CSE P 501 — Compilers

Dataflow Analysis

Hal Perkins
Autumn 2023

UW CSE P 501 Autumn 2023

T-1

Agenda

* Dataflow analysis: a framework and algorithm
for many common compiler analyses

* |nitial example: dataflow analysis for common
subexpression elimination

e Other analysis problems that work in the same
framework

 Some of these are optimizations we’ve seen,
but now more formally and with details

UW CSE P 501 Autumn 2023 T-2

The Story So Far...

 Redundant expression elimination
— Local Value Numbering

— Superlocal Value Numbering
e Extends VN to EBBs
* SSA-like namespace

— Dominator VN Technique (DVNT)

* All of these propagate along forward edges

* None are global
— In particular, can’t handle back edges (loops)

UW CSE P 501 Autumn 2023

T-3

Dominator Value Numbering

A _
 Most sophisticated Mo = do +be
algorithm so far)0 “ @7 0\‘
* Still misses some Br— C
. Po = Co + do do = ap + by
opportunities ro = Co + dg r = o + dq
* Can’t handle loops 7 S
De0=b0+18 Ee1=a0+17
So=ao+b0 t0=C0+d0
U0=eo+f0 u1=e1+f0
F N\ L
e, = ®(ey,e1)
Uy = ®(up,uy)
G Vo =Qdp t+ bo
r, = ®(ro,ry) Wo = Cg + dg
Yo=ao+ by T Xo = € + f;
Zg = Co + dy

UW CSE P 501 Autumn 2023 T-4

Available Expressions

* Goal: use dataflow analysis to find common
subexpressions whose range spans basic
olocks

* |dea: calculate available expressions at
peginning of each basic block

* Avoid re-evaluation of an available expression
— use a copy operation

UW CSE P 501 Autumn 2023 T-5

“Available” and Other Terms

* An expression e is defined at

point p in the CFG if f{s value 2
Is computed at p defined .

— Sometimes called definition site T ath
* An expression e is killed at l
point p if one of its operands oy
Is defined at p tl0=a+b
— Sometimes called kill site
* An expression e is available l

at point p if every path

leading to p contains a prior killed b
definition of e and e is not
killed between that definition

and p

UW CSE P 501 Autumn 2023 T-6

Available Expression Sets

* To compute available expressions, for each
block b, define

— AVAIL(b) — the set of expressions available on
entryto b

— NKILL(b) — the set of expressions not killed in b

* i.e., all expressions in the program except for those
killed in b

— DEF(b) — the set of expressions defined in b and
not subsequently killed in b

UW CSE P 501 Autumn 2023 T-7

Computing Available Expressions

* AVAIL(b) is the set
AVAIL(b) = Myxepreds(b) (DEF(x) W (AVAIL(x) ™ NKILL(x)))
— preds(b) is the set of b’s predecessors in the CFG

— The set of expressions available on entry to b is the set
of expressions that were available at the end of every
predecessor basic block x

— The expressions available on exit from block b are

those defined in b or available on entry to b and not
killed in b

* This gives a system of simultaneous equations —a
dataflow problem

UW CSE P 501 Autumn 2023 T-8

Name Space Issues

* |n previous value-numbering algorithms, we used
a SSA-like renaming to keep track of versions

* |In global dataflow problems, we use the original
namespace

— we require a+b have the same value along all paths to
its use

— If a or b is updated along any path to its use, then a+b
has the “wrong” value

— so original names are exactly what we want

* The KILL information captures when a value is no
longer available

UW CSE P 501 Autumn 2023 T-9

Computing Available Expressions

* Big Picture
— Build control-flow graph
— Calculate initial local data — DEF(b) and NKILL(b)

* This only needs to be done once for each block b and
depends only on the statements in b

— |teratively calculate AVAIL(b) by repeatedly
evaluating equations until nothing changes

* Another fixed-point algorithm

UW CSE P 501 Autumn 2023 T-10

Computing DEF and NKILL (1)

* First, figure out which expressions are killed in each block
(i.e., clobbered by some assignment later in that block)

