CSE P 501 – Compilers

Loops Hal Perkins Autumn 2021

UW CSE P 501 Autumn 2021

Agenda

- Loop optimizations
 - Dominators discovering loops
 - Loop invariant calculations
 - Loop transformations
- A quick look at some memory hierarchy issues (if we have time)
- Largely based on material in Appel ch. 18, 21; similar material in other books

Loops

Much of he execution time of programs is spent inside loops

∴ worth considerable effort to make loops go faster

∴ want to figure out how to recognize loops and figure out how to "improve" them

What's a Loop?

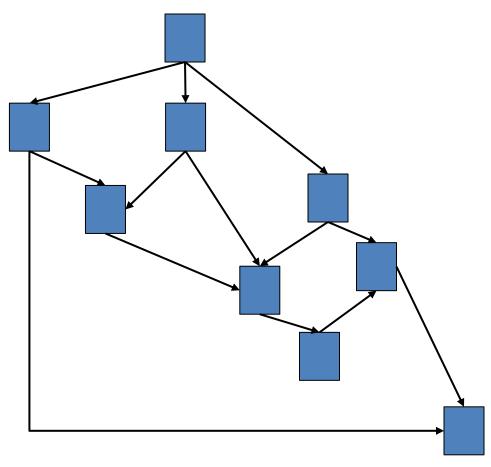
- In source code, a loop is the set of statements in the body of a for/while construct
- But, in a language that permits free use of GOTOs, how do we recognize a loop?
- In a control-flow-graph (node = basic-block, arc = flow-of-control), how do we recognize a loop?

Any Loops in this Code?

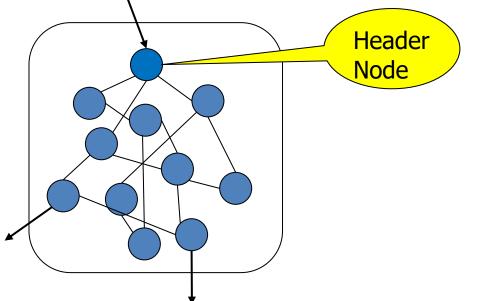
	i = 0
	goto L8
L7:	i++
L8:	if (i < N) <mark>goto L9</mark>
	s = 0
	j = 0
	goto L5
L4:	j++
L5:	N
	if(j >= N) <mark>goto L3</mark>
	if (a[j+1] >= a[j]) goto L2
	t = a[j+1]
	a[j+1] = a[j]
	a[j] = t
	s = 1
L2:	goto L4
L3:	if(s != 0) goto L1 else goto L9
L1:	goto L7
L9:	return

Anyone recognize or guess the algorithm?

Any Loops in this Flowgraph?



Loop in a Flowgraph: Intuition



• Cluster of nodes, such that:

- There's one node called the "header"
- I can reach all nodes in the cluster from the header
- I can get back to the header from all nodes in the cluster
- Only once entrance via the header
- One or more exits

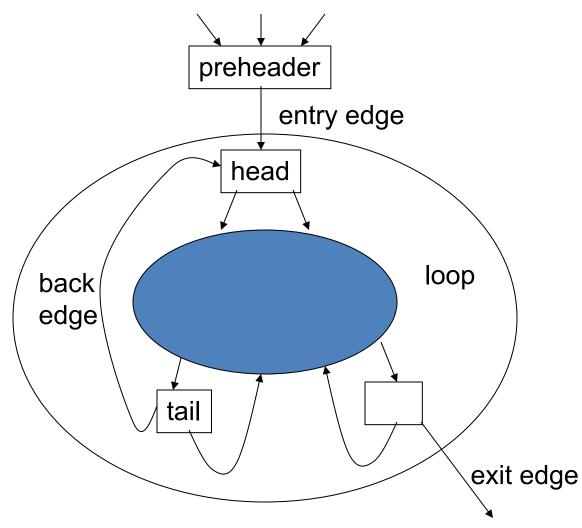
What's a Loop? (recap)

- In a control flow graph, a loop is a set of nodes S such that:
 - S includes a *header node* h
 - From any node in S there is a path of directed edges leading to h
 - There is a path from h to any node in S
 - There is no edge from any node outside S to any node in S other than h

