
 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 1 of 17

Name _____________________________________ UW ID # ________________

There are 8 questions worth a total of 125 points. Please budget your time so you get to all of the
questions. Keep your answers brief and to the point.

The exam is closed books, closed notes, closed electronics. Please turn off all cell phones,
personal electronics, alarm watches, and pagers, and return your tray tables and seat backs to
their full upright, locked positions. Sound recording and the taking of photographs is prohibited.

If you have a question during the exam, please raise your hand and someone will come to help
you.

There is an extra blank page at the end of the exam you can use if your answer(s) do not fit
in the space provided. Please indicate on the original page(s) if your answer(s) is(are)
continued on that last page.

Following the blank page for additional answers is a single page that contains a copy of the
MiniJava grammar and a summary of x86-64 information that may be useful in answering some
of the questions. Feel free to remove that page to use while you are working.

Please wait to turn the page until everyone is told to begin.

Score _________________

1 _______ / 10

2 _______ / 12

3 _______ / 24

4 _______ / 12

5 _______ / 23

6 _______ / 14

7 _______ / 14

8 _______ / 16

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 2 of 17

Question 1. (10 points, 1 each) Compiler phases. There are many possible errors that can occur
in a program. For each of the following possible MiniJava errors, indicate when it would be
detected, either at compile time or during execution, and, if the error can be detected by the
compiler, indicate the earliest point in the compiler (scanner, parser, typecheck/semantics) where
the error can definitely be detected. Assume that the compiler is a conventional one that
generates native code for a single target machine (say, x86-64), and assume that the source
language is the MiniJava for our project (if it helps, a copy of the MiniJava grammar is attached
at the end of the exam for reference). Use the following abbreviations for the stages:

scan – scanner
parse – parser
sem – semantics/type check

run – runtime (i.e., when the compiled code
is executed)
can’t – can’t always be done during either
compilation or execution

________ Standard MiniJava does not include a >> (right shift) operator

________ In the assignment statement a=b;, expression b has type int and a has type
boolean and these types are incompatible for assignment.

________ The program contains an infinite loop and will not terminate if it is executed.

________ Standard MiniJava does not include a ++ “increment” operator.

________ If x has type T and the program contains a method call x.f(17), there is no
method f that has one integer parameter in class T or any of its superclasses.

________ In the method call x.f(17), variable x is null (does not reference an object)

________ Class C contains two definitions for method f that have different numbers of
parameters (recall that MiniJava does not support method overloading).

________ The array reference a[5] is incorrect because a has too few elements.

________ System.out.println(x<y) is not supported in MiniJava.

________ System.out.println() is not supported in MiniJava.

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 3 of 17

Question 2. (12 points) Regular expressions. All reasonable file systems have directories
and files, where directories can contain other directories and files, and there is a naming
convention for referencing files.

We have a Unix/Linux-like operating system where file names are specified as follows (read
carefully – this might be a tiny bit different from what you might assume). A name can start
with an optional leading slash (‘/’). Then there is a set of zero or more directory names
separated by slashes. Directory names consist of one or more upper- or lower-case letters.
Following the directory names, if any, is the required file name. File names include an
identifier with one or more upper- or lower-case letters, followed by an optional one- to
three-letter file extension. If the file extension is present, it is separated from the file name
by a period (‘.’).

Examples of valid names: /long/directory/path/with/a/file.txt;
some/subDirectory/lib.a; /x.yz; simpleFileNameWithNoExtension;
simpleFileNameWithExtension.cpp

Examples of invalid names: a/b//c (adjacent ‘/’ characters), a/b/ (no file name after final
‘/’), foo.docx (more than three letters following ‘.’), file1 (digit in file name) file. (no
letters following ‘.’)

(a) (6 points) Give a regular expression that generates strings representing file names as
described above. (Hint: you may want to work on parts (a) and (b) at the same time.)

Ground rules (the fine print): You may only use the basic regular expression operations of
concatenation, choice (|), and repetition (*) plus the derived operators ? and +, and simple character
classes like [abc0-9] and [^a-z]. You may use abbreviations like vowels = [aeiou]. You
may not use more complex operators found in various software tools that handle extended regular
expressions and you should not use ‘\’ or other escape characters. If you need to differentiate
between terminal characters and regular expression operators, underline the terminal characters to
distinguish them or do something equally simple and easy to read.

(continued on next page)

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 4 of 17

Question 2. (cont.) (b) (6 points) Draw a DFA that accepts file names as defined in the
question and that are generated by your answer to part (a).

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 5 of 17

Question 3. (24 points) The you’re-probably-not-surprised-to-see-it LR parsing question.
In C, C++, Java, and other languages, ++ can be used as both a prefix and postfix increment
operator. Consider the following grammar, which uses the terminal inc instead of ++ to
avoid any possible confusion about whether it is a single terminal symbol (which it is), rather
than a pair of separate + symbols (which it isn’t).

