CSE P 501 – Compilers

Value Numbering & Optimizations Hal Perkins Autumn 2023

Agenda

- Optimization (Review)
 - Goals
 - Scope: local, superlocal, regional, global (intraprocedural), interprocedural
- Control flow graphs (reminder)
- Value numbering
- Dominators
- Ref.: Cooper/Torczon ch. 8

Code Improvement (1)

- Pick a better algorithm(!)
- Use machine resources efficiently
 - Instructions, registers
 - More later...

Code Improvement (2)

- Local optimizations basic blocks
 - Algebraic simplifications
 - Constant folding
 - Common subexpression elimination (i.e., redundancy elimination)
 - Dead code elimination
 - Specialize computation based on context
 - etc., etc., ...

Code Improvement (3)

- Global optimizations
 - Code motion
 - Moving invariant computations out of loops
 - Strength reduction (replace multiplications by repeated additions, for example)
 - Global common subexpression elimination
 - Global register allocation
 - Many others...

"Optimization"

- None of these improvements are truly "optimal"
 - Hard problems (in theory-of-computation sense)
 - Proofs of optimality assume artificial restrictions
- Best we can do is to improve things
 - Most (much?) (some?) of the time
 - Realistically: try to do better for common idioms both in the code and on the machine

Optimization Phase

Goal

 Discover, at compile time, information about the runtime behavior of the program, and use that information to improve the generated code

A First Running Example: Redundancy Elimination

- An expression x+y is redundant at a program point iff, along every path from the procedure's entry, it has been evaluated and its constituent subexpressions (x and y) have not been redefined
- If the compiler can prove the expression is redundant:
 - Can store the result of the earlier evaluation
 - Can replace the redundant computation with a reference to the earlier (stored) result x+y

Common Pattern for Code Improvement

- Typical for most compiler optimizations
- First, discover opportunities through program analysis
- Then, modify the IR to take advantage of the opportunities
 - Historically, goal usually was to decrease execution time
 - Other possibilities: reduce space, power, ...

Issues (1)

- Safety transformation must not change program meaning
 - Must generate correct results
 - Can't generate spurious errors
 - Optimizations must be conservative
 - Large part of analysis goes towards proving safety
 - Can pay off to speculate (be optimistic) but then need to recover if reality is different

Issues (2)

- Profitibility
 - If a transformation is possible, is it profitable?
 - Example: loop unrolling
 - Can increase amount of work done on each iteration,
 i.e., reduce loop overhead
 - Can eliminate duplicate operations done on separate iterations

Issues (3)

Downside risks

- Even if a transformation is generally worthwhile,
 need to think about potential problems
- Example:
 - Transformation might need more temporaries, putting additional pressure on registers
 - Increased code size could cause cache misses, or, in bad cases, increase page working set

Example: Value Numbering

- Technique for eliminating redundant expressions: assign an identifying number VN(n) to each expression
 - -VN(x+y)=VN(j) if x+y and j have the same value
 - Use hashing over value numbers for effeciency
- Old idea (Balke 1968, Ershov 1954)
 - Invented for low-level, linear IRs
 - Equivalent methods exist for tree IRs, e.g., build a DAG

Uses of Value Numbers

- Improve the code
 - Replace redundant expressions
 - Simplify algebraic identities
 - Discover, fold, and propagate constant valued expressions

Local Value Numbering

Algorithm

- For each operation $o = \langle op, o1, o2 \rangle$ in a basic block
 - 1. Get value numbers for operands from hash lookup
 - 2. Hash <op, VN(o1), VN(o2)> to get a value number for o (If op is commutative, sort VN(o1), VN(o2) first)
 - 3. If o already has a value number, replace o with a reference to the value
 - 4. If o1 and o2 are constant, evaluate o at compile time and replace with an immediate load
- If hashing behaves well, this runs in linear time

Example

Original

With VNs

Rewritten

$$a = x + y$$

$$a = x + y$$
 $a^3 = x^1 + y^2$ $a^3 = x^1 + y^2$

$$b = x + y$$

$$b = x + y$$
 $b^3 = x^1 + y^2$ $b^3 = a^3$

$$b^3 = a^3$$

$$a = 17$$

$$a = 17$$
 $a^4 = 17^4$

$$a^4 = 17^4$$

$$c = x + y$$

$$c = x + y$$
 $c^3 = x^1 + y^2$ $c^3 = a^3$

$$c^3 = a^3$$

WHOOPS!

VN table	
expr	vn
X	1
У	2
<+ 1 2>	3
a	3
b	3
17	4
a	4
С	3

Bug in Simple Example

- If we use the original names, we get in trouble when a name is reused
- Solutions
 - Be clever about which copy of the value to use (e.g., use c=b in last statement)
 - Create an extra temporary
 - Rename around it (best!)