* For each block b with operations o4, 0, ..., O,
KILLED = & // variables killed (later) in b, not expressions
DEF(b) = &
fori=kto1l //note: working back to front
assume o; is “x=y + 2"
add x to KILLED
if (y ¢ KILLED and z ¢ KILLED)

add “y + z” to DEF(b) // i.e., neither y nor z killed
// after this pointin b

UW CSE P 501 Autumn 2023 T-11

Computing DEF and NKILL (2)

e After computing DEF and KILLED for a block b,
compute set of all expressions in the program

not killed in b
NKILL(b) = { all expressions }
for each expression e

for each variablev € e
if v € KILLED then
NKILL(b) = NKILL(b) - e

UW CSE P 501 Autumn 2023 T-12

Example: Compute DEF and NKILL

DEF = { 5*n, c+d }
NKILL = exprs w/o
m, X, b

PN

XxX=a+b
b=c+d
m=5%*n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c=5xn| DEF={5%"N}

h=2%a3

NKILL = exprs w/o C

DEF = { 2*a }
NKILL = exprs w/o h

UW CSE P 501 Autumn 2023 T-13

Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b

Worklist = { all blocks b; }
while (Worklist = &)
remove a block b from Worklist
recompute AVAIL(b)
if AVAIL(b) changed
Worklist = Worklist \ successors(b)

UW CSE P 501 Autumn 2023 T-14

Example: Find Available Expressions
AVAIL(b) = Mixepreds(b) (DEF(X) v (AVAIL(X) n NKILL(x)))

DEF = { 5*n, c+d }
NKILL = exprs w/o
m, X, b

= in worklist

= processing

j=2%*a
k=2*Db

N

Xx=a+b
b=c+d
m=5%*n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c—t5*pn| DEF={5%*n}

h=2%*%a3

NKILL = exprs w/o C

DEF = { 2*a }
NKILL = exprs w/o h

UW CSE P 501 Autumn 2023 T-15

Example: Find Available Expressions
AVAIL(b) = Mixepreds(b) (DEF(X) v (AVAIL(X) n NKILL(x)))

DEF = { 5*n, c+d }
NKILL = exprs w/o
m, X, b

= in worklist

= processing

j=2%*a
k=2*b

N

Xx=a+b
b=c+d
m=5%*n

AVAIL ={}
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c—t5*pn| DEF={5%*n}

h=2%*%a3

NKILL = exprs w/o C

DEF = { 2*a }
NKILL = exprs w/o h

UW CSE P 501 Autumn 2023 T-16

Example: Find Available Expressions
AVAIL(b) = Mixepreds(b) (DEF(X) v (AVAIL(X) n NKILL(x)))

DEF = { 5*n, c+d }
NKILL = exprs w/o
m, X, b

= in worklist

= processing

j=2%*a
k=2*Db

N

Xx=a+b
b=c+d
m=5%*n

AVAIL ={}
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c—t5*pn| DEF={5%*n}

NKILL = exprs w/o C

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

UW CSE P 501 Autumn 2023 T-17

Example: Find Available Expressions
AVAIL(b) = Mixepreds(b) (DEF(X) v (AVAIL(X) n NKILL(x)))

AVAIL = { 2*a, 2*b }

DEF = { 5*n, c+d }

NKILL = exprs w/o
m, X, b

= in worklist

= processing

j=2%*a
k=2*Db

Xx=a+b
b=c+d
m=5%*n

N

AVAIL ={}
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c—t5*pn| DEF={5%*n}

h=2%*%a3

NKILL = exprs w/o C

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

UW CSE P 501 Autumn 2023 T-18

Example: Find Available Expressions
AVAIL(b) = Mixepreds(b) (DEF(X) v (AVAIL(X) n NKILL(x)))

AVAIL = { 2*a, 2*b }

DEF = { 5*n, c+d }

NKILL = exprs w/o
m, X, b

= in worklist

= processing

j=2%*a
k=2*Db

XxX=a+b
b=c+d
m=5%*n

AVAIL ={}
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

/\ AVAIL = { 2%a 2% 3

C=>"N| DEF={5*n}

h=2%*%a3

NKILL = exprs w/o

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

UW CSE P 501 Autumn 2023 T-19

Example: Find Available Expressions
AVAIL(b) = Mixepreds(b) (DEF(X) v (AVAIL(X) n NKILL(x)))

