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Agenda

• Loop optimizations
– Dominators – discovering loops
– Loop invariant calculations
– Loop transformations

• A quick look at some memory hierarchy issues
(if we have time)

• Largely based on material in Appel ch. 18, 21; 
similar material in other books
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Loops

Much of he execution time of programs is spent 
inside loops
\ worth considerable effort to make loops go 
faster
\ want to figure out how to recognize loops and 
figure out how to “improve” them
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What’s a Loop?

• In source code, a loop is the set of statements 
in the body of a for/while construct
• But, in a language that permits free use of 

GOTOs, how do we recognize a loop?
• In a control-flow-graph (node = basic-block, 

arc = flow-of-control), how do we recognize a 
loop?
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Any Loops in this Code?
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i = 0
goto L8

L7: i++
L8: if (i < N) goto L9

s = 0
j = 0
goto L5

L4: j++
L5: N--

if(j >= N) goto L3
if (a[j+1] >= a[j]) goto L2
t = a[j+1]
a[j+1] = a[j]
a[j] = t
s = 1

L2: goto L4
L3: if(s != 0) goto L1 else goto L9
L1: goto L7
L9: return

Anyone recognize or 
guess the algorithm?



Any Loops in this Flowgraph?
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Loop in a Flowgraph: Intuition
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Header 
Node

• Cluster of nodes, such that:

• There's one node called the "header"
• I can reach all nodes in the cluster from the header
• I can get back to the header from all nodes in the cluster
• Only once entrance - via the header
• One or more exits



What’s a Loop? (recap)

• In a control flow graph, a loop is a set of nodes 
S such that:
– S includes a header node h
– From any node in S there is a path of directed 

edges leading to h
– There is a path from h to any node in S
– There is no edge from any node outside S to any 

node in S other than h

UW CSE P 501 Autumn 2021 U-8



Entries and Exits

• In a loop
– An entry node is one with some predecessor 

outside the loop
– An exit node is one that has a successor outside 

the loop

• Corollary: A loop may have multiple exit 
nodes, but only one entry node
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Loop Terminology 
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preheader

entry edge

head

back 
edge

tail

loop

exit edge



Finding Loops in Flow Graphs

• We use dominators for this
• Recall:
– Every control flow graph has a unique start 

node s0
– Node x dominates node y if every path from s0

to y must go through x
– A node x dominates itself
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Calculating Dominator Sets

• D[n] is the set of nodes that dominate n
– D[s0] = { s0 }
– D[n] = { n } È ( ÇpÎpred[n] D[p] )

• Set up an iterative analysis as usual to solve 
this
– Except initially each D[n] must be all nodes in the 

graph – updates make these sets smaller if 
changed
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Immediate Dominators

• Every node n has a single immediate dominator
idom(n)
– idom(n) dominates n
– idom(n) differs from n – i.e., strictly dominates
– idom(n) does not dominate any other  strict 

dominator of n
• i.e., strictly dominates and is nearest dominator

• Fact (er, theorem): If a dominates n and 
b dominates n, then either a dominates b or 
b dominates a
\ idom(n) is unique
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Example
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Dominator Tree

• A dominator tree is constructed from a 
flowgraph by drawing an edge between every 
node in n and the corresponding idom(n)
– This will be a tree.  Why?
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Example
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Back Edges & Loops

• A flow graph edge from a node n to a node h 
that dominates n is a back edge
– In our example, from nodes 3 and 4 to 2; from 9 

to 8; from 10 to 5
• (And a node can have a back edge to itself! – although 

not in our example)

• For every back edge there is a corresponding 
subgraph of the flow graph that is a loop
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Natural Loops

• If h dominates n and n->h is a back edge, then 
the natural loop of that back edge is the set of 
nodes x such that
– h dominates x
– There is a path from x to n not containing h

• h is the header of this loop
• Standard loop optimizations can cope with 

loops whether they are natural or not
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Inner Loops

• Inner loops are more important for 
optimization because most execution time is 
expected to be spent there

• If two loops share a header, it is hard to tell 
which one is “inner”
– Common way to handle this is to merge natural 

loops with the same header
• Resulting loop could well not be a “natural loop”
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Inner (nested) loops

