CSES84: Software Engineering

Lecture 3: Requirements & Specification (B)

David Notkin
Computer Science & Engineering

University of Washington
http://lwww.cs.washington.edu/education/courses/584/

Last week & this week

« Last week
— Overview
— Program correctness
— Model-based specifications (Z)
— Intro to state machines
« This week

— Analysis of state machine based specifications
(model checking)

— Michael Jackson on video: “The World and the
Machine”

— Some wrap up

Before that...

« Last week | was at a workshop on highly dependable
computing systems
— At NASA Ames Research Center

« Academia, government, industry
— IBM, Sun, Oracle, Sybase, Microsoft, Boeing, Honeywell,

« Keynotes, case studies, breakout sessions, etc.
« Dependability is different things to different people
« Over all, | think that there were two camps

— Use technology to improve dependability

— Build a “culture of dependability”

Two NASA failures:
each over $100 million

http://www.nasa.gov/newsinfo/marsreports.html

» Mars Climate Orbiter

— A confusion in metric/English units caused an
engine to fire too strongly, bringing the spacecraft
too close to Mars and causing it to crash instead of
orbiting

« Polar lander (very probable cause)

— At 40m above Mars, a parachute and spring-loaded
legs were deployed and a new control regime was
used as planned

— The spring-loaded legs bounced, causing the
regime to think that the pads had hit the surface

— The engine was turned off and the spacecraft
crashed

Specification errors?

« Not the units
— The specification was completely clear about this

— A new programmer didn’t know or check, and used the
wrong units

— Not caught by testing, inspections, etc.

« Tricky to catch by testing, since it was a second
order effect

— What can be done about errors like these?
« Polar lander? Unclear

— Each module (regime) worked as specified

— The <40m module assumed that a variable would be in a
particular state upon entry, but it wasn’t due to the leg
bounce

— What this a problem in the inter-module specification? In
the implementation of the <40m module? Testing?
Something else?

Specifications thread

« |found it interesting to come back from this
workshop and see the thread on the mailing
list about “spec avoidance”

* Specs would surely help solve some —
perhaps many — of your problems
— Butnot all
— And the cost is not clear

— I'll note that most of you wanted specs, but didn’t
necessarily want the responsibility of writing them

* See the paper that Cordell Green mentioned,

which | posted on the mailing list

J-1

State machines

« Good for specifying reactive systems, protocols, etc.
« Event-driven

— External events (actions in the external environment,
such as “button pushed”, “door opened”, “nuclear core
above safe temperature”, etc.)

— Internal events (actions defined in the internal system to
cause needed actions)

— Can generate external events that may drive actuators in
the environment (valves may be opened, alarms may be
rung, etc.)

— Transitions can have guards and conditions that control
whether or not they are taken

* “Flat” (non-hierarchical) state machines tend to
explode in size relatively quickly

Classic examples

Specifying a cruise control
Specifying the traffic lights at an
intersection

Specifying trains on shared tracks

— Could be managing the bus tunnel
in Seattle

Etc.

A snippet of cruise control

OnButtonPushed

OffButtonPushed

« Completely incomplete
* There should be guards and conditions on transitions
«_Lots of information left out

More cruise control

What if your state machine also tracked speed?
— Maybe the cruise control doesn’t work at low speeds
— Anyway, it needs to remember a speed so it can resume
properly
What if it also interacted with the door locking
system?
You might have to modify almost every state to track
not only the state on the previous slide, but the speed,
too
— Essentially, you need to build a cross product of all
combinations of states
This is the kind of issue that can cause the machine to
blowup in size
— It's not the best example, but it's adequate

Statecharts: “review”

+ Theidea of statecharts [Harel] is to provide arich, visual
representation for defining finite state machines that capture
the essence of complex, reactive systems

— Specifically addresses description explosion problem
« Sorry, there isn’'t a simple, easy-to-get, reference
— “The” statecharts paper, but long and a bit hard to find.
D. Harel, " Statecharts: A Visual Formalism for Complex
Systems, " Science of Computer Programming (1987).
— A general paper on statechart-like formalisms: D. Harel.
"On Visual Formalisms," Comm. of the ACM (1988).