AVAIL = { 2*a, 2*b }

DEF = { 5*n, c+d }

NKILL = exprs w/o
m, X, b

= in worklist

= processing

j=2%*a
k=2*Db

XxX=a+b
b=c+d
m=5%*n

AVAIL ={}
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

/\ AVAIL = { 2%a 2% 3

C=5"N| DEF={5*n}

NKILL = exprs w/o

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

UW CSE P 501 Autumn 2023 T-20

Example: Find Available Expressions
AVAIL(b) = Mixepreds(b) (DEF(X) v (AVAIL(X) n NKILL(x)))

_ AVALL = { }
j=2%*a DEF = { 2*a, 2*b }
k=2%*b NKILL = exprs w/o j or k

AVAIL = { 2*a, 2%b } /\ —— AVAIL = { 2%a, 2*b }
DEF = {5%n, c+d} |X=2a+Dh C=5*N| DEF={5*%n)
NKILL = exprs w/o | P =cC+d NKILL = exprs w/o ¢
m, X, b m=5%*n
T oxg| AVAIL ={5*%n, 2*a}
DEF = { 2*a }
_ _ NKILL = exprs w/o h
= in worklist
- processing And the common subexpression is???

UW CSE P 501 Autumn 2023 T-21

Example: Find Available Expressions
AVAIL(b) = Mixepreds(b) (DEF(X) v (AVAIL(X) n NKILL(x)))

AVAIL = { 2*a, 2*b }

DEF = { 5*n, c+d }

NKILL = exprs w/o
m, X, b

= in worklist

= processing

j=2%*a
k=2*Db

XxX=a+b
b=c+d
m=5%*n

AVAIL ={}
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

/\ AVAIL = { 2%a 2% 3

C=5"N| DEF={5*n}

h=2%a

NKILL = exprs w/o

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

UW CSE P 501 Autumn 2023 T-22

Example: Find Available Expressions
AVAIL(b) = Mxepreds(b) (DEF(X) v (AVAIL(X) n NKILL(x)))

* Termination?
— Always
— AVAIL(b) initially all empty

— In equation above, DEF & NKILL are unchanging, and
adding to AVAIL(x) can’t shrink AVAIL(b)

— Only a finite number of exprs in the program, so the alg is
climbing a finite n-cube; can’t climb forever

e Order of worklist removals?

— Any will work

— Some are faster than others; e.g., if CFG is a DAG, then go
in topological order (which would have been faster on the
previous example)

UW CSE P 501 Autumn 2023 0-23

(1,1,1)

Termination — more generally

Suppose algorithm has a “state” vector x = (Xy,X,,...,X,), each x, ©00 1
from a finite, ordered set, say {0,1} or {1,2,3}

* If each state transition (iteration of an alg, such as prev few slides)
allowed, say, x; to go up while x; goes down, then o< iteration is
possible: (0,1) - (1,0) > (0,1) > ...

* BUT, if alg ensures that, at each iteration, old-x; < new-x,, then

termination is certain: You can only increase x: a finite number of
times before you hit the top value

— Available expressions: set is bounded by set of all exprs in code

* E.g., ifx.€{0,1}, x = (X{,X,,...,X,) are corners of an n-cube; at worst,
alg walks from (0,0,...,0) to (1,1,...,1) in £ n steps

 Math Jargon: such a structure is typically called a “lattice”.

UW CSE P 501 Autumn 2023 N-24

Comparing Algorithms

« LVN - Local Value m=a+b
Numbering n=at+h
* SVN —Superlocal Value Br— _ C ~
Numberi p=c+d g=a+b
umbering F=c+d e+ d
/
D e=b+ 18 E e=a+ 17
 GRE — Global Redundancy s=a+b t=c+d
Elimination u=e+f u=e+f
F
G X=e+f
z=c+d/

UW CSE P 501 Autumn 2023 T-25

Comparing Algorithms (2)

 LVN =>SVN => DVN form a strict hierarchy — later
algorithms find a superset of previous information
* Global RE finds a somewhat different set

— Discovers e+f in F (computed in both D and E)

— Misses identical values if they have different names (e.g.,
a+b and c+d when a=c and b=d)
* Value Numbering catches this

