CSE P 501 — Compilers

Loops
Hal Perkins
Autumn 2023

UW CSE P 501 Autumn 2023

U-1

Agenda

* Loop optimizations
— Dominators — discovering loops
— Loop invariant calculations

— Loop transformations

* A quick look at some memory hierarchy issues
(if we have time)

* Largely based on material in Appel ch. 18, 21;
similar material in other books

UW CSE P 501 Autumn 2023 U-2

Loops

Much of the execution time of programs is spent
inside loops

. worth considerable effort to make loops go
faster

. want to figure out how to recognize loops and
figure out how to “improve” them

UW CSE P 501 Autumn 2023 U-3

What’s a Loop?

* In source code, a loop is the set of statements
in the body of a for/while construct

* But, in a language that permits free use of

GOTOs, how do we recognize a

* In a control-flow-graph (node =

oop?

nasic-block,

arc = flow-of-control), how do we recognize a

loop?

UW CSE P 501 Autumn 2023

U-4

Any Loops in this Code?

L7:
L8:

L4:
L5:

L2:

L3:
L1:
LO:

1 =20

goto L8

i++

if (i < N) goto L9

s =0

j =20

goto L5

Jj++

N--

if(j >= N) goto L3

if (a[j+1] >= a[j]) goto L2
t = a[j+1]

a[j+1] = a[]]

a[j] = t

s =1

goto L4

if(s != @) goto L1 else goto L9
goto L7

return

UW CSE P 501 Autumn 2023

Anyone recognize or
guess the algorithm?

U-5

Any Loops in this Flowgraph?

UW CSE P 501 Autumn 2023

U-6

LooP in a Flowgraph: Intuition

//, Header
Node

_ | /

» Cluster of nodes, such that:

« There's one node called the "header"
« I can reach all nodes in the cluster from the header

UW CSE P 501 Autumn 2023 u-7

What’s a Loop?

* In a control flow graph, a loop is a set of nodes
S such that:

— S includes a header node h

— From any node in S there is a path of directed
edges leading to h

— There is a path from h to any node in S

— There is no edge from any node outside S to any
node in S other than h

UW CSE P 501 Autumn 2023 U-8

Entries and Exits

* Inaloop

— An entry node is one with some predecessor
outside the loop

— An exit node is one that has a successor outside
the loop

e Corollary: A loop may have multiple exit
nodes, but only one entry node

UW CSE P 501 Autumn 2023

U-9

Loop Terminology
N/

preheader

entry edge

head

back loop

edge

exit edge

UW CSE P 501 Autumn 2023 U-10

Finding Loops in Flow Graphs

e We use dominators for this
e Recall:

— Every control flow graph has a unique start
node s,

— Node x dominates node y if every path from s,
to y must go through x

— A node x dominates itself

UW CSE P 501 Autumn 2023 U-15

Calculating Dominator Sets

* D[n]is the set of nodes that dominate n

— D[so] = {50}
— D[n] ={n } U (Mpepredinl D[p])
e Set up an iterative analysis as usual to solve
this
— Except initially each D[n] must be all nodes in the
graph — updates make these sets smaller if

changed

 WARNING: this is different from the DOM(x) relationship we used
with SSA — that was the set of all blocks dominated by x (sigh)

UW CSE P 501 Autumn 2023 U-16

Immediate Dominators

* Every node n has a single immediate dominator
idom(n)
— idom(n) dominates n
— idom(n) differs from n —i.e., strictly dominates

— idom(n) does not dominate any other strict
dominator of n

* i.e., strictly dominates and is nearest dominator

e Fact (er, theorem): If a dominates n and
0 dominates n, then either a dominates b or
b dominates a

. idom(n) is unique

UW CSE P 501 Autumn 2023 u-17

Node

D[node]

IDOM

10

11

12

UW CSE P 501 Autumn 2023

U-18

Dominator Tree

A dominator tree is constructed from a
flowgraph by drawing an edge between every
node in n and the corresponding idom(n)

— This will be a tree. Why?

