
CSE P 501 – Compilers

Code Shape II – Objects & Classes
Hal Perkins

Autumn 2023

UW CSE P 501 Autumn 2023 L-1

Agenda
• Object representation and layout
• Field access
• What is this?
• Object creation - new
• Method calls
– Dynamic dispatch
– Method tables
– Super

• Runtime type information

(As before, more generality than we actually need for the project)

UW CSE P 501 Autumn 2023 L-2

What does this program print?
class One {
 int tag;
 int it;
 void setTag() { tag = 1; }
 int getTag() { return tag; }
 void setIt(int it) { this.it = it; }
 int getIt() { return it; }
}

class Two extends One {
 int it;
 void setTag() {
 tag = 2; it = 3;
 }
 int getThat() { return it; }
 void resetIt() { super.setIt(42); }
}

public static void main(String[] args) {
 Two two = new Two();
 One one = two;

 one.setTag();
 System.out.println(one.getTag());

 one.setIt(17);
 two.setTag();
 System.out.println(two.getIt());
 System.out.println(two.getThat());
 two.resetIt();
 System.out.println(two.getIt());
 System.out.println(two.getThat());

 }

UW CSE P 501 Autumn 2023 L-3

Your Answer Here

UW CSE P 501 Autumn 2023 L-4

Object Representation
• The naïve explanation is that an object contains:
– Fields declared in its class and in all superclasses

• Redeclaration of a field hides (shadows) superclass instance – but
the superclass field is still there and is in scope for, and accessed
by, superclass methods

– All methods declared in its class and all superclasses
• Redeclaration of a method overrides (replaces) – but overridden

methods can still be accessed by super. , and all relevant methods
are part of the object’s “behavior”

• When a method is called, the appropriate method
“inside” that particular object is called
– Regardless of the static (compile-time) type of the variable

that points to the object

– (But we really don’t want to copy/duplicate all those methods, do we?)

UW CSE P 501 Autumn 2023 L-5

Actual representation
• Each object contains:
– Storage for every field (instance variable)

• Including all inherited fields (public or private or …)
– A pointer to a runtime data structure for its class

• Key component: method dispatch table (vtable, next slide)

• An object is basically a C struct
• Fields hidden (shadowed) by declarations in subclasses

are still allocated in the object and are accessible from
superclass methods (using offsets assigned as part of
superclass object layout)
– Subclass methods access new fields using offsets assigned

when subclass fields appended to superclass struct layout

UW CSE P 501 Autumn 2023 L-6

Method Dispatch Tables

• One of these per class, not per object
• Often called “vtable”, “vtbl”, or “vtab”
– (virtual function table – term from C++; standard

term in all languages with dynamic dispatch)

• One pointer for each method in the vtable –
points to beginning of compiled method code

UW CSE P 501 Autumn 2023 L-7

Method Tables and Inheritance
• A naïve, really simple implementation – dictionaries!
– One method table for each class containing names of

methods declared locally in that class (keys), with pointers
to compiled code for each method (values)

– Method table also contains a pointer to parent class
method table

– Method dispatch:
• Look in table for object’s class and use if method found
• Look in parent class table if not local
• Repeat
• “Message not understood” if you can’t find it after search

– Actually used in typical implementations of some dynamic
languages; almost required if changes are possible during
execution (e.g. Ruby, SmallTalk, etc.)

UW CSE P 501 Autumn 2023 L-8

Better: O(1) Method Dispatch
• Idea: Method table for extended class has pointers to
all inherited and local methods for that class

• First part of method table for extended class has
pointers for the same methods in the same order as
the parent class
– BUT pointers actually refer to overriding methods if any
– So, dispatch for a method can be done with an indirect

jump using a fixed method offset known at compile time,
regardless of whether this points to an overriding method
• In C: (*(object->vtbl[offset]))(parameters)

• Pointers to additional methods declared (added) in
subclass are included in the vtable after pointers to
inherited or overridden superclass methods

UW CSE P 501 Autumn 2023 L-9

Perverse Example Revisited
class One {
 int tag;
 int it;
 void setTag() { tag = 1; }
 int getTag() { return tag; }
 void setIt(int it) {this.it = it;}
 int getIt() { return it; }
}
class Two extends One {
 int it;
 void setTag() {
 tag = 2; it = 3;
 }
 int getThat() { return it; }
 void resetIt() { super.setIt(42); }
}

public static void main(String[] args) {
 Two two = new Two();
 One one = two;

 one.setTag();
 System.out.println(one.getTag());

 one.setIt(17);
 two.setTag();
 System.out.println(two.getIt());
 System.out.println(two.getThat());
 two.resetIt();
 System.out.println(two.getIt());
 System.out.println(two.getThat());