• Suppose
– A and B are loops with headers a and b
– a ¹ b
– b is inside A

• Then
– The nodes of B are a proper subset of A
– B is nested in A, or B is the inner loop
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Loop-Nest Tree

• Given a flow graph G
1. Compute the dominators of G
2. Construct the dominator tree
3. Find the natural loops (thus all loop-header 

nodes)
4. For each loop header h, merge all natural loops 

of h into a single loop: loop[h]
5. Construct a tree of loop headers s.t. h1 is above 

h2 if h2 is in loop[h1]
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Example
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Loop-Nest Tree details

• Leaves of this tree are the innermost loops
• Need to put all non-loop nodes somewhere
– Convention: lump these into the root of the loop-

nest tree
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Loop Preheader

• Often we need a place to park code right 
before the beginning of a loop

• Easy if there is a single node preceding the 
loop header h
– But this isn’t the case in general

• So insert a preheader node p
– Include an edge p->h
– Change all edges x->h to be x->p
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Loop-Invariant Computations

• Idea: If x := a1 op a2 always does the same 
thing each time around the loop, we’d like to 
hoist it and do it once outside the loop

• But can’t always tell if a1 and a2 will have the 
same value
– Need a conservative (safe) approximation
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Loop-Invariant Computations

• d: x := a1 op a2 is loop-invariant if for each ai
– ai is a constant, or
– All the definitions of ai that reach d are outside the 

loop, or
– Only one definition of ai reaches d, and that definition 

is loop invariant
• Use this to build an iterative algorithm
– Base cases: constants and operands defined outside 

the loop
– Then: repeatedly find definitions with loop-invariant 

operands
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Hoisting

• Assume that  d: x := a1 op a2  is loop invariant.  
We can hoist it to the loop preheader if
– d dominates all loop exits where x is live-out, and
– There is only one definition of x in the loop, and
– x is not live-out of the loop preheader

• Need to modify this if a1 op a2 could have 
side effects or raise an exception
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Hoisting t:=a op b   Possible?

• Example 1
L0: t := 0
L1: i := i + 1
d: t := a op b

M[i] := t
if i < n goto L1

L2: x := t

• Example 2
L0: t := 0
L1: if i ≥ n goto L2 

i := i + 1
d: t := a op b

M[i] := t
goto L1

L2: x := t
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Hoisting t:=a op b   Possible?

• Example 3
L0: t := 0
L1: i := i + 1
d: t := a op b

M[i] := t
t := 0
M[j] := t
if i < n goto L1

L2: x := t

• Example 4
L0: t := 0
L1: M[j] := t

i := i + 1
d: t := a op b

M[i] := t
if i < n goto L1

L2: x := t
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Hoisting t:=a op b   Possible?

• Example 1
L0: t := 0
L1: i := i + 1
d: t := a op b

M[i] := t
if i < n goto L1

L2: x := t

• Example 2
L0: t := 0
L1: if i ≥ n goto L2 

i := i + 1
d: t := a op b

M[i] := t
goto L1

L2: x := t
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OK Not OK – can’t hoist because
loop body isn’t always executed



Hoisting t:=a op b   Possible?

• Example 3
L0: t := 0
L1: i := i + 1
d: t := a op b

M[i] := t
t := 0
M[j] := t
if i < n goto L1

L2: x := t

• Example 4
L0: t := 0
L1: M[j] := t

i := i + 1
d: t := a op b

M[i] := t
if i < n goto L1

L2: x := t
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Not OK – can’t hoist because
t is used before assigned

Not OK – can’t hoist because
of multiple assignments to t



Induction Variables

• Suppose inside a loop
– Variable i is incremented or decremented
– Variable j is set to i*c+d where c and d are loop-

invariant

• Then we can calculate j’s value without using i
– Whenever i is incremented by a, 

increment j by a*c
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Example

• Original
s := 0
i := 0

L1: if i ≥ n goto L2
j := i*4
k := j+a
x := M[k]
s := s+x
i := i+1
goto L1

L2:

• To optimize, do…
– Induction-variable analysis 

to discover i and j are 
related induction variables

– Strength reduction to 
replace *4 with an addition

– Induction-variable 
elimination to replace i ≥ n

– Assorted copy propagation
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Result

