CSE P 501 – Compilers

Dataflow Analysis
Hal Perkins
Autumn 2023

Agenda

- Dataflow analysis: a framework and algorithm for many common compiler analyses
- Initial example: dataflow analysis for common subexpression elimination
- Other analysis problems that work in the same framework
- Some of these are optimizations we've seen, but now more formally and with details

The Story So Far...

- Redundant expression elimination
 - Local Value Numbering
 - Superlocal Value Numbering
 - Extends VN to EBBs
 - SSA-like namespace
 - Dominator VN Technique (DVNT)
- All of these propagate along forward edges
- None are global
 - In particular, can't handle back edges (loops)

Dominator Value Numbering

- Most sophisticated algorithm so far
- Still misses some opportunities
- Can't handle loops

Available Expressions

- Goal: use dataflow analysis to find common subexpressions whose range spans basic blocks
- Idea: calculate available expressions at beginning of each basic block
- Avoid re-evaluation of an available expression
 - use a copy operation

"Available" and Other Terms

- An expression e is defined at point p in the CFG if its value is computed at p
 - Sometimes called definition site
- An expression e is killed at point p if one of its operands is defined at p
 - Sometimes called kill site
- An expression e is available at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p

Available Expression Sets

- To compute available expressions, for each block b, define
 - AVAIL(b) the set of expressions available on entry to b
 - NKILL(b) the set of expressions <u>not killed</u> in b
 - i.e., all expressions in the program except for those killed in b
 - DEF(b) the set of expressions defined in b and not subsequently killed in b

Computing Available Expressions

• AVAIL(b) is the set

```
AVAIL(b) = \bigcap_{x \in preds(b)} (DEF(x) \cup (AVAIL(x) \cap NKILL(x)))
```

- preds(b) is the set of b's predecessors in the CFG
- The set of expressions available on entry to b is the set of expressions that were available at the end of every predecessor basic block x
- The expressions available on exit from block b are those defined in b or available on entry to b and not killed in b
- This gives a system of simultaneous equations a dataflow problem

Name Space Issues

- In previous value-numbering algorithms, we used a SSA-like renaming to keep track of versions
- In global dataflow problems, we use the original namespace
 - we require a+b have the same value along all paths to its use
 - If a or b is updated along any path to its use, then a+b has the "wrong" value
 - so original names are exactly what we want
- The KILL information captures when a value is no longer available

Computing Available Expressions

- Big Picture
 - Build control-flow graph
 - Calculate initial local data DEF(b) and NKILL(b)
 - This only needs to be done once for each block b and depends only on the statements in b
 - Iteratively calculate AVAIL(b) by repeatedly evaluating equations until nothing changes
 - Another fixed-point algorithm

Computing DEF and NKILL (1)

- First, figure out which expressions are killed in each block (i.e., clobbered by some assignment later in that block)
- For each block b with operations o_1 , o_2 , ..., o_k

```
\begin{split} & \text{KILLED} = \varnothing \qquad // \ \textit{variables} \ \text{killed (later) in } \textit{b, } \text{not expressions} \\ & \text{DEF(b)} = \varnothing \\ & \text{for } i = k \text{ to } 1 \qquad // \text{ note: working back to front} \\ & \text{assume } o_i \text{ is } "x = y + z" \\ & \text{add } x \text{ to } \text{KILLED} \\ & \text{if } (y \not\in \text{KILLED and } z \not\in \text{KILLED}) \\ & \text{add } "y + z" \text{ to DEF(b)} \qquad // \text{ i.e., neither y nor } z \text{ killed} \\ & \text{ // after this point in } \textit{b} \end{split}
```

...

Computing DEF and NKILL (2)

 After computing DEF and KILLED for a block b, compute set of all expressions in the program not killed in b

```
NKILL(b) = { all expressions }
for each expression e
for each variable v \in e
if v \in KILLED then
NKILL(b) = NKILL(b) - e
```

Example: Compute DEF and NKILL

Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b

```
Worklist = { all blocks b_i }
while (Worklist \neq \emptyset)
remove a block b from Worklist
recompute AVAIL(b)
if AVAIL(b) changed
Worklist = Worklist \cup successors(b)
```


 $\mathsf{AVAIL}(\mathsf{b}) = \cap_{\mathsf{x} \in \mathsf{preds}(\mathsf{b})} \left(\mathsf{DEF}(\mathsf{x}) \cup \left(\mathsf{AVAIL}(\mathsf{x}) \cap \mathsf{NKILL}(\mathsf{x}) \right) \right)$

= processing

And the common subexpression is???