* Thei-Logix web site (http://www.ilogix.com/fs_papers.htm)
has a set of papers, (you have to register your name, but it
looks like it doesn’t check anything)

— The following looks reasonable at a glance: B.P.
Douglass. State Machines and Statecharts: A White
Paper. Embedded Systems Conference West (1999).

Key idea: hierarchy

Exceed25MPH

LockButtonPushed

OffButtonPushed

J-2

Parallel AND-machines

* The state of the overall machine is
represented by one state from each of
the parallel AND machines
— In a cruise control state AND in a speed

state AND in a door lock state

» Transitions can take place in all
substates in parallel

— Events in one substate can cause
transitions in another substate

A few statechart features

« Default entry states for each substate
— Indicated by an arrow with no initial state

* When any of the parallel machines is exited,
the entire machine is exited

* You can have “history” states, which
remember where you were the last time you
were in a machine

*« The “STATEMATE semantics” are the
standard semantics

— This is largely a question of which enabled
transitions are taken, and when

— Atthis level, you surely don’t care

Variants on statecharts

» There are many variants on statecharts

e Oneis RSML (Leveson et al.), which
allows states to be connected through
a bus as well as pairwise

* RSML also represents transitions
differently, through explicit AND-OR
tables instead of through guards and
conditions on transitions

Temperature Rod Movement Rod Configuration

Temp_Reading External Temperature
Events Initiate_Move Rod_Move Rod_Config
Move_Finished External Rod_Config
Rod_Updated Rod_Config Rod_Move
Clock_Event External Rod_Move
Temp_Update Temperature Rod_Move

Sample transitions

Trigger_ Event: Temp_Update
Condition: Temperature in Too Hot
Output Action: Panic_Event

Trigger_ Event: Temp_Update
Condition: Rod_Movement in Ready and Temperature in Hot
output Action: Initiate_Move

Trigger_Event: Clock_Event
Condition: Rod_Movement in Just_Moved and
t > t(entered(Just_Moved))+ Move_Delay

Leap of faith

 Statecharts (and variants) can be
used to specify important,
complex systems

J-3

Question

* So we have a big statecharts-like
specification

* How do we know it has properties we
want it to have?
— Ex: is it deterministic?
— Ex: can you ever have the doors unlock by

themselves while the car is moving?

— Ex: can you ever cause an emergency

descent when you are under 500 feet
above ground level?

Standard answers include

e Human inspection
e Simulation
e Analysis

An alternative: model checking

< Evaluate temporal properties
of finite state systems Temporal Logic Finite State
. Formula Machine
—Guarantee a property is true
or return a counterexample
—Ex: Is it true that we can never

enter an error state?
—Ex: Are we able to handle a ||
reset from any state?
« Extremely successfully for
hardware verification Yes| Noj
—Intel got into the game after
the FDIV error

« Open question: applicable to
software specifications?

State Transition Graph

* One way to represent a finite state
machine is as a state transition graph
— Sis afinite set of states
— Ris abinary relation that defines the
possible transitions between states in S
— Pis afunction that assigns atomic
propositions to each state in S
« e.g., that a specific process holds a lock
» Other representations include regular
expressions, etc.

Example

* Three states
« Transitions as

shown °
« Atomic properties a,

b andc ‘
« Given a start state,

you can consider

legal paths through

the state machine

A computation tree

« From a given start
state, you can 6
represent all
possible paths with
an infinite
computation tree

« Model checking

allows us to answer ° e
questions about this
tree structure

J-4

Temporal formulae

« Temporal logics allow us
to say things like
—Does some property
hold true globally?
« Top figure
—Does some property
inevitably hold true?
« Bottom figure
—Does some property
potentially hold true?

Mutual exclusion example

N1 & N2, non-critical
regions of Process 1
and 2

T1 & T2, trying regions
C1and C2, critical
regions

AF(C1) in lightly shaded @ @ @ @
state?
— C1 always inevitably

true? @ @

EF(C1 A C2)in dark
shaded state?

— Cland C2eventually
true?

How does model checking
work? (in brief!)

