
J-1

CSE584: Software Engineering
Lecture 10: Wrap-up

David Notkin
Computer Science & Engineering

University of Washington
http://www.cs.washington.edu/education/courses/584/

Tonight

• A few brief technical topics
• Fred Brooks video
• Course evaluations (during or

after video)

Unassigned papers in course
pack

• B.W. Boehm (1988). A spiral model of
software development and enhancement.

• L. Hatton (1997). Reexamining the fault
density: Component size connection.

• N.G. Leveson (1986). Software safety: Why,
what and how.

• D.L. Parnas & P. Clements (1986). A rational
design process: How and why to fake it.

• D.L. Parnas & D.M. Weiss (1985). Active
design reviews: Principles and practices.

Spiral model

• A risk-reduction
software process

• In the waterfall
model, “bad”
decisions are
identified very late

–Vastly increasing the
cost of fixing them

• In the spiral model,
the risks are
explicitly identified
and accounted for

– Iteratively

Reexamining the fault density:
Component size connection

• Conventional wisdom is that smaller
components contain proportionately
fewer faults

• Hatton empirically found that medium-
sized components were
proportionately more reliable than
large or small ones

• That is, there may be a “sweet spot” in
component size with respect to faults

More

• It seems plausible, on another basis, that this
sweet spot might exist

• Many system faults occur because of
problems that arise at the interfaces of
components

• Having a large number of small components,
like in OO, may increase the number of
interfaces and hence potential problems at
the interfaces

• None of this should recommend building
components of specific sizes
– But it should keep our minds open about

conventional wisdom, among other things

J-2

Software safety

• Software safety concerns reducing the risk of harm to
people, the environment, or the economy when
systems containing software fail
– If you don’t read comp.risks, you might want to peek at it

now and then
• It is distinct from reliability, which focuses on

increasing the chances that a system works properly
• Leveson literally wrote the book on this topic:

Safeware: System Safety and Computers, Addison-
Wesley, 1995

• Much of it is rooted in system analysis, with a focus on
software requirements and specifications
– The abilities of the human play a key role in her work
– She’s also worked more recently on human-centered

design for safety

Rational design process

• A rational design process is one in which
every step has a reason

• Even if a design is achieved through a
muddled (not fully top-down nor bottom-up)
process, it doesn’t mean there aren’t reasons

• Faking a rational design process after the
fact allows revisionist history to be used to
write clear documentation

• The inability to do so indicates a lack of
clarity and conceptual integrity in the design

Active design reviews

• There is significant evidence that
design reviews reduce errors in
software systems
– Boehm/Basili’s rule of thumb is that peer

reviews catch 60% of the defects

• Active design reviews are (in essence)
disciplined and structured reviews
– Not just a bunch of geeks in a room

looking over a design
– Another Boehm/Basili rule of thumb is that

perspective-based reviews catch 35%
more defects than nondirected reviews

Cost

• The cost of reviews is a key question
• The cost of preparing and holding the

reviews is reasonably easy to identify
• The scheduling cost to a project due to

delays in scheduling reviews is less
clear

Bohem/Basili rules of thumb:
IEEE Computer January 2001

• Finding and fixing a software problem after
delivery is often 100 times more expensive
than finding and fixing it during the
requirements and design phase

• Current software projects spend about 40-
50% of their effort on avoidable rework

• About 80% of avoidable rework comes from
20 percent of the defects

• About 80 percent of the defects come from
20 percent of the modules, and about half
the modules are defect free

• About 90% of the downtime comes from, at
most, 10 percent of the defects

• [already shown]
• [already shown]
• Disciplined personal practices can reduce

defect introduction rates by up to 75%
• All other things being equal, it costs 50%

more per source instruction to develop
high-dependability software products than
to develop low-dependability software
products. However, the investment is more
than worth it if the project involves
significant operations and maintenance
costs

• About 40-50% of user program contain
nontrivial defects

J-3

Comments? Questions?

If not, let’s roll the movie…

Thanks for the quarter…