0. exp’ ::= exp $ ($ is end-of-file)
1. exp ::= inc exp
2. exp ::= exp inc
3. exp ::= x

(a) (14 points) Draw the LR(0) state machine for this grammar. You do not need to include
the parse table with shift/reduce and goto actions, although you can write all or part of that
later if you find it helpful to answer the rest of this question on the next page.

 (continued on next page)

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 6 of 17

Question 3. (cont.) Grammar repeated for reference

0. exp’ ::= exp $ ($ is end-of-file)
1. exp ::= inc exp
2. exp ::= exp inc
3. exp ::= x

(b) (4 points) Compute nullable and the FIRST and FOLLOW sets for the single
nonterminal exp in the above grammar:

Symbol nullable FIRST FOLLOW

exp

(c) (3 points) Is this grammar LR(0)? Why or why not?

(d) (3 points) Is this grammar SLR? Why or why not?

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 7 of 17

Question 4. (12 points) (LL parsing/grammars) Consider the following grammar:

S ::= b | M
M ::= a | M c c | c M | b b

Is this a LL(1) grammar suitable for top-down predictive parsing? If yes, give a specific
technical justification for your answer. If not, give a quick explanation of why it is not, and
then give a grammar that generates the same language and is LL(1) if that is possible. If no
LL(1) grammar can generate the same language produced by the original grammar, give an
explanation of why this is not possible.

Hint: You are not required to compute FIRST and FOLLOW information for the
nonterminals in the grammar, but you might find some of that information useful in
explaining your answer.

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 8 of 17

Question 5. (23 points) Compiler hacking: MiniJava++. We would like to add a new ++
pre-increment operator to MiniJava. (A copy of the MiniJava grammar is included at the end
of the test for reference if needed.) The new ++ operator is a single token and is a prefix
operator. We will add the following new rule to the MiniJava grammar:

 Expression ::= “++” Expression

The new ++ operator has the same semantics as it does in C/C++/Java and similar languages.
The Expression is evaluated, and it must be a l-value, i.e., an assignable location designating
a variable, array element, or something similar. The ++ operator increments the contents of
that location, and then the returned (computed) value of ‘++Expression’ is the newly
incremented value. Since we are extending MiniJava, the operand of ++ must designate a
location containing an integer, since those are the only values in the language that can be
incremented.

For example, suppose we have the following two statements in a MiniJava program:

 x = 7;
 System.out.println(++x);

The System.out.println statement should print 8, and the final value of x is 8.

Note: for this problem, we are only adding a prefix ++ operator, i.e., for expressions like
++x. We are not also including a postfix x++ operator.

(a) (3 points) What new lexical tokens and/or keywords would need to be added to the
scanner and parser of our MiniJava compiler to add this new ++ operator to the original
MiniJava grammar? Just list the new tokens, if any; you don’t need to give JFlex or CUP
specifications for them.

(continued on next page)

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 9 of 17

Question 5. (cont.) (b) (5 points) Complete the following new AST class to define an AST
node type for the new ++ operator. You only need to define instance variables and the
constructor. Assume that all appropriate package and import declarations are supplied, and
don’t worry about visitor code.

(Hint: recall that the AST package in MiniJava contains the following key classes:
ASTNode, Exp extends ASTNode, and Statement extends ASTNode. Also
remember that each AST node constructor has a Location parameter.)

public class Increment extends Exp {
 // add instance variables below

 // constructor – add parameters and method body below

 public Increment(______________________________________){

 super(pos);

 }
}

(continued on next page)

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 10 of 17

Question 5. (cont.) (c) (5 points) Complete the CUP specification below to add an
appropriate grammar rule and semantic actions for the new ++ operator, including creating a
new Increment node (as defined in part (b) above). Your CUP grammar rule should use any
new tokens or keywords defined in part (a) as appropriate. We have included the production
for an Identifier expression (as found in the project starter code) as a reminder; your job is to
add an equivalent case for the new increment (++) operator.

Hint: recall that the Location of an item foo in a CUP grammar production can be
referenced as fooxleft.

Expression ::= ...
 | IDENTIFIER:name
 {: RESULT = new IdentifierExp(name, namexleft); :}
 | /* add the CUP grammar rule and code for the ++
 operator in the box below */

(d) (4 points) Describe the checks that would be needed in the semantics/type-checking part
of the compiler to verify that an expression using the ++ preincrement operator is legal. You
do not need to give code for a visitor method or anything like that – just describe what
language rules (if any) need to be checked.

(continued on next page)

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 11 of 17

Question 5. (cont.) (e) (6 points) Give the code shape for this new ++ preincrement operator,
i.e., what code should be generated in the assembly language program to properly evaluate an
expression with the new ++ operator.