UW CSE P 501 Autumn 2023 U-19

Node | D[node] IDOM
1 1 --
2 1,2 1
3 1,2,3 2
4 1,2,4 2
5 1,2,4,5 4
6 1,2,4,6 4
7 1,2,4,7 4
8 1,2,4,5,8 5
9 1,2,4,5,8,9 8
10 |1,2,45,8,9,10 9
11 1,2,4,7,11 7
12 1,2,4,7,11,12 11

UW CSE P 501 Autumn 2023

U-20

Back Edges & Loops

* Aflow graph edge from a node n to a node h
that dominates n is a back edge

— In our example, from nodes 3 and 4 to 2; from 9
to 8; from 10to 5

* (And a node can have a back edge to itself! — although
not in our example)

* For every back edge there is a corresponding
subgraph of the flow graph that is a loop

UW CSE P 501 Autumn 2023 U-21

Natural Loops

* |f h dominates n and n->h is a back edge, then
the natural loop of that back edge is the set of
nodes x such that

— h dominates x

— There is a path from x to n not containing h
* histhe header of this loop

e Standard loop optimizations can cope with
loops whether they are natural or not

UW CSE P 501 Autumn 2023 U-22

Inner Loops

* Inner loops are more important for
optimization because most execution time is

expected to be spent there

* |f two loops share a header, it is hard to tell

which one is “inner”

— Common way to handle this is to merge natural
loops with the same header
* Resulting loop could well not be a “natural loop”

UW CSE P 501 Autumn 2023 U-23

Inner (nested) loops

* Suppose
— A and B are loops with headersaand b
—a#b
— b is inside A

* Then

— The nodes of B are a proper subset of A
— B is nested in A, or B is the inner loop

UW CSE P 501 Autumn 2023 U-24

Loop-Nest Tree

* Given a flow graph G
1. Compute the dominators of G
2. Construct the dominator tree

3. Find the natural loops (thus all loop-header
nodes)

4. For each loop header h, merge all natural loops
of h into a single loop: loop[h]

5. Construct a tree of loop headers s.t. h, is above
h, if h,isinloop[h]

UW CSE P 501 Autumn 2023 U-25

Node | DOM IDOM
1 1
2 1,2 1
3 1,2,3 2
4 1,2,4 2
5 1,2,4,5 4
6 1,2,4,6 4
7 1,2,4,7 4
8 1,2,4,5,8 5
9 1,2,4,5,8,9 8
10 |1,2,4,5,8,9,10 9
11 |1,24,7,11 7
12 11,2,4,7,11,12 11

UW CSE P 501 Autumn 2023

Loop nest tree e

U-26

Loop-Nest Tree details

* Leaves of this tree are the innermost loops
* Need to put all non-loop nodes somewhere

— Convention: lump these into the root of the loop-
nest tree

UW CSE P 501 Autumn 2023 u-27

Loop Preheader

* Often we need a place to park code right
before the beginning of a loop

* Easy if there is a single node preceding the
loop header h

— But this isn’t the case in general

* Soinsert a preheader node p
— Include an edge p->h
— Change all edges x->h to be x->p

UW CSE P 501 Autumn 2023 U-28

Loop-Invariant Computations

* |dea: If x :=al op a2 always does the same
thing each time around the loop, we’d like to
hoist it and do it once outside the loop

 But can’t always tell if al and a2 will have the
same value

— Need a conservative (safe) approximation

UW CSE P 501 Autumn 2023 U-29

Loop-Invariant Computations

* d:x:=alopa2isloop-invariant if for each a.
— a, Is a constant, or

— All the definitions of a; that reach d are outside the
loop, or

— Only one definition of a, reaches d, and that definition
is loop invariant

* Use this to build an iterative algorithm

— Base cases: constants and operands defined outside
the loop

— Then: repeatedly find definitions with loop-invariant
operands

UW CSE P 501 Autumn 2023 U-30

Hoisting

 Assume that d: x:=al op a2 is loop invariant.
We can hoist it to the loop preheader if

— d dominates all loop exits where x is live-out, and
— There is only one definition of x in the loop, and
— x is not live-out of the loop preheader

* Need to modify this if al op a2 could have
side effects or raise an exception

UW CSE P 501 Autumn 2023 U-31

Hoisting t:=a op b Possible?