Renaming

- Idea: give each value a unique name a_i means ith definition of a with VN = j
- Somewhat complex notation, but meaning is reasonably clear
- This is the idea behind SSA (Static Single Assignment)
 - Popular modern IR exposes many opportunities for optimizations
 - Key is keeping track of values separately from memory locations (variable names)

Example

Original	With VNs	Rewritten
a = x + y	$a_0^3 = x_0^1 + y_0^2$	$a_0^3 = x_0^1 + y_0^2$
b = x + y	$b_0^3 = x_0^1 + y_0^2$	$b_0^3 = a_0^3$
a = 17	$a_1^4 = 17^4$	$a_1^4 = 17^4$
c = x + y	$c_0^3 = x_0^1 + y_0^2$	$c_0^3 = a_0^3$
		АНННН

VN table	
expr	vn
x_0	1
y ₀	2
<+ 1 2>	3
a_0	3
b_0	3
17	4
a_1	4
c_0	3

Notation: x_i^j means x version i with VN j

Simple Extensions to Value Numbering

- Constant folding
 - Add a bit that records when a value is constant
 - Evaluate constant values at compile time
 - Replace op with load immediate
- Algebraic identities: x+0, x*1, x-x, ...
 - Many special cases
 - Switch on op to narrow down checks needed
 - Replace result with input VN

Larger Scopes

- This algorithm works on straight-line blocks of code (basic blocks)
 - Best possible results for single basic blocks
 - Loses all information when control flows to another block
- To go further we need to represent multiple blocks of code and the control flow between them

Control Flow Graph (CFG) reminder

- Nodes: basic blocks
 - Key property: all statements executed sequentially if any are
- Edges: include a directed edge from n1 to n2 if there is any possible way for control to transfer from block n1 to n2 during execution

Optimization Categories (1)

- Local methods
 - Usually confined to basic blocks
 - Simplest to analyze and understand
 - Most precise information

Optimization Categories (2)

- Superlocal methods
 - Operate over Extended Basic Blocks (EBBs)
 - An EBB is a set of blocks b₁, b₂, ..., b_n where b₁ has multiple predecessors and each of the remaining blocks b_i (2≤i≤n) have only b_{i-1} as its unique predecessor
 - The EBB is entered only at b₁, but may have multiple exits
 - A single block b_i can be the head of multiple EBBs (these EBBs form a tree rooted at b_i)
 - Use information discovered in earlier blocks to improve code in successors

Optimization Categories (3)

- Regional methods
 - Operate over scopes larger than an EBB but smaller than an entire procedure/ function/method
 - Typical example: loop body
 - Difference from superlocal methods is that there may be merge points in the graph (i.e., a block with two or more predecessors)
 - Facts true at merge point are facts known to be true on all possible paths to that point

Optimization Categories (4)

Global methods

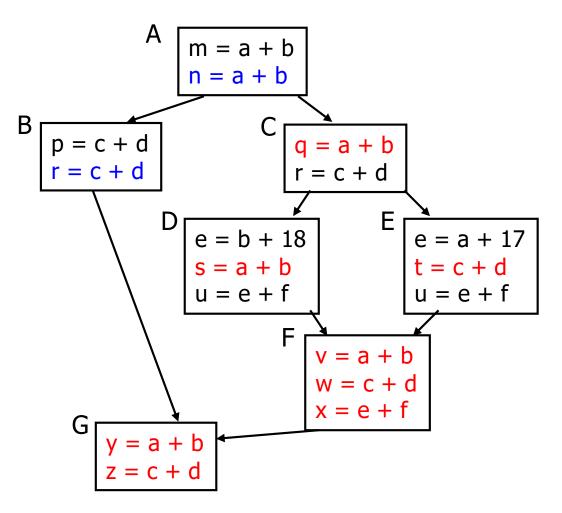
- Operate over entire procedures
- Sometimes called *intraprocedural* methods
- Motivation is that local optimizations sometimes have bad consequences in larger context
- Procedure/method/function is a natural unit for analysis, separate compilation, etc.
- Almost always need global data-flow analysis information for these

Optimization Categories (5)

- Whole-program methods
 - Operate over more than one procedure
 - Sometimes called interprocedural methods
 - Challenges: name scoping and parameter binding issues at procedure boundaries
 - Classic examples: inline method substitution, interprocedural constant propagation
 - Common in aggressive JIT compilers and optimizing compilers for object-oriented languages

Value Numbering Revisited

- Local Value Numbering
 - 1 block at a time
 - Strong local results
 - No cross-block effects
- Missed opportunities