* An iterative algorithm that labels
states in the transition graph with
formulae known to be true

* Foraquery Q
— the first iteration marks all subformulae of

Q of length 1
— the second iteration marks them of length
2

— this terminates since the formula is finite
» The details of the logic indeed matter
— But not at this level of description

Example

Q=Tl=AFCl

— If Process 1is trying to acquire the mutex,
then it is inevitably true it will get it
sometime

Q=-T1VvAFC1l

— Rewriting with DeMorgan’s Laws

First, label all the states where T1, —T1,
and C1 are true

— These are atomic properties

Example

« Next mark all the
states in which AF
Clis true, etc.

—The algorithm tracks
states visited using
depth-first search

—Slight variations for $ @ @ @
AF, AG, EF, EG, etc.

« At termination, & @
—T1v AF Clis true

everywhere

—Hence the temporal
property is true for
the state machine

Symbolic model checking

State space can be huge (>2100) for

many systems

Key idea: use implicit representation

of state space

— Data structure to represent transition
relation as a boolean formula

Algorithmically manipulate the data

structure to explore the state space

Key: efficiency of the data structure

Binary decision diagrams (spps)

“Folded decision tree”

Fixed variable order

Many functions have small

BDDs

— Multiplication is a notable
exception

Can represent

— State machines (transition
functions) and
— Temporal queries

Due to Randy Bryant

BDD-based model checking

* lterative, fixed-point algorithms that
are quite similar to those in explicit
model checking

» Applying boolean functions to BDDs is
efficient, which makes the underlying
algorithms efficient
— A becomes set intersection, v becomes set

union, etc.

* When the BDDs remain small, that is

— Variable ordering is a key issue

BDD-based successes in HW

IEEE Futurebus+ cache
coherence protocol

Control protocol for Philips stereo
components

ISDN User Part Protocol

Software model checking

« Finite state software specifications
— Reactive systems (avionics, automotive,
etc.)
— Hierarchical state machine specifications
* Not intended to help with proving
consistency of specification and
implementation

— Rather, checking properties of the
specification itself

Why might it fail?

« Software is often specified with infinite
state descriptions

« Software specifications may be
structured differently from hardware
specifications
— Hierarchy

— Representations and algorithms for model
checking may not scale

Our approach at UW—try it!

« Applied model checking to the specification
of TCAS I
— Traffic Alert and Collision Avoidance System

« Inuse on U.S. commercial aircraft

« http://www.faa.gov/and/and600/and620/newtcas.htm
— FAA adopted specification
— Initial design and development by Leveson et al.
Later applied it to a statecharts description of
an electrical power distribution system model
of the B777
— I can provide examples and papers

J-6

el
@ TCAS

* Warn pilots of traffic

— Plane to plane, not through ground controller
— On essentially all commercial aircraft
 Issue resolution advisories only

— Vertical resolution only

— Relies on transponder data

TCAS specification

* Irvine Safety Group (Leveson et al.)
— Specified in RSML as a research project

* RSML is in the Statecharts family of hierarchical
state machine description languages

— FAA adopted RSML version as official
» Specification is about 400 pages long
» This study uses: Version 6.00, March
1993

— Not the current FAA version

TCAS—high-level structure
[on]

Own_Aircraft Other_Aircraft

Own_Aircraft
Sensitivity levels, Alt_Layer, Advisory_Status
Other_Aircraft
Tracked, Intruder_State, Range_Test, Crossing,
Sense Descend/Climb

Using SMV

*SMV is a BDD-based model checker

*It checks CTL formulas
—A specific temporal logic

TCAS Partial TCAS
(RSML) (sMV)
Model Checker
(SMv)

Properties
()

Iterative process

Iterate SMV version of

specification

Clarify and refine temporal

formula

« Model environment more
precisely

« Refine specification

Use of non-determinism

 Inputs from environment
- Altitude := {1000..8000}

e Simplification of functions
- Alt Rate := 0.25* (Alt Baro-ZP)/Delta t
- Alt Rate := {-2000..2000}
* Unmodelled parts of specification
— States of other_ Aircraft treated as non-
deterministic input variables