* Example 1 * Example 2
LO: t:=0 LO: t:=0
L1:i:=i+1 L1: ifi > n goto L2
d: t:=aopb i=i+1
MIi] :=t d: t:=aopb
if i < ngoto L1 M[i] :=t
L2: x:=t goto L1
L2: x:=t

UW CSE P 501 Autumn 2023 U-32

Hoisting t:=a op b Possible?

* Example 3 e Example 4

LO: t:=0 LO: t:=0

L1:i:=i+1 L1: M[j] :=t

d: t:=aopb i=i+1
MIi] :=t d: t:=aopb
t:=0 M[i] :=t
MIj] =t if i <ngoto L1
ifi<ngoto L1 L2: x:=t

L2: x:=t

UW CSE P 501 Autumn 2023 U-33

Hoisting t:=a op b Possible?

* Example 1 * Example 2
LO: t:=0 LO: t:=0
L1:i:=i+1 L1: ifi > n goto L2
d: t:=aopb i=i+1
Mli] :=t d: t:=aopb
if i < ngoto L1 M[i] :=t
L2: x:=t goto L1
L2: x:=1
OK Not OK — can’t hoist because

loop body isn’t always executed

UW CSE P 501 Autumn 2023 U-34

Hoisting t:=a op b Possible?

* Example 3 e Example 4
LO: t:=0 LO: t:=0
L1:i:=i+1 L1: M[j] :=t
d: t:=aopb i=i+1
Mli] :=t d: t:=aopb
t:=0 M[i] :=t
MIj] =t if i <ngoto L1
ifi<ngoto L1 L2: x:=t
L2: x:=t
Not OK — can’t hoist because Not OK — can’t hoist because
of multiple assignments to t t is used before assigned

UW CSE P 501 Autumn 2023 U-35

Induction Variables

e Suppose inside a loop
— Variable i is incremented or decremented

— Variable j is set to i*c+d where c and d are loop-
Invariant

* Then we can calculate j’s value without using |

— Whenever i is incremented by a, increment |
by a*c

UW CSE P 501 Autumn 2023 U-36

Example

* Original
s:=0
1:=0

L1: ifi>ngoto L2
ji=i*4
k:=j+a
X := MIKk]

S := S+X

= i+1

goto L1
L2:

* To optimize, do...

— Induction-variable analysis

to discover i and j are

related induction variables

— Strength reduction to

replace *4 with an addition

— Induction-variable

elimination to replacei2n

— Assorted copy propagation

UW CSE P 501 Autumn 2023

U-37

Result

e Original * Transformed
s:=0 s:=0
i:=0 k' =a

L1: ifi > ngoto L2 b=n*4
j:=i*4 c=atb
k:=j+a L1: if k" > c goto L2
X := M[K] X := M[K’]
S 1= S+X S 1= S+X
i=i+l k' :=k'+4
goto L1 goto L1

L2: L2:

Details are somewhat messy — see your favorite compiler book

UW CSE P 501 Autumn 2023 U-38

Basic and Derived Induction Variables

* Variableiis a basic induction variable in loop L
with header h if the only definitions of i in L have
the form i:=itc where c is loop invariant

e Variable k is a derived induction variable in L if:

— There is only one definition of k in L of the form k:=j*c
or k:=j+d where j is an induction variable and c, d are
loop-invariant, and

— if j is a derived variable in the family of i, then:

* The only definition of j that reaches k is the one in the loop,
and

 there is no definition of i on any path between the definition
of j and the definition of k

UW CSE P 501 Autumn 2023 U-39

Optimizating Induction Variables

e Strength reduction: if a derived induction variable
is defined with j:=i*c, try to replace it with an
addition inside the loop

* Elimination: after strength reduction some
induction variables are not used or are only
compared to loop-invariant variables; delete
them

* Rewrite comparisons: If a variable is used only in
comparisons against loop-invariant variables and
in its own definition, modify the comparison to
use a related induction variable