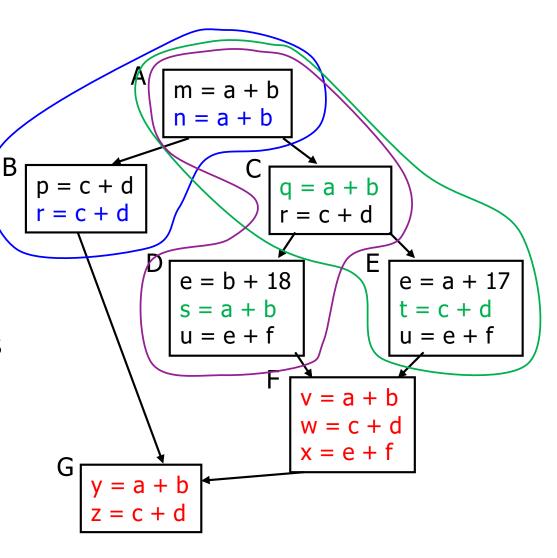
Superlocal Value Numbering

 Idea: apply local method to EBBs

 $- \{A,B\}, \{A,C,D\}, \{A,C,E\}$

 Final info from A is initial info for B, C; final info from C is initial for D, E

- Gets reuse from ancestors
- Avoid reanalyzing A, C
- Doesn't help with F, G



SSA Name Space (from before)

Code

$$a_0^3 = x_0^1 + y_0^2$$
 $b_0^3 = x_0^1 + y_0^2$
 $a_1^4 = 17^4$
 $c_0^3 = x_0^1 + y_0^2$

Rewritten

$$a_0^3 = x_0^1 + y_0^2$$
 $b_0^3 = a_0^3$
 $a_1^4 = 17^4$
 $c_0^3 = a_0^3$

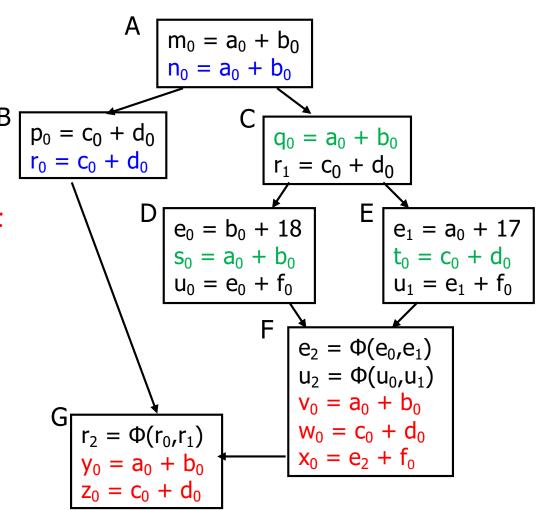
- Unique name for each definition
- Name ⇔ VN
- a_0^3 is available to assign to c_0^3

SSA Name Space

- Two Principles
 - Each name is defined by exactly one operation
 - Each operand refers to exactly one definition
- Need to deal with merge points
 - Add Φ functions at merge points to reconcile names
 - Use subscripts on variable names for uniqueness

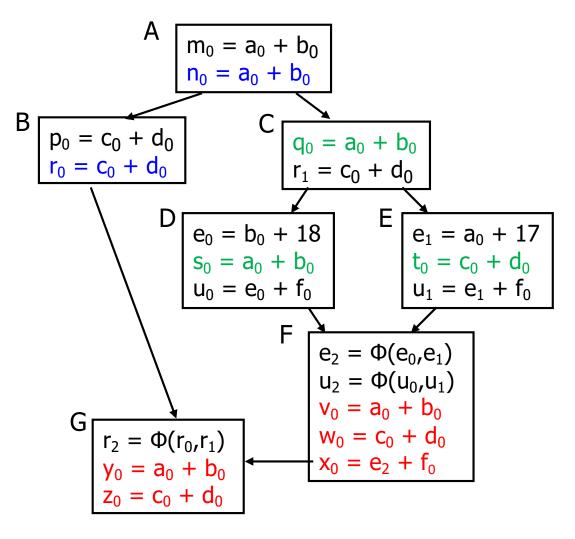
Superlocal Value Numbering with All Bells & Whistles

- Finds more redundancies
- Little extra cost
- Still does nothing for F and G

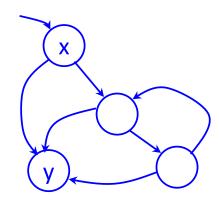


Larger Scopes

- Still have not helped F and G
- Problem: multiple predecessors
- Must decide what facts hold in F and in G
 - For G, combine B & F?
 - Merging states is expensive
 - Fall back on what we know