Entries and Exits

- In a loop
 - An *entry node* is one with some predecessor outside the loop
 - An *exit node* is one that has a successor outside the loop
- Corollary: A loop may have multiple exit nodes, but only one entry node

Loop Terminology



UW CSE P 501 Autumn 2021

Finding Loops in Flow Graphs

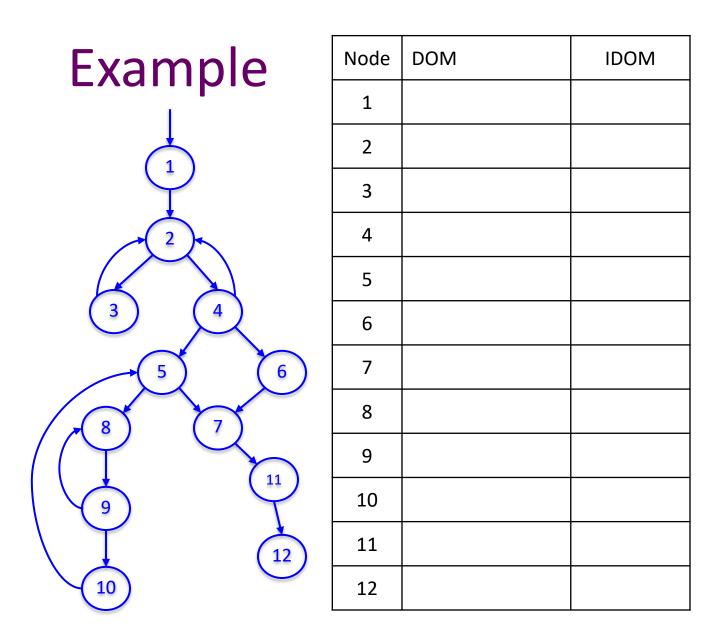
- We use *dominators* for this
- Recall:
 - Every control flow graph has a unique start node s₀
 - Node x dominates node y if every path from s₀
 to y must go through x
 - A node x dominates itself

Calculating Dominator Sets

- D[n] is the set of nodes that dominate n
 D[s₀] = { s₀ }
 - D[n] = { n } \cup ($\cap_{p \in pred[n]} D[p]$)
- Set up an iterative analysis as usual to solve this
 - Except initially each D[n] must be all nodes in the graph – updates make these sets smaller if changed

Immediate Dominators

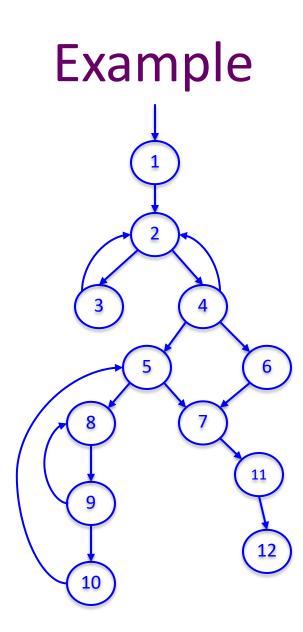
- Every node n has a single *immediate dominator* idom(n)
 - idom(n) dominates n
 - idom(n) differs from n i.e., strictly dominates
 - idom(n) does not dominate any other strict dominator of n
 - i.e., strictly dominates and is nearest dominator
- Fact (er, theorem): If a dominates n and b dominates n, then either a dominates b or b dominates a
 - .:. idom(n) is unique



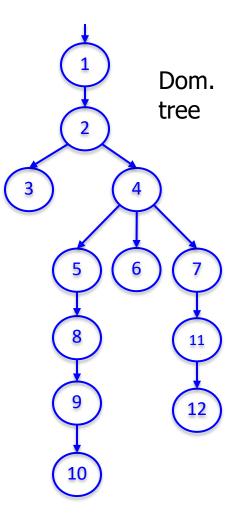
Dominator Tree

 A *dominator tree* is constructed from a flowgraph by drawing an edge between every node in n and the corresponding idom(n)

- This will be a tree. Why?