UW CSE P 501 Autumn 2023 T-26

Scope of Analysis

e Larger context (EBBs, regions, global,
interprocedural) sometimes helps
— More opportunities for optimizations

e But not always
— Introduces uncertainties about flow of control
— Usually only allows weaker analysis
— Sometimes has unwanted side effects

e Can create additional pressure on registers, for example

UW CSE P 501 Autumn 2023

T-27

Dataflow analysis

* Available expressions is an example of a
dataflow analysis problem

 Many similar problems can be expressed in a
similar framework

* Only the first part of the story — once we’ve
discovered facts, we then need to use them to
improve code

UW CSE P 501 Autumn 2023 T-34

Characterizing Dataflow Analysis

* All of these algorithms involve sets of facts about each
basic block b

IN(b) — facts true on entry to b

OUT(b) — facts true on exit from b
GEN(b) — facts created and not killed in b
KILL(b) — facts killed in b

* These are related by the equation
OUT(b) = GEN(b) U (IN(b) - KILL(b))
— Solve this iteratively for all blocks

— Sometimes information propagates forward; sometimes
backward

* But will reach correct solution (fixed point) regardless of order in
which blocks are considered

UW CSE P 501 Autumn 2023 T-35

Dataflow Analysis (1)

* A collection of techniques for compile-time
reasoning about run-time values

* Almost always involves building a graph

— Trivial for basic blocks

— Control-flow graph or derivative for global
problems

— Call graph or derivative for whole-program
problems

UW CSE P 501 Autumn 2023 T-36

Dataflow Analysis (2)

e Usually formulated as a set of simultaneous
equations (dataflow problem)

— Sets attached to nodes and edges

— Need a lattice (or semilattice) to describe values

* |n particular, has an appropriate operator to combine
values and an appropriate “bottom” or minimal value

UW CSE P 501 Autumn 2023 T-37

Dataflow Analysis (3)

* Desired solution is usually a meet over all
paths (MOP) solution

— “What is true on every path from entry”
— “What can happen on any path from entry”
— Usually relates to safety of optimization

UW CSE P 501 Autumn 2023 T-38

Dataflow Analysis (4)

* Limitations
— Precision — “up to symbolic execution”
* Assumes all paths taken
— Sometimes cannot afford to compute full solution

— Arrays — classic analysis treats each array as a single
fact

— Pointers — difficult, expensive to analyze

* Imprecision rapidly adds up
e But gotta do it to effectively optimize things like C/C++

* For scalar values we can quickly solve simple
problems

UW CSE P 501 Autumn 2023 T-39

Example:Live Variable Analysis

* Avariable vis live at point p iff there is any path from
p to a use of v along which v is not redefined

e Some uses:

— Register allocation — only live variables need a register

— Eliminating useless stores — if variable not live at store,
then stored variable will never be used

— Detecting uses of uninitialized variables — if live at
declaration (before initialization) then it might be used
uninitialized

— Improve SSA construction — only need ®-function for
variables that are live in a block (later)

UW CSE P 501 Autumn 2023 T-40

Liveness Analysis Sets

 For each block b, define
— use[b] = variable used in b before any def
— def[b] = variable defined in b & not killed
— in[b] = variables live on entry to b
— out[b] = variables live on exit from b

UW CSE P 501 Autumn 2023 T-41

Equations for Live Variables

* Given the preceding definitions, we have
in[b] = use[b] U (out[b] — def[b])
out[b] = Usesuccip] in[s]
* Algorithm
— Set in[b] = out[b] = I
— Update in, out until no change

UW CSE P 501 Autumn 2023 T-42

Example (1 stmt per block)

* Code 1:a:=0
L. ZZ 2+1 2: b:=a+1 W
c :=c+b 3: c:=c+b
a:=b*2 4: a:=b*2
ifa<Ngoto L
return c ra<N \J
6: return c

in[b] = use[b] u (out[b] — def[b])
out[b] = Usesucc[b] in[s]

UW CSE P 501 Autumn 2023 T-43

Calculation

1:a:=0
block | use def out in out in out in
6 2: b:=a+1
5 3: c:=c+b
4
4: a:=b*2
3
5:a<N \J
2
1 6: return c

in[b] = use[b] u (out[b] — def[b])
out[b] = Usesucc[b] in[s]

UW CSE P 501 Autumn 2023 T-44

Calculation

. _ _ 1:a:=0
block | use def out in out in out in
6 C - - C _— C 2: b:=a+1
5 a -- C a,c a,c a,c ' c'=C+b
4 b a a,c b,c a,c b,c
r a:=b*2
3 b,c C b,c b,c b,c b,c
ra <N
2 a b b,c a,c b,c a,c
1 ~ 3 ac c ac c 6: return c

UW CSE P 501 Autumn 2023

in[b] = use[b] u (out[b] — def[b])

out[b] = Usesucc[b] in[s]

T-45

Equations for Live Variables v2

 Many problems have more than one
formulation. For example, Live Variables...