• Original
s := 0
i := 0

L1: if i ≥ n goto L2
j := i*4
k := j+a
x := M[k]
s := s+x
i := i+1
goto L1

L2:

• Transformed
s := 0
k’ = a
b = n*4
c = a+b

L1: if k’ ≥ c goto L2
x := M[k’]
s := s+x
k’ := k’+4
goto L1

L2:
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Details are somewhat messy – see your favorite compiler book



Basic and Derived Induction Variables

• Variable i is a basic induction variable in loop L 
with header h if the only definitions of i in L have 
the form i:=i±c where c is loop invariant

• Variable k is a derived induction variable in L if:
– There is only one definition of k in L of the form k:=j*c 

or k:=j+d where j is an induction variable and c, d are 
loop-invariant, and

– if j is a derived variable in the family of i, then:
• The only definition of j that reaches k is the one in the loop, 
and

• there is no definition of i on any path between the definition 
of j and the definition of k
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Optimizating Induction Variables

• Strength reduction: if a derived induction variable 
is defined with j:=i*c, try to replace it with an 
addition inside the loop

• Elimination: after strength reduction some 
induction variables are not used or are only 
compared to loop-invariant variables; delete 
them

• Rewrite comparisons:  If a variable is used only in 
comparisons against loop-invariant variables and 
in its own definition, modify the comparison to 
use a related induction variable
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Loop Unrolling

• If the body of a loop is small, much of the time 
is spent in the “increment and test” code

• Idea: reduce overhead by unrolling – put two 
or more copies of the loop body inside the 
loop
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Loop Unrolling

• Basic idea: Given loop L with header node h 
and back edges si->h
1. Copy the nodes to make loop L’ with header h’ 

and back edges si’->h’
2. Change all back edges in L from si->h to si->h’
3. Change all back edges in L’ from si’->h’ to si’->h
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Unrolling Algorithm Results

• Before
L1: x := M[i]

s := s + x
i := i + 4

if i<n goto L1 else L2
L2:

• After
L1: x := M[i]

s := s + x
i := i + 4
if i<n goto L1’ else L2

L1’:x := M[i]
s := s + x
i := i + 4

if i<n goto L1 else L2
L2:
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Hmmmm….

• Not so great – just code bloat
• But: use induction variables and various loop 

transformations to clean up
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After Some Optimizations

• Before
L1: x := M[i]

s := s + x
i := i + 4
if i<n goto L1’ else L2

L1’:x := M[i]
s := s + x
i := i + 4

if i<n goto L1 else L2
L2:

• After
L1: x := M[i]

s := s + x
x := M[i+4]
s := s + x
i := i + 8
if i<n goto L1 else L2

L2:
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Still Broken…

• But in a different, better(?) way
• Good code, but only correct if original number 

of loop iterations was even
• Fix: add an epilogue to handle the “odd” 

leftover iteration
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Fixed
• Before

L1: x := M[i]
s := s + x
x := M[i+4]
s := s + x
i := i + 8

if i<n goto L1 else L2
L2:

• After
if i<n-8 goto L1 else L2

L1: x := M[i]
s := s + x
x := M[i+4]
s := s + x
i := i + 8
if i<n-8 goto L1 else L2

L2: x := M[i]
s := s+x
i := i+4
if i < n goto L2 else L3

L3:
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Postscript

• This example only unrolls the loop by a factor 
of 2

• More typically, unroll by a factor of K
– Then need an epilogue that is a loop like the 

original that iterates up to K-1 times
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Memory Heirarchies

• One of the great triumphs of computer design
• Effect is a large, fast memory
• Reality is a series of progressively larger, slower, 

cheaper stores, with frequently accessed data 
automatically staged to faster storage (cache, 
main storage, disk)

• Programmer/compiler typically treats it as one 
large store.  (but not always the best idea)

• Hardware maintains cache coherency – most of 
the time
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Intel Haswell Caches

U-50

Core Core

L1 = 64 KB per core

L2 = 256 KB per core

L3 = 2-8 MB shared

Main Memory



Just How Slow is Operand Access?