Node	DOM	IDOM
1	1	
2	1,2	1
3	1,2,3	2
4	1,2,4	2
5	1,2,4,5	4
6	1,2,4,6	4
7	1,2,4,7	4
8	1,2,4,5,8	5
9	1,2,4,5,8,9	8
10	1,2,4,5,8,9,10	9
11	1,2,4,7,11	7
12	1,2,4,7,11,12	11



UW CSE P 501 Autumn 2021

Back Edges & Loops

- A flow graph edge from a node n to a node h that dominates n is a *back edge*
 - In our example, from nodes 3 and 4 to 2; from 9 to 8; from 10 to 5
 - (And a node can have a back edge to itself! although not in our example)
- For every back edge there is a corresponding subgraph of the flow graph that is a loop

Natural Loops

- If h dominates n and n->h is a back edge, then the *natural loop* of that back edge is the set of nodes x such that
 - h dominates x
 - There is a path from x to n not containing h
- h is the *header* of this loop
- Standard loop optimizations can cope with loops whether they are natural or not

Inner Loops

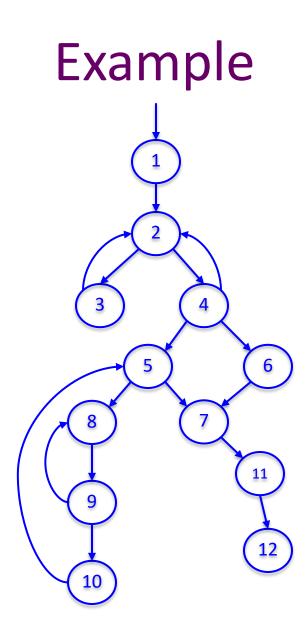
- Inner loops are more important for optimization because most execution time is expected to be spent there
- If two loops share a header, it is hard to tell which one is "inner"
 - Common way to handle this is to merge natural loops with the same header
 - Resulting loop could well not be a "natural loop"

Inner (nested) loops

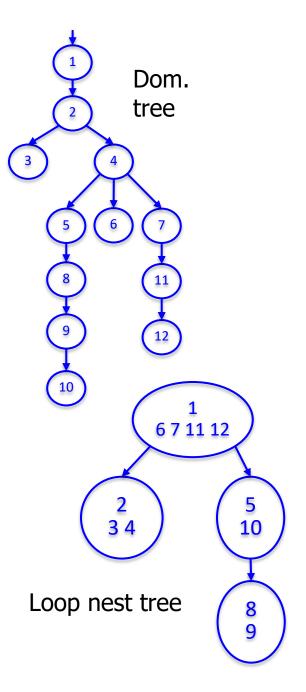
- Suppose
 - A and B are loops with headers a and b
 - $-a \neq b$
 - b is inside A
- Then
 - The nodes of B are a proper subset of A
 - B is nested in A, or B is the *inner loop*

Loop-Nest Tree

- Given a flow graph G
 - 1. Compute the dominators of G
 - 2. Construct the dominator tree
 - 3. Find the natural loops (thus all loop-header nodes)
 - 4. For each loop header h, merge all natural loops of h into a single loop: loop[h]
 - 5. Construct a tree of loop headers s.t. h_1 is above h_2 if h_2 is in loop[h_1]



Node	DOM	IDOM
Noue	DOIVI	
1	1	
2	1,2	1
3	1,2,3	2
4	1,2,4	2
5	1,2,4,5	4
6	1,2,4,6	4
7	1,2,4,7	4
8	1,2,4,5,8	5
9	1,2,4,5,8,9	8
10	1,2,4,5,8,9,10	9
11	1,2,4,7,11	7
12	1,2,4,7,11,12	11



UW CSE P 501 Autumn 2021

Loop-Nest Tree details

- Leaves of this tree are the innermost loops
- Need to put all non-loop nodes somewhere
 - Convention: lump these into the root of the loopnest tree

Loop Preheader

- Often we need a place to park code right before the beginning of a loop
- Easy if there is a single node preceding the loop header h
 - But this isn't the case in general
- So insert a *preheader* node p
 - Include an edge p->h
 - Change all edges x->h to be x->p