* Sets

— USED(b) — variables used in b before being defined
inb

— NOTDEF(b) — variables not defined in b
— LIVE(b) — variables live on exit from b
* Equation
LIVE(b) = Uscsyecn)USED(s) W (LIVE(s) W NOTDEF(s))

UW CSE P 501 Autumn 2023 T-46

Efficiency of Dataflow Analysis

* The algorithms eventually terminate, but the
expected time needed can be reduced by
picking a good order to visit nodes in the CFG
— Forward problems — reverse postorder
— Backward problems — postorder

UW CSE P 501 Autumn 2023 T-47

Example: Reaching Definitions

* A definition d of some variable v reaches
operation j iff i reads the value of v and there
is a path from d to i that does not define v

e Uses

— Find all of the possible definition points for a
variable in an expression

UW CSE P 501 Autumn 2023 T-48

Equations for Reaching Definitions

 Sets

— DEFOUT(b) — set of definitions in b that reach the end of b
(i.e., not subsequently redefined in b)

— SURVIVED(b) — set of all definitions not obscured by a
definition in b
— REACHES(b) — set of definitions that reach b
* Equation
REACHES(b) = U, predsipy DEFOUT(p) U
(REACHES(p) m SURVIVED(p))

UW CSE P 501 Autumn 2023 T-49

Example: Very Busy Expressions

* An expression e is considered very busy at
some point p if e is evaluated and used along
every path that leaves p, and evaluating e at p

would produce the same result as evaluating it
at the original locations

e Uses

— Code hoisting — move e to p (reduces code size; no
effect on execution time)

UW CSE P 501 Autumn 2023 T-50

Equations for Very Busy Expressions

 Sets

— USED(b) — expressions used in b before they are killed

— KILLED(b) — expressions redefined in b before they are
used

— VERYBUSY(b) — expressions very busy on exit from b
* Equation
VERYBUSY(b) = Mycguccp) USED(s) U
(VERYBUSY(s) - KILLED(s))

UW CSE P 501 Autumn 2023 T-51

Using Dataflow Information

* A few examples of possible transformations...

UW CSE P 501 Autumn 2023 T-52

Classic Common-Subexpression
Elimination (CSE)

* [nastatements:z:=xopy,ifxopyis
available at s then it need not be recomputed

* Analysis: compute reaching expressions i.e.,
statements n: v := x op y such that the path
from n to s does not compute x op y or define

xXory

UW CSE P 501 Autumn 2023 T-53

Classic CSE Transformation

* [f xopyisdefined at n and reaches s
— Create new temporary t;
— Rewriten:v:=xo0pyas
n:t;:=xopy
n:v:.=t
— Rewrite statement s: z := x op y to be
S:Z:=1t;

— (Rely on copy propagation to remove extra
assignments that are not really needed)

UW CSE P 501 Autumn 2023 T-54

Revisiting Example (w/small change)

AVAIL = { 2*a, 2*b }

XxX=a+b
b=c+d
m=5%*n

AVAIL = { }

c=5%*n

h=2%*a
i=5%*n

AVAIL = { 2*a, 2*b }

AVAIL = { 5*n, 2*a }

UW CSE P 501 Autumn 2023

T-55

Revisiting Example (w/small change)

AVAIL = { 2*a, 2*b }

tl=2%al aAvaIL = {}
j=1
k=2%*b

T

X=a+b
b=c+d

t2 =5*n| AVAIL ={ 2*a, 2*b }
c=12

t2=5%*n
m = t2

h =tl AVAIL = { 5*n, 2*a }

UW CSE P 501 Autumn 2023 T-56

Then Apply Very Busy...

tl=2%*a
j=tl _
ok | AVAIL={}
t2=5%*n
_ _ — * X
AVAIL = { 2%, 2%p } | X 22+ 0 i AVAIL = { 2%a, 270 }
2=5*n
m = t2
h = t1 AVAIL = { 5*n, 2*a }
| =t2