J-7

Translating RSML to SMV

MODULE main
VAR

state:{ON, OFF};
On on_event: boolean;
off event: boolean;

ASSIGN
init(state) := OFF;
next (state) := case
state = ON &

off event: OFF;

state = OFF &
on_event: ON;
1 : state;
esac;

Off

State encoding

« Flatten nested AND
and nested OR states

* One variable for each
OR state

— An enumerated type
of the alternatives

VAR

s: {a,B,C};
T: {D,E};
u: {F,G};

Events

External—interactions with
environment
Internal—micro steps
Synchrony hypothesis

— External event arrives

— Triggers cascade of internal events (micro
steps)

— Stability reached before next external
event

Technical issues with micro steps

Non-deterministic transitions

¢« A machine is deterministic if at
mostoneof T A B, T A _c, etc. can
be true
- T A B represents the conditions

under which a transition is taken
from state a to state B

— Else non-deterministic

Checking properties

Initial attempts to check any property
generated BDDs of over 200MB

First successful check took 13 hours
— Was reduced to a few minutes
Partitioned BDDs

Reordered variables

Implemented better search for
counterexamples

Property checking

« Domain independent properties
— Deterministic state transitions
— Function consistency
* Domain dependent
— Output agreement
— Safety properties
* We used SMV to investigate some of

these properties on TCAS’
Oown_Aircraft module

J-8

Disclaimer

The intent of this work was to evaluate
symbolic model checking of state-based
specifications, not to evaluate the TCAS Il
specification. Our study used a
preliminary version of the specification,
version 6.00, dated March, 1993. We did
not have access to later versions, so we do
not know if the issues identified here are
present in later versions.

Deterministic transitions

* Do the same conditions allow for non-
deterministic transitions?

* Inconsistencies were found earlier by
other methods [Heimdahl and Leveson]
— Identical conditions allowed transitions

from Sensitivity Level 4to SL 2orto SL 5

» Our formulae checked for all possible
non-determinism; we found this case,
too

‘ Note: Earlier version of TCAS spec ‘

Function consistency

*Many functions are

defined in terms of

v, if C
cases F oo Vl ir Cl
« A function is 2 }f C2
inconsistent if two vV, 1t G
different conditions
C;and C; and be true AG 1{(C, & C)
simultaneously (C, & C)

(C, & C,))

V_254a := MS = TA_RA | MS = TA only | MS =3 | MS = 4 |
MS =5 | MS =6 | MS = 7;
V_254b := ASL = 2 | ASL = 3 | ASL = 4 | ASL = 5 |
ASL = 6 | ASL = 7;
T 254 := (ASL = 2 & V_254a) | (ASL = 2 & MS = TA only) |
(V_254b & LG = 2 & V524a);
V_257a := LG =5 | LG = 6 | LG = 7 | LG = none;
V_257b := MS = TARA | MS =5 || MS =6 | MS = 7;
V_257c := MS = TARA | MS = TA only | MS = 3 | MS = 4 |
MS =5 | MS =6 | MS = 7;
V_257d := ASL = 5 | ASL = 6 | ASL = 7;
T 257 := (ASL = 5 | V_257a | V_257b) |
(ASL = 5 & MS = TA_only) |
(ASL = 5& LG = 2 & V_257c) |
(V_257d & LG = 5 & V_257b) |
(V_257d & V_257a & MS = 5);
Displayed Model_Goal =
0 if Composite RA not in state Positive
Max(Own_Track Alt Rate, if (New_Climb or New.Threat) and
PREV(Displayed_Model Goal), not New_Increase_Climb and
1500 ft/min) not (Increase_Climb_Cancelled or

Increase_Descend Cancelled) and
Composite RA in state Climb

Min(Own_Track_Alt_Rate,
PREV (Displayed_Model_Goal),
~1500 ft/min)

2500 ft/min if New Increase Climb

—2500 ft/min if New_Increase Descend
Max(Own_Track_Alt_Rate, if Increase Climb_Cancelled and
1500 ft/min) not New Increase Climb and

Composite_RA in state Positive

Min(Own_Track_Alt Rate, if Tncrease_Descend Cancelled and
~1500 ft/min) not New_Increase Descend and
Composite RA in state Positive