Loop-Invariant Computations

- Idea: If x := a1 op a2 always does the same thing each time around the loop, we'd like to hoist it and do it once outside the loop
- But can't always tell if a1 and a2 will have the same value
 - Need a conservative (safe) approximation

Loop-Invariant Computations

- d: x := a1 op a2 is *loop-invariant* if for each a_i
 - a_i is a constant, or
 - All the definitions of a_i that reach d are outside the loop, or
 - Only one definition of a_i reaches d, and that definition is loop invariant
- Use this to build an iterative algorithm
 - Base cases: constants and operands defined outside the loop
 - Then: repeatedly find definitions with loop-invariant operands

Hoisting

- Assume that d: x := a1 op a2 is loop invariant.
 We can hoist it to the loop preheader if
 - d dominates all loop exits where x is live-out, and
 - There is only one definition of x in the loop, and
 - x is not live-out of the loop preheader
- Need to modify this if a1 op a2 could have side effects or raise an exception

Example 1

 L0: t := 0
 L1: i := i + 1
 d: t := a op b
 M[i] := t
 if i < n goto L1
 L2: x := t

Example 2

 L0: t := 0
 L1: if i ≥ n goto L2
 i := i + 1
 t := a op b
 M[i] := t
 goto L1
 L2: x := t

- Example 3 • Example 4 L0: t := 0 L0: t := 0 L1: i := i + 1L1: M[j] := t i := i + 1d: t := a op b M[i] := t d: t := a op b t := 0 M[i] := t M[j] := t if i < n goto L1 if i < n goto L1 L2: x := t L2: x := t
 - UW CSE P 501 Autumn 2021

Example 1

 L0: t := 0
 L1: i := i + 1
 d: t := a op b
 M[i] := t
 if i < n goto L1
 L2: x := t

Example 2

 L0: t := 0
 L1: if i ≥ n goto L2
 i := i + 1
 t := a op b
 M[i] := t
 goto L1
 L2: x := t

OK

Not OK – can't hoist because loop body isn't always executed

• Example 3 L0: t := 0 L1: i := i + 1 d: t := a op b M[i] := t t := 0 M[j] := t if i < n goto L1 L2: x := t Not OK - can't hoist because

of multiple assignments to t

- Example 4
 - L0: t := 0
 - L1: M[j] := t
 - i := i + 1
 - d: t := a op b
 - M[i] := t
 - if i < n goto L1

L2: x := t

Not OK – can't hoist because t is used before assigned

UW CSE P 501 Autumn 2021

Induction Variables

- Suppose inside a loop
 - Variable i is incremented or decremented
 - Variable j is set to i*c+d where c and d are loopinvariant
- Then we can calculate j's value without using i
 - Whenever i is incremented by a, increment j by a*c

Example

- Original
 - s := 0
 - i := 0
 - L1: if $i \ge n$ goto L2
 - j := i*4
 - k := j+a
 - x := M[k]
 - s := s+x
 - i := i+1
 - goto L1

L2:

- To optimize, do...
 - Induction-variable analysis to discover i and j are related induction variables
 - Strength reduction to replace *4 with an addition
 - Induction-variable
 elimination to replace i ≥ n
 - Assorted copy propagation

Result

 Transformed Original s := 0 s := 0 i := 0 $\mathbf{k'} = \mathbf{a}$ $b = n^{*}4$ L1: if i \geq n goto L2 j := i*4 c = a+bL1: if $k' \ge c$ goto L2 k := j+a x := M[k] x := M[k']s := s + xs := s + xk' := k' + 4i := i+1 goto L1 goto L1 L2: 12: Details are somewhat messy – see your favorite compiler book

Basic and Derived Induction Variables

- Variable i is a *basic induction variable* in loop L with header h if the only definitions of i in L have the form i:=i±c where c is loop invariant
- Variable k is a *derived induction variable* in L if:
 - There is only one definition of k in L of the form k:=j*c or k:=j+d where j is an induction variable and c, d are loop-invariant, and
 - if j is a derived variable in the family of i, then:
 - The only definition of j that reaches k is the one in the loop, and
 - there is no definition of i on any path between the definition of j and the definition of k