UW CSE P 501 Autumn 2023 T-57

Constant Propagation

e Suppose we have
— Statement d: t := ¢, where c is constant

— Statement n that uses t

 |f d reaches n and no other definitions of t
reach n, then rewrite n to use c instead of t

UW CSE P 501 Autumn 2023 T-58

Copy Propagation

* Similar to constant propagation
* Setup:

— Statement d: t =2

— Statement n uses t

e If d reaches n and no other definition of t
reaches n, and there is no definition of z on
any path from d to n, then rewrite n to use z
instead of t

— Recall that this can help remove dead assignments

UW CSE P 501 Autumn 2023 T-59

Copy Propagation Tradeoffs

 Downside is that this can increase the lifetime
of variable z and increase need for registers or
memory traffic

* But it can expose other optimizations, e.g.,

a:=y+z
u:=y
C:=U+z // copy propagation makes thisy + z

— After copy propagation we can recognize the
common subexpression

UW CSE P 501 Autumn 2023 T-60

Dead Code (Assignment) Elimination

* |If we have an instruction
s:a:=bopc
and a is not live-out after s, then s can be
eliminated

— Provided it has no implicit side effects that are
visible (output, exceptions, etc.)

* If b or c are function calls, they have to be assumed to
have unknown side effects unless the compiler can
prove otherwise

UW CSE P 501 Autumn 2023 T-61

Aliases

* Avariable or memory location may have
multiple names or aliases
— Call-by-reference parameters
— Variables whose address is taken (&x)

— Expressions that dereference pointers
(p-x, *p)
— Expressions involving subscripts (al[i])

— Variables in nested scopes

UW CSE P 501 Autumn 2023 T-62

Aliases vs Optimizations

* Example:
P.X:=5; q.X:=7; a:=p.X;

— Does reaching definition analysis show that the
definition of p.x reaches a?

— (Or: do p and q refer to the same variable/object?)
— (Or: can p and q refer to the same thing?)

UW CSE P 501 Autumn 2023 T-63

Aliases vs Optimizations

 Example
int f(int *p, int *q) {
*p=1%q=2;
return *p;
}

— How do we account for the possibility that p and g
might refer to the same thing?

— Safe approximation: since it’s possible, assume it is
true (but rules out a lot)

e C programmers can use “restrict” to indicate no other
pointer is an alias for this one

UW CSE P 501 Autumn 2023 T-64

Types and Aliases (1)

* InlJava, ML, Minilava, and others, if two
variables have incompatible types they cannot
be names for the same location

— Also helps that programmer cannot create
arbitrary pointers to storage in these languages

UW CSE P 501 Autumn 2023 T-65

Types and Aliases (2)

e Strategy: Divide memory locations into alias

classes based on type information (every type,
array, record field is a class)

* Implication: need to propagate type
information from the semantics pass to
optimizer
— Not normally true of a minimally typed IR

* |tems in different alias classes cannot refer to
each other

UW CSE P 501 Autumn 2023 T-66

Aliases and Flow Analysis

* |dea: Base alias classes on points where a
value is created

— Every new/malloc and each local or global variable
whose address is taken is an alias class

— Pointers can refer to values in multiple alias
classes (so each memory reference is to a set of
alias classes)

— Use to calculate “may alias” information (e.g., p
“may alias” g at program point s)

UW CSE P 501 Autumn 2023 T-67

Using “may-alias” information

* Treat each alias class as a “variable” in
dataflow analysis problems

 Example: framework for available expressions
— Given statement s: M|[a]:=b,

gen[s] ={}
kill[s] ={ M[x] | a may alias x at s }

UW CSE P 501 Autumn 2023 T-68

May-Alias Analysis

* Without alias analysis, Code

#2 kills M[t] since x and 1: u:= MIt]
t might be related 2: M[x]:=r
* |f analysis determines 3: w = M[t]
that “x may-alias t” is 4: b := u+w

false, M[t] is still
available at #3; can
eliminate the common
subexpression and use
copy propagation

UW CSE P 501 Autumn 2023 T-69

Where are we now?

e Dataflow analysis is the core of classical
optimizations
— Although not the only possible story
e Still to explore:
— Discovering and optimizing loops
— SSA — Static Single Assignment form

UW CSE P 501 Autumn 2023

T-70