 }

L-10UW CSE P 501 Autumn 2023

Implementation

UW CSE P 501 Autumn 2023 L-11

codevtablesheapstack

Implementation

UW CSE P 501 Autumn 2023 L-12

codevtablesheapstack

main

one

two

0 (parent)
 8 setTag
16 getTag
24 setIt
32 getIt

0 (parent)
 8 setTag
16 getTag
24 setIt
32 getIt
40 getThat
48 resetIt

One

Two

One::setTag

One::getTag

One::setIt

One::getIt

Two::setTag

Two::getThat

Two::resetIt

override
inherit

0 vtbl

 8 tag _____

16 it _____

24 it _____

additional

Method Dispatch Footnotes

• Don’t need a pointer to parent class vtable to
implement method calls, but often useful for
other purposes
– Casts and instanceof

• Multiple inheritance requires more complex
mechanisms
– Also true for multiple interfaces

UW CSE P 501 Autumn 2023 L-13

Now What?

• Need to explore
– Object layout in memory
– Compiling field references
• Implicit and explicit use of “this”

– Representation of vtables
– Object creation – new
– Code for dynamic dispatch
– Runtime type information – instanceof and casts

UW CSE P 501 Autumn 2023 L-14

Object Layout

• Typically, allocate fields sequentially
• Follow processor/OS alignment conventions

for structs/objects when appropriate/available
– Include padding bytes for alignment as needed

• Use first word of object to hold pointer to
method table (vtable)

• Objects are allocated on the heap (in Java)
– Unlike C++ where objects can also be on stack
– No bytes reserved for object data in generated

code – use either heap or stack as appropriate

UW CSE P 501 Autumn 2023 L-15

Object Field Access

• Source
 int n = obj.fld;

• x86-64
– Assuming that obj is a local variable in the current

method’s stack frame
 movq offsetobj(%rbp),%rax # load obj ptr
 movq offsetfld(%rax),%rax # load fld
 movq %rax,offsetn(%rbp) # store n (assignment stmt)

– Same idea used to reference fields of “this”
• Use implicit “this” parameter passed to method instead of a

local variable to get object address

UW CSE P 501 Autumn 2023 L-16

Local Fields

• A method can refer to fields in the receiving
object either explicitly as “this.f” or implicitly
as “f”
– Both compile to the same code – an implicit

“this.” is assumed if not written explicitly
– A pointer to the object (i.e., “this”) is an implicit,

hidden parameter to all methods

UW CSE P 501 Autumn 2023 L-17

Source Level View

What you write:
int getIt() {
 return it;
}
void setIt(int it) {
 this.it = it;
}
…
obj.setIt(42);
k = obj.getIt();

What compiler really does:
int getIt(Objtype this) {
 return this.it;
}
void setIt(ObjType this, int it) {
 this.it = it;
}
…
setIt(obj, 42);
k = getIt(obj);

UW CSE P 501 Autumn 2023 L-18

x86-64 “this” Convention (C++)

• “this” is an implicit first parameter to every
non-static method

• Address of object (“this”) placed in %rdi for
every non-static method call

• Remaining parameters (if any) in %rsi, etc.

• We’ll use this convention in our project

UW CSE P 501 Autumn 2023 L-19

MiniJava Method Tables (vtbls)

• Generate these as initialized data in the assembly
language source program

• Need to pick a naming convention for assembly
language labels. This will work for us:
– For methods, classname$methodname

• Need something more sophisticated for overloading
– For the vtables themselves, classname$$

• First method table entry points to superclass
table (we might not use it in our project, but is
helpful if you add instanceof or type cast checks)

UW CSE P 501 Autumn 2023 L-20

Method Tables For Perverse Example
(gcc/as syntax)

class One {
 void setTag() { … }
 int getTag() { … }
 void setIt(int it) {…}
 int getIt() { … }
}

class Two extends One {
 void setTag() { … } // override
 int getThat() { … } // additional
 void resetIt() { … }
}

 .data
One$$: .quad 0 # no superclass
 .quad One$setTag
 .quad One$getTag
 .quad One$setIt
 .quad One$getIt