Optimizating Induction Variables

- Strength reduction: if a derived induction variable is defined with j:=i*c, try to replace it with an addition inside the loop
- Elimination: after strength reduction some induction variables are not used or are only compared to loop-invariant variables; delete them
- Rewrite comparisons: If a variable is used only in comparisons against loop-invariant variables and in its own definition, modify the comparison to use a related induction variable

Loop Unrolling

- If the body of a loop is small, much of the time is spent in the "increment and test" code
- Idea: reduce overhead by *unrolling* put two or more copies of the loop body inside the loop

Loop Unrolling

- Basic idea: Given loop L with header node h and back edges s_i->h
 - Copy the nodes to make loop L' with header h' and back edges s_i'->h'
 - 2. Change all back edges in L from s_i ->h to s_i ->h'
 - 3. Change all back edges in L' from $s_i' ->h'$ to $s_i' ->h$

Unrolling Algorithm Results

• After Before \bullet L1: x := M[i] L1: x := M[i] s := s + xs := s + xi := i + 4i := i + 4if i<n goto L1' else L2 if i<n goto L1 else L2 L1':x := M[i] L2: S := S + Xi := i + 4if i<n goto L1 else L2 L2:

Hmmm....

- Not so great just code bloat
- But: use induction variables and various loop transformations to clean up

After Some Optimizations

Before	• After
L1: x := M[i]	L1: x := M[i]
s := s + x	s := s + x
i := i + 4	x := M[i+4]
if i <n else="" goto="" l1'="" l2<="" td=""><td>s := s + x</td></n>	s := s + x
L1':x := M[i]	i := i + 8
s := s + x	if i <n else="" goto="" l1="" l2<="" td=""></n>
i := i + 4	L2:
if i <n else="" goto="" l1="" l2<="" td=""><td></td></n>	
L2:	

Still Broken...

- But in a different, better(?) way
- Good code, but only correct if original number of loop iterations was even
- Fix: add an epilogue to handle the "odd" leftover iteration

Fixed

Before

 L1: x := M[i]
 s := s + x
 x := M[i+4]
 s := s + x
 i := i + 8
 if i<n goto L1 else L2
 L2:

• After

if i<n-8 goto L1 else L2 L1: x := M[i] s := s + xx := M[i+4] s := s + xi := i + 8 if i<n-8 goto L1 else L2 L2: x := M[i] s := s + xi := i+4 if i < n goto L2 else L3 L3:

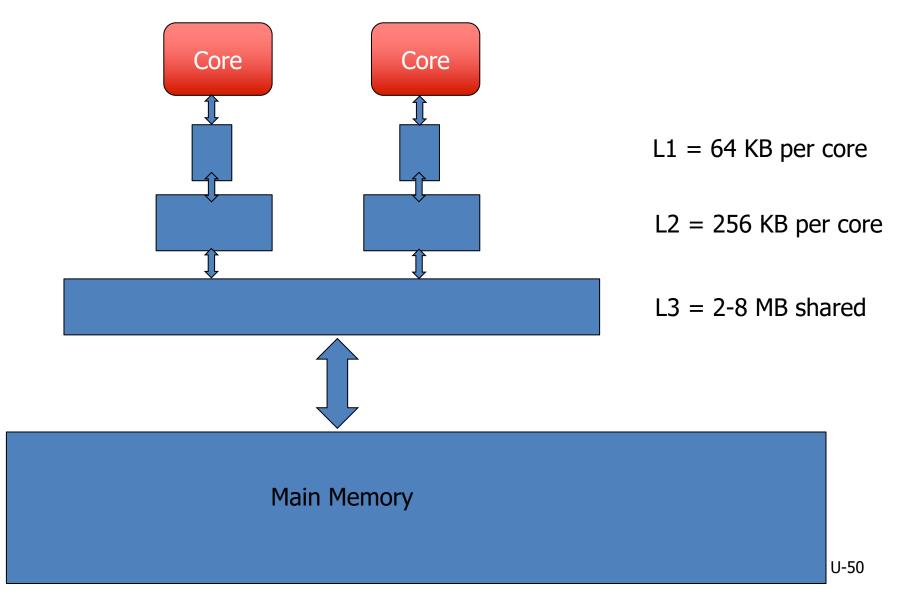
Postscript

- This example only unrolls the loop by a factor of 2
- More typically, unroll by a factor of K
 - Then need an epilogue that is a loop like the original that iterates up to K-1 times