UW CSE P 501 Autumn 2023 U-40

Loop Unrolling

* |f the body of a loop is small, much of the time
is spent in the “increment and test” code

* |dea: reduce overhead by unrolling — put two
or more copies of the loop body inside the

loop

UW CSE P 501 Autumn 2023 U-41

Loop Unrolling

e Basicidea: Given loop L with header node h
and back edges s->h

1. Copy the nodes to make loop L' with header h’
and back edges s;’->h’

2. Change all back edges in L from s->h to s,->h’

3. Change all back edges in L' from s,’->h’ to s,’->h

UW CSE P 501 Autumn 2023 U-42

Unrolling Algorithm Results

* Before e After
L1: x := MJi] L1: x := M[i]
S:=S+X S:=Ss+X
i=i+4 i=1+4
if i<n goto L1 else L2 if i<n goto L1” else L2

L2: L1":x := M[i]
S:=S+X

l:=i+4

if i<n goto L1 else L2
L2:

UW CSE P 501 Autumn 2023 U-43

Hmmmm....

* Not so great — just code bloat

e But: use induction variables and various loop
transformations to clean up

UW CSE P 501 Autumn 2023 U-44

After Some Optimizations

* Before e After

L1: x := MJi] L1: x := M[i]
S:=Ss+X S:=Ss+X
i=i+4 X := M[i+4]
if i<n goto L1’ else L2 S:=S+X

L1":x := Mi] i=i+8
S:=S+X if i<n goto L1 else L2
l:=i+4 L2:

if i<n goto L1 else L2
L2:

UW CSE P 501 Autumn 2023

U-45

Still Broken...

* Butin a different, better(?) way

* Good code, but only correct if original number
of loop iterations was even

* Fix: add an epilogue to handle the “odd”
leftover iteration

UW CSE P 501 Autumn 2023 U-46

Fixed

* Before e After

L1: x := M[i] if i<n-8 goto L1 else L2

S:=S+X L1: x := MJi]

X := M[i+4] S:=S+X

S:=S+X X := M[i+4]

i:=i+8 S:=S+X

if i<n goto L1 else L2 i:=i+8
L2: if i<n-8 goto L1 else L2

L2: x := M[i]

S := S+X

| :=1+4
ifi<ngotoL2else L3
L3:

UW CSE P 501 Autumn 2023 u-47

Postscript

* This example only unrolls the loop by a factor
of 2

* More typically, unroll by a factor of K

— Then need an epilogue that is a loop like the
original that iterates up to K-1 times

UW CSE P 501 Autumn 2023 U-48

Memory Heirarchies

* One of the great triumphs of computer design
e Effectis a large, fast memory

e Reality is a series of progressively larger, slower,
cheaper stores, with frequently accessed data
automatically staged to faster storage (cache,
main storage, disk)

* Programmer/compiler typically treats it as one
arge store. (but not always the best idea)

 Hardware maintains cache coherency — most of
the time

UW CSE P 501 Autumn 2023 U-49

Intel Haswell Caches (typical example)

L1 = 64 KB per core

L2 = 256 KB per core

L3 = 2-8 MB shared

U-50

Just How Slow is Operand Access?

* Instruction ~5 per cycle
* Register 1 cycle
L1 CACHE ~4 cycles

UW CSE P 501 Autumn 2023 U-51

Implications

* CPU speed increases have out-paced increases
In memory access times

* Memory access now often determines overall
execution speed

* “Instruction count” is not the only
performance metric for optimization

UW CSE P 501 Autumn 2023 U-52

Memory Issues

* Byte load/store is often slower than whole
(physical) word load/store

— Unaligned access is often extremely slow

 Temporal locality: accesses to recently accessed
data will usually find it in the (fast) cache

e Spatial locality: accesses to data near recently
used data will usually be fast

— “near” = in the same cache block

 But — alternating accesses to blocks that map to
the same cache block will cause thrashing

UW CSE P 501 Autumn 2023 U-53

Data Alighment

e Data objects (structs) often are similar in size
to a cache block (= 64 bytes)

. Better if objects don’t span blocks

* Some strategies

— Allocate objects sequentially; bump to next block
boundary if useful

— Allocate objects of same common size in separate
pools (all size-2, size-4, etc.)