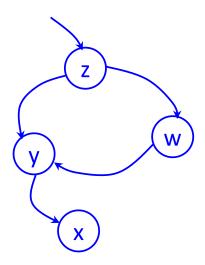
Dominators



- Definition
 - x dominates y iff every path from the entry of the control-flow graph to y includes x
- By definition, x dominates x
- Associate a Dom set with each node
 - $\mid Dom(x) \mid \geq 1$
- Many uses in analysis and transformation
 - Finding loops, building SSA form, code motion

Immediate Dominators

- For any node x, there is a y in Dom(x) closest to x
- This is the *immediate dominator* of x
 - Notation: IDom(x)



Dominator Sets

Block	Dom	IDom
Α	Α	
В	A, B	Α
C	A, C	Α
D	A, C, D	C
Ε	A, C, E	С
F	A, C, F	C
G	A, G	Α

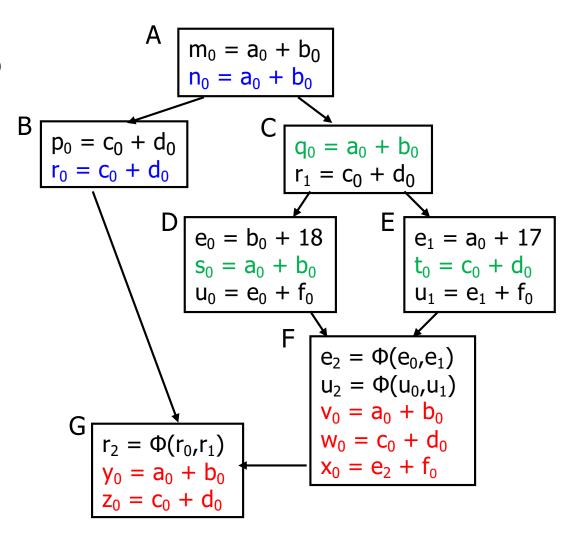
 $n_0 = a_0 + b_0$ $p_0 = c_0 + d_0$ $q_0 = a_0 + b_0$ $\mathsf{r}_0 = \mathsf{c}_0 + \mathsf{d}_0$ $r_1 = c_0 + d_0$ F $e_2 = \Phi(e_0, e_1)$ $u_2 = \Phi(u_0, u_1)$ $v_0 = a_0 + b_0$ $r_2 = \Phi(r_0, r_1)$ $y_0 = a_0 + b_0$ $w_0 = c_0 + d_0$ $\mathbf{x}_0 = \mathbf{e}_2 + \mathbf{f}_0$

 $m_0 = a_0 + b_0$

Note: the IDOM relation defines a tree with A at the root

Dominator Value Numbering

- Still looking for a way to handle F and G
- Idea: Use info from IDom(x) to start analysis of x
 - Use C for F and A for G
- <u>Dominator VN</u>
 <u>Technique</u> (DVNT)

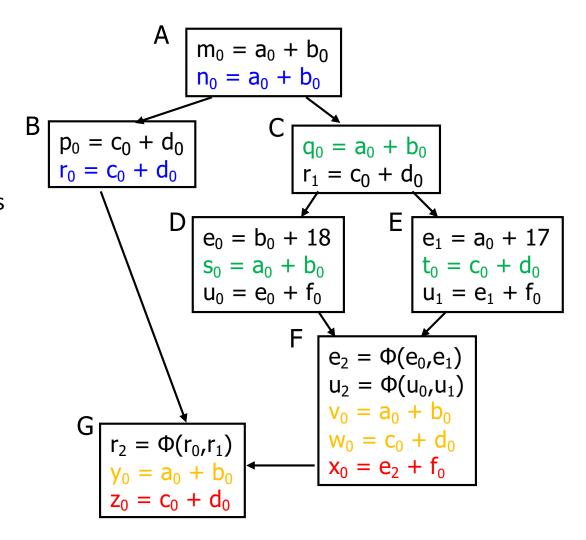


DVNT algorithm

- Use superlocal algorithm on extended basic blocks
 - Use scoped hash tables & SSA name space as before
- Start each node with table from its IDOM
- No values flow along back edges (i.e., loops)
- Constant folding, algebraic identities as before

Dominator Value Numbering

- Advantages
 - Finds more redundancy
 - Little extra cost
- Shortcomings
 - Misses some opportunities (common calculations in ancestors that are not IDOMs)
 - Doesn't handle loops or other back edges



The Story So Far...

- Local algorithm
- Superlocal extension
 - Some local methods extend cleanly to superlocal scopes
- Dominator VN Technique (DVNT)
- All of these propagate along forward edges
- None are global

Coming Attractions

- Data-flow analysis
 - Provides global solution to redundant expression analysis
 - Catches some things missed by DVNT, but misses some others
 - Generalizes to many other analysis problems, both forward and backward
- Loops
- SSA for general transformations