You should show any instructions, labels, or other assembly language-level details needed,
and also show where generated code to evaluate the subexpression that is the operand of the
increment ++ operator would appear. Be sure you are clear about which parts of the code are
computing or processing addresses of storage locations vs. the contents of those locations
(i.e., lvalues vs. rvalues).

Your code does not need to be precisely correct x86-64 assembly code (i.e., you are not
expected to have memorized instruction details), but it should be close enough so that your
intent is clear and it basically equivalent to real x86-64 code.

Hints: you definitely won’t need all the space on this page for your answer. But be careful
that your code matches the semantics of the ++ operator precisely.

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 12 of 17

Question 6. (14 points) x86-64. Translate the following C function into x86-64 assembly
language. You must use the standard x86-64 C language conventions for function calls,
register usage, and so forth. Note that this is just a C function, not a Java or MiniJava
method, so there are no objects, no this pointer, and no vtables involved. You must
translate the function exactly as given – you may not omit the recursive function call or other
code, or rewrite the calculation into a loop or some other form. Assume that ints are 64-bit
numbers, as in the MiniJava project.

There is a page at the end of the exam with rules for writing x86-64 code for this question
along with some basic x86-64 assembly language reference information. Refer to it while
answering this question, and feel free to remove that page from the exam for convenience.

// return the sum x+(x+1)+...+(y-1)+y
int sum(int x, int y) {
 if (x == y)
 return x;
 else
 return x + sum(x+1,y);
}

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 13 of 17

Question 7. (14 points) Value numbering. For the following block, (i) apply local value
numbering (including version numbers for variables) to the statements in the block, then (ii)
rewrite the code to eliminate redundant expressions using the value numbering information
from part (i).

(i) Show the results of value numbering by writing value numbers and variable version
numbers on the code below. Do not change the code (not yet – that’s the next part). Recall
that the notation vin means that version i of variable v has value number n.

 a = x

 b = x + y

 c = a + b

 a = a + y

 d = b

 b = d + a

(ii) Now, rewrite the above code to show the results of eliminating redundant expressions
using the value numbering information computed in part (i) above. Write your answer
below.

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 14 of 17

Question 8. (16 points) Dataflow Analysis – Liveness. In class we looked at the liveness
dataflow problem. Recall that a variable v is live at program point p if there is any path from
p to a use of v along which v is not defined. For a basic block b we define these sets:

• use[b] = variables used in b before any definition of that
variable occurring in b.

• def[b] = variables defined in b and not killed later in b.
• in[b] = variables live on entry to b.
• out[b] = variables live on exit from b.

These sets are related by these equations:

• in[b] = use[b] ∪(out[b] – def[b])
• out[b] = ∪s	∈	succ[b]	in[s]

Calculate the live variables for each block in this CFG by completing
the table below. You should first calculate the use and def sets, then
iteratively calculate in and out sets until there are no further changes
in the solution. Note that the blocks are listed in reverse order –
information for the last block (5) is in the first row of the table. If
you need additional space for your answer, continue on the following
blank page, and write a note at the end of this page to indicate that
you are doing that.

Block use def out in out in out in

5

4

3

2

1

a > 0

b = s
a = 1

a = a – 1
s = s + a
b = 1

c = s + b

B1

B2

B4

s = 0

B3

B5

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 15 of 17

Additional space for answers if needed. Please be sure to label your answers and indicate
on the original question that your answers are continued here.

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 16 of 17

Extra scratch space or additional space for answers if needed.

 CSE P 501 19au Exam 11/21/19

CSE P 501 19au Exam, Nov. 21, 2019 Page 17 of 17

Reference information for use during the exam. Feel free to remove this page from the
exam for convenience while answering questions.

The reverse side of this page contains the grammar for MiniJava.

Reference and ground rules for x86-64 code, (same as for the MiniJava project and other
x86-64 code):

• You must use the Linux/gcc assembly language, and must follow the x86-64 function
call, register, and stack frame conventions.

o Argument registers: %rdi, %rsi, %rdx, %rcx, %r8, %r9 in that order
o Called function must save and restore %rbx, %rbp, and %r12-%r15 if these

are used in the function
o Function result returned in %rax
o %rsp must be aligned on a 16-byte boundary when a call instruction is

executed
o %rbp must be used as the base pointer (frame pointer) register for this exam,

even though this is not strictly required by the x86-64 specification.
• Pointers, Booleans, and ints are 64 bits (8 bytes) each, as in MiniJava.
• Your x86-64 code must implement all of the statements in the original method. You

may not rewrite the method into a different form that produces equivalent results
(i.e., replacing a function call by the function body or rewriting the code to compute
the result in a different way from the original). Other than that, you can use any
reasonable x86-64 code that follows the standard function call and register
conventions – you do not need to mimic the code produced by a MiniJava compiler.

• Please include brief comments in your code to help us understand what the code is
supposed to be doing (which will help us assign partial credit if it doesn’t do exactly
what you intended.)

