlyweight

Operation(extrinsicState)

allState

UnsharedConcreteFlyweight

An enlightening experience

• At a workshop a several years ago, I had an
experience with two of the Gang of Four

• They sat down with Griswold and me to show
how to use design patterns to (re)design a
software design we had published

• The rate of communication between these
two was unbelievable
– And much of it was understandable to us without

training (good sign for a learning curve)

This is the real thing

• Design patterns are not a silver bullet
• But they are impressive, important and

worthy of attention
• I think that (slowly?) some of the

patterns will become part and parcel of
designers’ vocabularies
– This will improve communication and over

time improve the designs we produce

• The relatively disciplined structure of
the pattern descriptions may be a plus

The future

• I’m somewhat worried that “second
wave” R&D will hurt more than help
– They may be considered a panacea
– They are surely going to be

misunderstood
• Everything now is a “pattern”, even if it doesn’t

have the key characteristics
• There are even antipatterns

– Tools and languages for patterns may
help, but may also hinder

• How do patterns interact?

J-8

Patterns resources

• Patterns Home Page
– http://st-www.cs.uiuc.edu/users/patterns/patterns.html

• Portland Pattern Repository
– http://c2.com/ppr/index.html

• FAQ
– http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html

• Gang of Four book
– Design Patterns: Elements of Reusable Object-

Oriented Software. Gamma et. al. (as of today @
11:05AM PT, Amazon sales rank of 111, 88 reviews)

• OO journals, OOPSLA, etc.

Do any of you use patterns?

Frameworks

• Frameworks are another design buzzword
• One way to think about them is as upside-

down layers
– That is, layered systems allow us to construct

families of systems by sharing lower layers
– Frameworks allow us to construct families of

systems by sharing upper “layers”

• Instantiate and specialize provided classes
– “More” than patterns

Examples

• DuPont’s business model
– http://www-cat.ncsa.uiuc.edu/~yoder/Research/catdesc.html

– Visual table-based framework for improving
financial decisions, etc.

• CHOICES: customizing operating systems
– http://choices.cs.uiuc.edu/choices/choices.html

– Frameworks for VM, memory management, process
management, file storage, exceptions and
hardware device drivers, distributed processing
and communication

A commercial example

• Visio is in many
ways a framework

• It is also a complete
application on its
own, but it can be
specialized (in a
number of ways) that
is consistent with
being a framework

Open implementation

• Last week in discussing information
hiding I listed some central premises

• Two important ones are especially
questionable

• Kiczales et al. have studied this
question carefully, leading to some
work generally called Open
Implementation
– http://www.parc.xerox.com/spl/projects/oi/

J-9

Central premises III and IV:
from last week

• The semantics of the module must remain
unchanged when implementations are
replaced
– Specifically, the client should not care how the

interface is implemented by the module
• One implementation can satisfy multiple

clients
– Different clients of the same interface that need

different implementations would be counter to the
principle of information hiding

• Clients should not care about implementations, as
long as they satisfy the interface

These are often false

• What defines the semantics of the interface?
– Much is not (cannot?) be defined, but is inferred by

the client

• Once properties are inferred, clients start to
assume that they are true

• Multiple clients may infer different properties
– So changing those properties consistently may be

impossible

• Client do, in practice, care about (aspects of)
the implementation

Examples

• The flyweight pattern
example points out a
few of these issues

• Logically, any
implementation of the
interface is OK
– But not all

implementations are
equally adequate for all
clients

• The Kiczales
spreadsheet example

Two approaches often taken

• Programmers often respond to these problems
in one of two ways

– Write own windowing system
– Clever coding tricks

• Paging example

The experts say

“I found a large
number of programs
perform poorly
because of the
language’s tendency
to hide `what is going
on’ with the misguided
intention of `not
bothering the
programmer with
details’” [Wirth, 1974]

“An interface should
capture the minimum
essentials of an
abstraction.
“When an interface
undertakes to do too
much, the result is a
large, slow
complicated
implementation.”
[Lampson, 1984]

The OI solution

• Define two interfaces
– The base interface,

which provides the
essential semantics

– The meta-interface,
which is used to
customize aspects of
the implementation of
the base

• Based on experience
– Common Lisp Meta-

Object Protocol (CLOS
MOP)

– Reflective computing

J-10

Allows the client to

• Use the module’s primary functionality
alone when the default implementation
is adequate

• Control the module’s implementation-
strategy decisions when necessary

• Deal with functionality and
implementation strategy decisions in
largely separate ways

Design issues: OI claims

• The base interface design requires
similar techniques to current interface
design

• The design of the meta-interface and
of the coupling of the meta- and base
interface is more complicated
– Requires expertise in the definition and

uses of the components

Design issues: meta-interface

• Scope control
– Are controls over the implementation for

instances, classes, other?

• Conceptual separation &
incrementality
– Can the client of the meta-interface

understand and use just parts of it?

• Robustness
– Are bugs in a client’s meta-program

limited in effect?

It’s not an entirely new idea

• Compiler pragmas
• Multiple implementations of an

interface
– With client choice [Hermes]

• User-directed parallelization
• Unix madvise

– Influence page replacement

• Many more

More recently

• Examples
• Design guidelines
• Analysis techniques
• Aspect-oriented programming, an outgrowth

of the work in OI (and some other stuff)
– We’ll breeze through some slides on AOP from

Xerox PARC
– There’s a lot more work since this overview (1997-

98)
• Kiczales @ UBC now
• aspectj.org
• IBM Research: Multi-dimensional separation of

concerns

Recap

• Software architecture
– Heavy-weight design, with an eye towards ensuring

specific properties over families of systems

• Patterns
– Mini-architectures, allows effective chunking of

small combinations of classes/objects

• Frameworks
– Sharing the “top” of a family of applications (as

opposed to the bottom, like in layering)

• Open implementation/AOP
– Overcoming problems in separation of concerns

J-11

Next two weeks

• Software evolution, reverse
engineering, etc.