Prev(Displayed Model Goal) ~ Otherwise

Display_Model_Goal

» Tells pilot desired rate of altitude
change

« Checking for consistency gave a

counterexample

- Other_ Aircraft reverse from an
Increase-Climb to an Increase-
Descend advisory

— After study, this is only permitted in our
non-deterministic modeling of
Other Aircraft

— Modeling a piece of other_ Aircraft’s
logic precludes this counterexample

J-9

Output agreement

* Related outputs should be consistent
— Resolution advisory
e Increase-Climb, Climb, Descend,
Increase-Descend
-Display Model Goal
« Desired rate of altitude change
» Between -3000 ft/min and 3000 ft/min
— Presumably, on a climb advisory,
Display Model Goal should be
positive

Output agreement check

¢ AG (RA = Climb -> DMG > 0)

— If Resolution Advisory is Climb, then
Display Model Goal is positive

* Counterexample was found

-t, : RA = Descend, DMG = -1500
- t; : RA = Increase-Descend, DMG = -2500
-t, : RA = Climb, DMG = -1500

Limitations

e Can’t model all of TCAS
— Pushing limits of SMV (more than 200 bit
variables is problematic)
— Need some non-linear arithmetic to model
parts of other Aircraft
« New result that represents constraints as BDD
variables and uses a constraint solver
* How to pick appropriate formulae to
check?

Whence formulae?

“There have been two pilot reports
received which indicated that TCAS
had issued Descend RA's at
approximately 500 feet AGL even
though TCAS is designed to inhibit
Descent RAs at 1,000 feet AGL. All
available data from these encounters
are being reviewed to determine the
reason for these RAs.” —-TCAS web

Whence formulae?

« Jaffe, Leveson et al. developed criteria that
specifications of embedded real-time
systems should satisfy, including:

— Allinformation from sensors should be used

— Behavior before startup, after shutdown and during
off-line processing should be specified

— Every state must have a transition defined for every
possible input (including timeouts)

« Predicates on the transitions must yield deterministic
behavior

» Essentially a check-list, but a very useful one

What about infinite state?

* Model checking does not apply to infinite
state specifications
— The iterative algorithm will not reach a fixpoint

* Theorem proving applies well to infinite state
specifications, but has generally proved to be
unsatisfactory in practice

* One approach is to abstract infinite state
specifications into finite state ones
— Doing this while preserving properties is hard

« D.Jackson et al.’s Nitpick approach

— Find counterexamples (errors), but don't “prove”
anything

J-10

Model checking wrap up

* The goal of model checking is to allow finite
state descriptions to be analyzed and shown
to have particular desirable properties

— Won't help when you don’t want or need finite state
descriptions

— Definitely added value when you do, but it's not
turnkey yet
« There's still areal art in managing model checking
— Definitely feasible on modest sized systems

I know this was quick

* My goal isn’t to make you into model
checking experts
— But it might titillate one or two of you to

learn more

» But rather to understand the sketches
of what model checking is and why it
is so promising for checking some
classes of specifications

It's show timel!

* Michael Jackson’s keynote address at
the 17t International Conference on
Software Engineering (ICSE 17)

— 1000 researchers, educators, and
practitioners

— Other keynoters: Fred Brooks, Michael
Cusamano

» Discussion on the mailing list...

The World

and

The Machine

Michael Jackson

M AJ Consulting Lid and AT&T Bell Laboratories
1CSE-17 Searle 2810 Apil 1995

Ways of Looking at Software

* ‘Programming should be literate’

+ ‘... they regarded my programs as logical poems ...
* ‘The goal of any system is arganisational change’

+ ‘Software development is ergincering”

= Becausc we make machines to serve uscful
purposes in the warid

The problem is in the World

+ The Machine is the solution

WHAT and HOW

* WHAT does an automobile do?