• Instruction ~5 per cycle

• Register 1 cycle

• L1 CACHE ~4 cycles
• L2 CACHE ~10 cycles
• L3 CACHE (unshared line) ~40 cycles

• DRAM ~100 ns 
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Implications

• CPU speed increases have out-paced increases 
in memory access times

• Memory access now often determines overall 
execution speed

• “Instruction count” is not the only 
performance metric for optimization
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Memory Issues

• Byte load/store is often slower than whole 
(physical) word load/store
– Unaligned access is often extremely slow

• Temporal locality: accesses to recently accessed 
data will usually find it in the (fast) cache

• Spatial locality: accesses to data near recently 
used data will usually be fast
– “near” = in the same cache block

• But – alternating accesses to blocks that map to 
the same cache block will cause thrashing
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Data Alignment

• Data objects (structs) often are similar in size 
to a cache block (≈ 64 bytes)
\ Better if objects don’t span blocks

• Some strategies
– Allocate objects sequentially; bump to next block 

boundary if useful
– Allocate objects of same common size in separate 

pools (all size-2, size-4, etc.)
• Tradeoff: speed for some wasted space
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Instruction Alignment

• Align frequently executed basic blocks on cache 
boundaries (or avoid spanning cache blocks)

• Branch targets (particularly loops) may be faster if they 
start on a cache line boundary
– Often see multi-byte nops in optimized code as padding to 

align loop headers
– How much depends on architecture (typical 16 or 32 bytes)

• Try to move infrequent code (startup, exceptions) away 
from hot code

• Optimizing compiler can perform basic-block ordering
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Loop Interchange

• Watch for bad cache patterns in inner loops; 
rearrange if possible

• Example
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
for (k = 0; k < p; k++)
a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]

– b[i,j+1,k] is reused in the next two iterations, but will 
have been flushed from the cache by the k loop
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Loop Interchange

• Solution for this example: interchange j and k 
loops

for (i = 0; i < m; i++)
for (k = 0; k < p; k++)
for (j = 0; j < n; j++)
a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]

– Now b[i,j+1,k] will be used three times on each cache 
load

– Safe  here because loop iterations are independent
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Loop Interchange

• Need to construct a data-dependency graph 
showing information flow between loop 
iterations

• For example, iteration (j,k) depends on 
iteration (j’,k’) if (j’,k’) computes values used in 
(j,k) or stores values overwritten by (j,k)
– If there is a dependency and loops are 

interchanged, we could get different results – so 
can’t do it
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Blocking
• Consider matrix multiply

for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {
c[i,j] = 0.0;
for (k = 0; k < n; k++)
c[i,j] = c[i,j] + a[i,k]*b[k,j]

}
• If a, b fit in the cache together, great!
• If they don’t, then every b[k,j] reference will be a cache 

miss
• Loop interchange (i<->j) won’t help; then every a[i,k] 

reference would be a miss
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Blocking

• Solution: reuse rows of A and columns of B 
while they are still in the cache

• Assume the cache can hold 2*c*n matrix 
elements (1 < c < n)

• Calculate c ´ c blocks of C using c rows of A 
and c columns of B
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Blocking

• Calculating c ´ c blocks of C
for (i = i0; i < i0+c; i++)

for (j = j0; j < j0+c; j++) {
c[i,j] = 0.0;
for (k = 0; k < n; k++)

c[i,j] = c[i,j] + a[i,k]*b[k,j]
}
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Blocking

• Then nest this inside loops that calculate 
successive c ´ c blocks
for (i0 = 0; i0 < n; i0+=c)
for (j0 = 0; j0 < n; j0+=c)
for (i = i0; i < i0+c; i++)
for (j = j0; j < j0+c; j++) {
c[i,j] = 0.0;
for (k = 0; k < n; k++)
c[i,j] = c[i,j] + a[i,k]*b[k,j]

}
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Parallelizing Code

• There is a large literature about how to 
rearrange loops for better locality and to 
detect parallelism

• Some starting points
– Latest edition of Dragon book, ch. 11
– Allen & Kennedy Optimizing Compilers for Modern 

Architectures
– Wolfe, High-Performance Compilers for Parallel 

Computing
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