 $AVAIL(b) = \bigcap_{x \in preds(b)} (DEF(x) \cup (AVAIL(x) \cap NKILL(x)))$

 $\mathsf{AVAIL}(b) = \bigcap_{x \in \mathsf{preds}(b)} (\mathsf{DEF}(x) \cup (\mathsf{AVAIL}(x) \cap \mathsf{NKILL}(x)))$

Termination?

- Always
- AVAIL(b) initially all empty
- In equation above, DEF & NKILL are unchanging, and adding to AVAIL(x) can't shrink AVAIL(b)
- Only a finite number of exprs in the program, so the alg is climbing a finite n-cube; can't climb forever
- Order of worklist removals?
 - Any will work
 - Some are faster than others; e.g., if CFG is a DAG, then go in topological order (which would have been faster on the previous example)

Termination – more generally

- Suppose algorithm has a "state" vector $x = (x_1, x_2, ..., x_n)$, each $x_i^{(0,0,0)}$ from a *finite*, ordered set, say $\{0,1\}$ or $\{1,2,3\}$
- If each state transition (iteration of an alg, such as prev few slides) allowed, say, x_i to go up while x_j goes down, then ∞ iteration is possible: $(0,1) \rightarrow (1,0) \rightarrow (0,1) \rightarrow ...$
- *BUT*, if alg ensures that, at each iteration, old- $x_i \le \text{new-}x_i$, then termination is certain: You can only increase x_i a *finite* number of times before you hit the top value
 - Available expressions: set is bounded by set of all exprs in code
- E.g., if $x_i \in \{0,1\}$, $x = (x_1, x_2, ..., x_n)$ are corners of an n-cube; at worst, alg walks from (0,0,...,0) to (1,1,...,1) in \leq n steps
- Math Jargon: such a structure is typically called a "lattice".

Comparing Algorithms

- LVN Local Value Numbering
- SVN Superlocal Value Numbering
- DVN Dominator-based Value Numbering
- GRE Global Redundancy Elimination

Comparing Algorithms (2)

- LVN => SVN => DVN form a strict hierarchy later algorithms find a superset of previous information
- Global RE finds a somewhat different set
 - Discovers e+f in F (computed in both D and E)
 - Misses identical values if they have different names (e.g., a+b and c+d when a=c and b=d)
 - Value Numbering catches this

Scope of Analysis

- Larger context (EBBs, regions, global, interprocedural) sometimes helps
 - More opportunities for optimizations
- But not always
 - Introduces uncertainties about flow of control
 - Usually only allows weaker analysis
 - Sometimes has unwanted side effects
 - Can create additional pressure on registers, for example

Dataflow analysis

- Available expressions is an example of a dataflow analysis problem
- Many similar problems can be expressed in a similar framework
- Only the first part of the story once we've discovered facts, we then need to use them to improve code

Characterizing Dataflow Analysis

 All of these algorithms involve sets of facts about each basic block b

```
IN(b) – facts true on entry to bOUT(b) – facts true on exit from bGEN(b) – facts created and not killed in b
```

KILL(b) – facts killed in b

These are related by the equation

$$OUT(b) = GEN(b) \cup (IN(b) - KILL(b))$$

- Solve this iteratively for all blocks
- Sometimes information propagates forward; sometimes backward
 - But will reach correct solution (fixed point) regardless of order in which blocks are considered

Dataflow Analysis (1)

- A collection of techniques for compile-time reasoning about run-time values
- Almost always involves building a graph
 - Trivial for basic blocks
 - Control-flow graph or derivative for global problems
 - Call graph or derivative for whole-program problems

Dataflow Analysis (2)

- Usually formulated as a set of simultaneous equations (dataflow problem)
 - Sets attached to nodes and edges
 - Need a lattice (or semilattice) to describe values
 - In particular, has an appropriate operator to combine values and an appropriate "bottom" or minimal value