« Tt carries peapie and their baggage, travelling over
roads where its driver directs it to go

« WHAT is in the world, HOW is in the machine

J-11

The Machine, the Model, and the World

AN

The e
Computer [semantic] ogo
System Model O ﬁ‘ m}
The Real World

Formal Methads concern the left arrow
‘We have no theory for the right arrow

Brian Cantwell Smith; The Limits of Correctness

Talking about the World and the Machine

To develop software we must talk both
about the World and about the Machine

But it’s hard to maintain the right balance
between these two universes of discourse

« The relationship between them is varied
and often subtle

= Often we have personal preferences to
exploit or resist

Three Topics and a Button

4 Facets of the Relationship

4 Kinds of Denial of the World

4 Principles for Accepting the World

a Button:

4 Facets of the Relationship

Modelling:
the Machine as a model of the World

Interface:
what the Machine shares with the World

Engineering:
how the Machine changes the World

Problem:
the structure the Machine must have to
fit the problem in the World

Modelling a Reality

‘An SADT system description is called a “model” ...
R L Ackoff (Scientific Method, 1962):

* Iconic models — pictures, 3-D representations,
eg achild’s model farm

= Analytic models — manipulable formal
descriptions, eg differential equations
forming an economic model

= Analogic models — an analogous reality,
eg an electrical network modelling the
flow of water in pipes

Software models are analogic: eg, a database,
an asscmblage of objects, a process network

The Machine As a Model of the World

Authors, A-Records,
Novels, N-Records,
PublishedBy PointsTo
A{x) = xis an Author’ Alx) = xis A-record
Ngx) ='xis a Novel' N(x) = x is N-Record
Pixy) Plx.y)
= 'xis PublishedBy y' =" PointsTo y'
o N{x) e
EVALIT
Pxy)

J-12

Modelling and (D

+ A data model fragment:

Published
By

* Three sets of descriptions:

Descriptions
True of
the World

Descriptions
True of
the Machine

Non-Medelling and (D

+ Both the World and the Machine have propertics
that are private and not shared

+ Record Delketion
+ Normalisation

« Multiple Authors
« Anonymous Works

« Record Sequencing
« Null Ficld Values

« Multiple Pseudonyms
+ Linked Novels

The Machine — World Interface
« Shared phenomena: evenis, other shared individuals,
facts visible in both domains

+ No communication without sharing:

is ‘really’ ...

Royal Mail || — u] %

shared evenr shared evenr
‘posi lerrer’ ‘deliver lerrer”

Shared Phenomena

Operator’s Panel Domain Cirenits and Comacts Domain

* Shared phenomena:

eleves — o Swilches
+FlipUpevents .« TumOffevents
+FlipDownevents — « TumOn evenis

« Private phenomena:

+Links + Contacts
*LinkedBy * LocatedOn
(xLever, y:Link) (x:Contact, y:Switch)

Shared Phenomena and

+ The shared phenomena are in the (small)
intersection between two sets of phenomena:

PM
Phenomena
of the Machine

PW

of the World

Modelling and Shared Phenomena
s Sharing phenomena and modeiling are different
relationships between the Machine and the World
« Shared phenomena — modelling

+ Any description that is truc of the shared
phenomena is a shared descriptions

= But...
¢ ... = (modelling — shared phenomena)

= The database shares no phenomena with
the reality it models

J-13

Engineering: Requirements,
Specifications, and Programs

The purpose of the Machine is to change the World:
this is the requirement

The required changes are expressible entirely in
terms of phenomena of the World ...

... but not usually entirely in terms of phenomena
shared with the Machine

The final engineering product:
» Machine behaving according to the program ...
= ... thos satisfying the specification and ...

+ ... thus ensuring achicvement of the requirement

Requirements, Specifications, Programs

W PM
Phenomena Phenotmena
of the World Shared) o ipe Machine

Requirements Specifications Programs

+ A specification is also a requirement

« A specification is ako a program

Engineering and

PM
Phenormena
of the Machine

PW
Phenomena
of the World

PW ~PM
Shared
Phenomena

Programs can satisfy specifications only by virtue
of properiies of the machine (p/l semantics)

Specifications can satisfy requirements only by
virtue of properries of the world

The engineering is in determining, describing and
exploiting the properties of the world

A Little Engineering Example

Aeroplane,
Runway, etc

on_runway

wheels_tuming wheel_pulses

« R:on_runway ¢ can_reverse

DI: wheel_pulses <> wheels_torning
D2: wheels_turning <> on_runway

« 5:can_reverse «» wheel_pulses

+ We have: §, D1, D2 - R —is it enongh?