* Tradeoff: speed for some wasted space

UW CSE P 501 Autumn 2023 U-54

Instruction Alignment

e Align frequently executed basic blocks on cache
boundaries (or avoid spanning cache blocks)

* Branch targets (particularly loops) may be faster if they
start on a cache line boundary

— Often see multi-byte nops in optimized code as padding to
align loop headers

— How much depends on architecture (typical 16 or 32 bytes)

* Try to move infrequent code (startup, exceptions) away
from hot code

* Optimizing compiler can perform basic-block ordering

UW CSE P 501 Autumn 2023 U-55

Loop Interchange

 Watch for bad cache patterns in inner loops;
rearrange if possible

 Example
for(i=0;i<m; i++)
for(j=0;j<n;j++)
for (k =0; k < p; k++)
ali,k,j] = bl[i,j-1,k] + b[i,j,k] + b[i,j+1,k]

— bli,j+1,k] is reused in the next two iterations, but will
have been flushed from the cache by the k loop

UW CSE P 501 Autumn 2023 U-56

Loop Interchange

e Solution for this example: interchange j and k
loops
for(i=0;i<m; i++)
for (k=0; k < p; k++)
for(j=0;j<n;j++)
a[i,k,j] = b[i,j-1,k] + b[i,,k] + b[i,j+1,k]

— Now bli,j+1,k] will be used three times on each cache
load

— Safe here because loop iterations are independent

UW CSE P 501 Autumn 2023 U-57

Loop Interchange

* Need to construct a data-dependency graph
showing information flow between loop
iterations

* For example, iteration (j,k) depends on
iteration (j’,k’) if (j’,k’) computes values used in
(j,k) or stores values overwritten by (j,k)

— If there is a dependency and loops are
interchanged, we could get different results — so
can‘tdo it

UW CSE P 501 Autumn 2023 U-58

Blocking

* Consider matrix multiply
for(i=0;i<n;i++)
for(j=0;j<n;j++){
cli,j] =0.0;
for (k =0; k < n; k++)
cli,j] = cli,jl + ali,k]*b[k,]]
}
* |f 3, b fitin the cache together, great!

* |f they don’t, then every b[k,j] reference will be a cache
miss

* Loop interchange (i<->j) won’t help; then every al[i,k]
reference would be a miss

UW CSE P 501 Autumn 2023 U-59

Blocking

e Solution: reuse rows of A and columns of B
while they are still in the cache

e Assume the cache can hold 2*c*n matrix
elements (1 <c<n)

* Calculate c x ¢ blocks of C using c rows of A
and c columns of B

UW CSE P 501 Autumn 2023 U-60

Blocking

e Calculating c x ¢ blocks of C
for (i =1i0; i < i0+c; i++)
for (j =jO; j < jO+c; j++) {
cli,j] = 0.0;
for (k =0; k < n; k++)
cli,j] = cli,j] + ali,k]*b[k,j]

UW CSE P 501 Autumn 2023 U-61

Blocking

 Then nest this inside loops that calculate
successive ¢ x ¢ blocks

for (i0 =0; i0 < n; i0+=c)
for (j0 =0; j0 < n; jO+=c)
for (i =i0; i < i0+c; i++)
for (j =jO; j < jO+c; j++) {
cli,j] = 0.0;
for (k =0; k < n; k++)
cli,j] = cli,j] + ali,k]*blk,j]
}

UW CSE P 501 Autumn 2023 U-62

Parallelizing Code

 There is a large literature about how to
rearrange loops for better locality and to

detect parallelism
* Some starting points

— Latest edition of Dragon book, ch. 11

— Allen & Kennedy Optimizing Compilers for Modern
Architectures

— Wolfe, High-Performance Compilers for Parallel
Computing

UW CSE P 501 Autumn 2023 U-63