Dataflow Analysis (3)

- Desired solution is usually a meet over all paths (MOP) solution
 - "What is true on every path from entry"
 - "What can happen on any path from entry"
 - Usually relates to safety of optimization

Dataflow Analysis (4)

- Limitations
 - Precision "up to symbolic execution"
 - Assumes all paths taken
 - Sometimes cannot afford to compute full solution
 - Arrays classic analysis treats each array as a single fact
 - Pointers difficult, expensive to analyze
 - Imprecision rapidly adds up
 - But gotta do it to effectively optimize things like C/C++
- For scalar values we can quickly solve simple problems

Example:Live Variable Analysis

- A variable v is *live* at point p iff there is any path from p to a use of v along which v is not redefined
- Some uses:
 - Register allocation only live variables need a register
 - Eliminating useless stores if variable not live at store, then stored variable will never be used
 - Detecting uses of uninitialized variables if live at declaration (before initialization) then it might be used uninitialized
 - Improve SSA construction only need Φ-function for variables that are live in a block (later)

Liveness Analysis Sets

- For each block b, define
 - use[b] = variable used in b before any def
 - def[b] = variable defined in b & not killed
 - in[b] = variables live on entry to b
 - $\operatorname{out}[b] = \operatorname{variables}$ live on exit from b

Equations for Live Variables

Given the preceding definitions, we have

```
in[b] = use[b] \cup (out[b] - def[b])

out[b] = \cup_{s \in succ[b]} in[s]
```

- Algorithm
 - Set in[b] = out[b] = \emptyset
 - Update in, out until no change

Example (1 stmt per block)

Code

a := 0
L: b := a+1
c := c+b
a := b*2
if a < N goto L

return c

$$in[b] = use[b] \cup (out[b] - def[b])$$

$$out[b] = \cup_{s \in succ[b]} in[s]$$

Calculation

					II			
block	use	def	out	in	out	in	out	in
6								
5								
4								
3								
2								
1								

$$in[b] = use[b] \cup (out[b] - def[b])$$

$$out[b] = \cup_{s \in succ[b]} in[s]$$

Calculation

				l	II		III	
block	use	def	out	in	out	in	out	in
6	C		1	C	1	С		
5	а		C	a,c	a,c	a,c		
4	р	а	a,c	b,c	a,c	b,c		
3	b,c	С	b,c	b,c	b,c	b,c		
2	а	b	b,c	a,c	b,c	a,c		
1		а	a,c	С	a,c	С		

$$in[b] = use[b] \cup (out[b] - def[b])$$

$$out[b] = \cup_{s \in succ[b]} in[s]$$

Equations for Live Variables v2

- Many problems have more than one formulation. For example, Live Variables...
- Sets
 - USED(b) variables used in b before being defined in b
 - NOTDEF(b) variables not defined in b
 - LIVE(b) variables live on exit from b
- Equation

$$LIVE(b) = \bigcup_{s \in succ(b)} USED(s) \cup (LIVE(s) \cap NOTDEF(s))$$

Efficiency of Dataflow Analysis

- The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG
 - Forward problems reverse postorder
 - Backward problems postorder

Example: Reaching Definitions

- A definition d of some variable v reaches
 operation i iff i reads the value of v and there
 is a path from d to i that does not define v
- Uses
 - Find all of the possible definition points for a variable in an expression

Equations for Reaching Definitions

Sets

- DEFOUT(b) set of definitions in b that reach the end of b (i.e., not subsequently redefined in b)
- SURVIVED(b) set of all definitions not obscured by a definition in b
- REACHES(b) set of definitions that reach b

Equation

REACHES(b) =
$$\bigcup_{p \in preds(b)} DEFOUT(p) \cup$$

(REACHES(p) \cap SURVIVED(p))

Example: Very Busy Expressions

- An expression e is considered very busy at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations
- Uses
 - Code hoisting move e to p (reduces code size; no effect on execution time)

Equations for Very Busy Expressions

Sets

- USED(b) expressions used in b before they are killed
- KILLED(b) expressions redefined in b before they are used
- VERYBUSY(b) expressions very busy on exit from b

Equation

```
VERYBUSY(b) = \bigcap_{s \in succ(b)} USED(s) \cup (VERYBUSY(s) - KILLED(s))
```

Using Dataflow Information

A few examples of possible transformations...