Properties of the World

on_munway can_reverse

wheels_tuming wheel_pulses

Requirement
‘ []

@—_g¢@ Property of the World (?)
@—® Specification

The Problem Facet of the Relationship

+ Solution strocture shouold reflect problem stractore

= There’s less need for invention
= It’s easier to validate the solution

« Traditional solution structares are often
hierarchical and homogeneous ...

= Procedure hierarchies, class hierarchies, layered

abstract machines, process/dataflow structures

+ ... but the World rarely exhibits such stroctores

J-14

A Simple Editing Tool

+ Three require ments:

Editing allows users to create and edit texts

GO provides convenient and efficient operation

Revision History provides progress reporting by
users and texts

+ The requirements are related by conjunction:
= Editing ~ GUI A Revision History

= The requirements share pheromena

Two Requirements Sharing Phenomena

Revision Histy

i g dacument
find_wor open_to_update log_on
save_document delete_decument

Problem Structures

Problems are usually structured as subproblems
that are:

» heterogencous
» related by superimposition

+ pinned together at sharcd phenomena

The appropriate metaphor is ...
* ... net assemblies and sub-assemblies

» ... but CYMK scparations in colour printing

The World and Us (1)

“The world is too much with us ..."”
— William Wordsworih

4 Kinds of Denial

= How we may deny our involvement
= Denial by Prior Knowledge
+ Denial by Hacking
= Denial by Abstraction

+ Denial by Vagueness

Denial by Prior Knowledge

“We don’t need a requirements capture phase.
The problem is already well-defined; our task is
merely to solve it.”

« Automobile designers don’t have a requirements
capture phase ...

= The car shall be able to travel over snowdrifts
and under water

The car shall be able to lift a load of 5 tons

The car shall accommodate 10 passengers each
of weight up to 500 pounds

+ ... it would be called ‘Rethinking the Motor-car’

J-15

Denial by Prior Knowledge

Legitimate only in applications that are both
specialised and standardised

Both bridge-design and automobile design are
specialised

But only automobile design is siardardised (human
beings, roads and baggage don’t vary much)

Bridge design is not siandardised (each location
has unique characteristics)

Denial by Hacking

Computers are beautiful and fascinating

“ ... Miss Byron, young as she was, understood its
working and saw the great beanty of the invention.”
Mrs De Margan, on Ade’s visii to Babbage, 1828

Applications are often much less interesting

“1 came into this job to work with compnters, not

to be an amateur stockbroker.”
Member of failed development team, 1993

The Machine is the developers’ own creation;
the World is not

The Royal Albert Bridge, Saltash

I K Brunel, Engineer, 1849

Looking at the Problem Context

Orders Biling
Detailg

Accounts.
Dept

Customers|

Warshouse
In

‘Which is the World? Which is the Machine?

Which do you describe at the next level of DFDs?

Denial by Abstraction

“We come now to the decisive step of mathematical
abstraction: we forget what the symbols stand for.”
Hermann Weyl, quoted by Abeison & Sussman

= Abstraction is a valuable intellectual tool ...

« ... but it must not be a rule of life for software
developers

+ Too much abstraction blinds you to the natare
of many problems

Doing Justice to the Problem

“One tribe always tells the truth and the other always
lies. A traveller meets two men, and asks the first:
‘Are yon a truth teller?’. The reply is ‘“Goom™. The
second says: ‘He said Yes, but he is lying’.

Mariin Gardener, 2nd Book of Puzzies

Abstract answer:
“The reply must always be Yes; so the second
man is a truth-teller, and the first is a liar”

Lucy Jonelis® answen:
“The first man clearly can’t speak English: ‘Goom’
must mean ‘What?” or ‘Welcome to our land’.
So the second man is a liar, and the first is a
truth-teller.”