Two$$: .quad One$$ # superclass
 .quad Two$setTag
 .quad One$getTag
 .quad One$setIt
 .quad One$getIt
 .quad Two$getThat
 .quad Two$resetIt

UW CSE P 501 Autumn 2023 L-21

Method Table Layout

Key point: First entries in Two’s method table
are pointers to methods in exactly the same
order as in One’s method table
– Actual pointer(s) contain addresses of method(s)

appropriate for objects of each class (inherited or
overridden)

\ Compiler knows correct offset for a particular
method pointer regardless of whether that
method is overridden and regardless of the
actual type (dynamic) or subclass of the object

UW CSE P 501 Autumn 2023 L-22

Object Creation – new

Steps needed
– Call storage manager (malloc or equivalent) to get the

raw bytes
– Initialize bytes to 0 (for Java, not in e.g., C++ *)
– Store pointer to method table (vtbl) in the first 8 bytes

of the object
– Call a constructor with “this” pointer to the new

object in %rdi and other parameters as needed
• (Not in MiniJava since we don’t have constructors)

– Result of new is a pointer to the new object

*Recent versions of C++ have new strange and wonderous rules about default initialization. Left
as an exercise for aspiring programming language lawyers.

UW CSE P 501 Autumn 2023 L-23

Object Creation
• Source

 One one = new One(…);
• x86-64

movq $nBytesNeeded,%rdi # obj size + 8 (include space for vtbl ptr)
call mallocEquiv # addr of allocated bytes returned in %rax
<zero out allocated object, or use calloc instead of malloc to get the bytes>
leaq One$$(%rip),%rdx # get method table address
movq %rdx,0(%rax) # store vtbl ptr at beginning of object
movq %rax,%rdi # set up “this” for constructor
movq %rax,offsettemp(%rbp) # save “this” for later (or maybe pushq)
<load constructor arguments> # arguments (if needed)
call One$One # call ctor if we have one (no vtbl lookup)
movq offsettemp(%rbp),%rax # recover ptr to object
movq %rax,offsetone(%rbp) # store object reference in variable one

UW CSE P 501 Autumn 2023 L-24

Constructor

• Why don’t we need a vtable lookup to find the
right constructor to call?

• Because at compile time we know the actual class
(it says so right after “new”), so we can generate
a call instruction to a known label
– Same with super.method(…) or superclass constructor

calls – at compile time we know all of the superclasses
(need superclass details to compile subclass and
construct method tables), so we know statically which
class “super.method” belongs to

UW CSE P 501 Autumn 2023 L-25

Method Calls

• Steps needed
– Parameter passing: just like an ordinary C

function, except load a pointer to the object in
%rdi as the first (“this”) argument

– Get a pointer to the object’s method table from
the first 8 bytes of the object

– Jump indirectly through the method table

UW CSE P 501 Autumn 2023 L-26

Method Call
• Source

 obj.method(…);
• x86-64

<load arguments into registers as usual> # as needed
movq offsetobj(%rbp),%rdi # first argument is obj ptr (“this”)
movq 0(%rdi),%rax # load vtable address into %rax
call *offsetmethod(%rax) # call function whose address is at
 # the specified offset in the vtable *

*Can get same effect with: addq offsetmethod,%rax
 call *(%rax)
 or with: movq offsetmethod(%rax),%rax
 call *%rax

UW CSE P 501 Autumn 2023 L-27

Runtime Type Checking
• We can use the method table for the class as a “runtime

representation” of the class
– Each class has one vtable at a unique address

• The test for “o instanceof C” is:
– Is o’s method table pointer == &C$$?

• If so, result is “true”
– Recursively, get pointer to superclass method table from the

method table and check that
– Stop when you reach Object (or a null pointer, depending on

whether there is a ultimate superclass of everything)
• If no match by the top of the chain, result is “false”

• Same test as part of check for legal downcast (e.g., how to
check for ClassCastException in (type)obj cast)

UW CSE P 501 Autumn 2023 L-28

Coming (& past) Attractions

• Other IRs besides ASTs
• Code analysis and optimization
• Industrial-strength back end (register

allocation, instruction selection & scheduling)
• Other topics as time allows
– GC? Dynamic languages? JVM? What else?

• And simple code generation for the project
(later when we get closer to finishing semantics)

UW CSE P 501 Autumn 2023 L-29