Classic Common-Subexpression Elimination (CSE)

- In a statement s: z := x op y, if x op y is
 available at s then it need not be recomputed
- Analysis: compute reaching expressions i.e., statements n: v := x op y such that the path from n to s does not compute x op y or define x or y

Classic CSE Transformation

- If x op y is defined at n and reaches s
 - Create new temporary t_i
 - Rewrite n: v := x op y as n: $t_i := x$ op yn': $v := t_i$
 - Rewrite statement s: z := x op y to be s: $z := t_i$
 - (Rely on copy propagation to remove extra assignments that are not really needed)

Revisiting Example (w/small change)

Revisiting Example (w/small change)

Then Apply Very Busy...

Constant Propagation

- Suppose we have
 - Statement d: t := c, where c is constant
 - Statement n that uses t
- If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t

Copy Propagation

- Similar to constant propagation
- Setup:
 - Statement d: t := z
 - Statement n uses t
- If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
 - Recall that this can help remove dead assignments

Copy Propagation Tradeoffs

- Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic
- But it can expose other optimizations, e.g.,

```
a := y + zu := yc := u + z  // copy propagation makes this y + z
```

After copy propagation we can recognize the common subexpression

Dead Code (Assignment) Elimination

If we have an instruction

s:
$$a := b$$
 op c

and a is not live-out after s, then s can be eliminated

- Provided it has no implicit side effects that are visible (output, exceptions, etc.)
 - If b or c are function calls, they have to be assumed to have unknown side effects unless the compiler can prove otherwise

Aliases

- A variable or memory location may have multiple names or *aliases*
 - Call-by-reference parameters
 - Variables whose address is taken (&x)
 - Expressions that dereference pointers (p.x, *p)
 - Expressions involving subscripts (a[i])
 - Variables in nested scopes

Aliases vs Optimizations

Example:

```
p.x := 5; q.x := 7; a := p.x;
```

- Does reaching definition analysis show that the definition of p.x reaches a?
- (Or: do p and q refer to the same variable/object?)
- (Or: can p and q refer to the same thing?)

Aliases vs Optimizations

Example

```
int f(int *p, int *q) {
  *p = 1; *q = 2;
  return *p;
}
```

- How do we account for the possibility that p and q might refer to the same thing?
- Safe approximation: since it's possible, assume it is true (but rules out a lot)
 - C programmers can use "restrict" to indicate no other pointer is an alias for this one

Types and Aliases (1)

- In Java, ML, MiniJava, and others, if two variables have incompatible types they cannot be names for the same location
 - Also helps that programmer cannot create arbitrary pointers to storage in these languages

Types and Aliases (2)

- Strategy: Divide memory locations into alias classes based on type information (every type, array, record field is a class)
- Implication: need to propagate type information from the semantics pass to optimizer
 - Not normally true of a minimally typed IR
- Items in different alias classes cannot refer to each other

Aliases and Flow Analysis

- Idea: Base alias classes on points where a value is created
 - Every new/malloc and each local or global variable whose address is taken is an alias class
 - Pointers can refer to values in multiple alias classes (so each memory reference is to a set of alias classes)
 - Use to calculate "may alias" information (e.g., p
 "may alias" q at program point s)

Using "may-alias" information

- Treat each alias class as a "variable" in dataflow analysis problems
- Example: framework for available expressions

```
- Given statement s: M[a]:=b,
  gen[s] = { }
  kill[s] = { M[x] | a may alias x at s }
```

May-Alias Analysis

- Without alias analysis,
 #2 kills M[t] since x and
 t might be related
- If analysis determines that "x may-alias t" is false, M[t] is still available at #3; can eliminate the common subexpression and use copy propagation

Code

1: u := M[t]

2: M[x] := r

3: w := M[t]

4: b := u+w

Where are we now?

- Dataflow analysis is the core of classical optimizations
 - Although not the only possible story
- Still to explore:
 - Discovering and optimizing loops
 - SSA Static Single Assignment form