J-16

The Package Router

Incoming ____ =
Packages Reading Station
Sensors at Top
and Bottom. <‘-. >
of each Pipe

b5 Two-position

S Swicha

Denial by Vagueness

= Central technique:

* Describe the Machine, but imply that
you’re describing the World

= Prerequisite:

= Avoid saying explicitly what is being
described

» Facilitators:

= The modelling relationship (the same
description is true of both)

+ The shared phenomena at the interface
(two sides of the same penny, isn’t it?)

The System and the Real World

“ ... the Z approach is to construct a specification
document which consists of a judicious mix of
informal prose with precise mathematical statements.
... the informal text can be consulted to find ount what
aspects of the real world are being described.... The
formal text in the other hand provides the precise
definition of the sysrem and hence can be used to
resolve any ambiguities present in the informal text.”

Machine = system? World = real world?

Which is being described?

Talking About the World: 4 Principles

von Neumann’s principle

+ Knowing what yeu're talking about
The principle of reductionism

» Finding the solid ground

The Shanley principle

= Recognising versatility
Montaigne’s principle

= Minding your language

von Neumann's Principle

“There is no point in using exact methods where
there is no clarity in the concepts and issnes to
which they are to be applied.”

von Neumann & Morgansiern: Theory of Games

Designations

Mother(x,y) =~ ‘xisthe genetic mother of y’

Formal term = recognition rule

Anticipate interventions of the form:
“It all depends on what yon mean by mother”

Aligning a Description

Ordnance
Survey
Triangulation
Point

« Designated terms and phenomena are like
triangulation points on the map and on the
ground

J-17

The Principle of Reductionism
In any informal world many terms — often nonns
in English — are obviously important ...
+ in telephony: calls
* in a meeting-scheduling system: meerings
= in an airline system: flights
... but difficult or even impossible to designate

They must be reduced to elementary
designated phenomena — often evenis

Reducing Domain Concepts

ight irip,

g stage
Reduction of Rebuilding of
Informal Terms Defined Terms

Designated take. off Tand,
Terms board, disembark

« The rebuoilt defined terms are not the original
informal terms

¢ Definition is not designation

The Shanley Principle

“In civil engineering design it is presently a
mandatory concept known as the Shanley Design
Criterion to collect several functions into one part.”

Pierre Arnoul de Marneffe, cited by D Knuth, 1974

= 1940-1945 rockets had scparate components for
fuel tank, outer skin, body frame

= Saturn-B had a tubular body that was at once its
fuel tank, outer skin, and body frame

Tt may (or may not) be good to engineer Machines
in this way. but the World is certainly like this!

* No class hierarchy, no strong typing!

Shanley and Many Descriptions

Editing Requirement
Operation O requested
ontext T

Revision History Requiremert
Operation O requested
ontext T by user U

GUI Requirements
Operation O requested
by dlicking button B

» One description is not enough

Montaigne's Principle
“The greater part of this world’s troubles are due
to questions of grammar.”

Demanded for some Government contracts:

“Absolute tense ‘shall’: a binding, measurable
requirement

“Fuoture tense *will’: a reference to the future, ...
not under control of the system being specified.

“Present tense: for all other verbs”
The distinction is not of renses, but of meads
* Optative: desired in the World

= Indicative: truc regardiess of the Machine

Indicative and Optative

Nataral language distinctions are impractical:
= “I shall drown, no-one will save me!™
= “I will drown, no-one shall save me!™

Moed of a in develop hanges with
its context:

= 1In handling the Revision Histary requirement,
the Editing requirement should be treated as
satisfied — not optative but indicative

So indicative and optative sentences should be
kept apart in separate descriptions

J-18

Three Topics and a Button

+ 4 Facets of the Relationship

The Machine as a msdel of the World
The interface of shared phenomena

Engineering the World and the Machine

Problem and solution structures

+ 4 Kinds of Denial of the World

* 4 Principles for Accepting the World

The World and Us (2)

“1 accept the universe”

— Margaret Fuller

“By Gad! she’d better!”

— Thomas Carlyle

Good night

* Hope you enjoyed your night at
the movies with Michael Jackson

» Let's leave discussion to the
mailing list

J-19