Memory Heirarchies

- One of the great triumphs of computer design
- Effect is a large, fast memory
- Reality is a series of progressively larger, slower, cheaper stores, with frequently accessed data automatically staged to faster storage (cache, main storage, disk)
- Programmer/compiler typically treats it as one large store. (but not always the best idea)
- Hardware maintains cache coherency most of the time

Intel Haswell Caches



Just How Slow is Operand Access?

•	Instruction	~5 per cycle
•	Register	1 cycle
•	L1 CACHE	~4 cycles
•	L2 CACHE	~10 cycles
•	L3 CACHE (unshared line)	~40 cycles
•	DRAM	~100 ns

Implications

- CPU speed increases have out-paced increases in memory access times
- Memory access now often determines overall execution speed
- "Instruction count" is not the only performance metric for optimization

Memory Issues

- Byte load/store is often slower than whole (physical) word load/store
 - Unaligned access is often extremely slow
- Temporal locality: accesses to recently accessed data will usually find it in the (fast) cache
- Spatial locality: accesses to data near recently used data will usually be fast

– "near" = in the same cache block

 But – alternating accesses to blocks that map to the same cache block will cause thrashing

Data Alignment

- Data objects (structs) often are similar in size to a cache block (≈ 64 bytes)
 - ... Better if objects don't span blocks
- Some strategies
 - Allocate objects sequentially; bump to next block boundary if useful
 - Allocate objects of same common size in separate pools (all size-2, size-4, etc.)
- Tradeoff: speed for some wasted space

Instruction Alignment

- Align frequently executed basic blocks on cache boundaries (or avoid spanning cache blocks)
- Branch targets (particularly loops) may be faster if they start on a cache line boundary
 - Often see multi-byte nops in optimized code as padding to align loop headers
 - How much depends on architecture (typical 16 or 32 bytes)
- Try to move infrequent code (startup, exceptions) away from hot code
- Optimizing compiler can perform basic-block ordering

Loop Interchange

- Watch for bad cache patterns in inner loops; rearrange if possible
- Example

for (i = 0; i < m; i++) for (j = 0; j < n; j++)

for (k = 0; k < p; k++)

a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]

 b[i,j+1,k] is reused in the next two iterations, but will have been flushed from the cache by the k loop

Loop Interchange

Solution for this example: interchange j and k loops

for (i = 0; i < m; i++) for (k = 0; k < p; k++) for (j = 0; j < n; j++) a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]

- Now b[i,j+1,k] will be used three times on each cache load
- Safe here because loop iterations are independent

Loop Interchange

- Need to construct a data-dependency graph showing information flow between loop iterations
- For example, iteration (j,k) depends on iteration (j',k') if (j',k') computes values used in (j,k) or stores values overwritten by (j,k)
 - If there is a dependency and loops are interchanged, we could get different results – so can't do it

• Consider matrix multiply

```
for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {
    c[i,j] = 0.0;
    for (k = 0; k < n; k++)
        c[i,j] = c[i,j] + a[i,k]*b[k,j]
}</pre>
```

- If a, b fit in the cache together, great!
- If they don't, then every b[k,j] reference will be a cache miss
- Loop interchange (i<->j) won't help; then every a[i,k] reference would be a miss

- Solution: reuse rows of A and columns of B while they are still in the cache
- Assume the cache can hold 2*c*n matrix elements (1 < c < n)
- Calculate c × c blocks of C using c rows of A and c columns of B

 Calculating c × c blocks of C for (i = i0; i < i0+c; i++) for (j = j0; j < j0+c; j++) { c[i,j] = 0.0; for (k = 0; k < n; k++) c[i,j] = c[i,j] + a[i,k]*b[k,j] }

 Then nest this inside loops that calculate successive $c \times c$ blocks for (i0 = 0; i0 < n; i0+=c) for (j0 = 0; j0 < n; j0+=c)for (i = i0; i < i0+c; i++) for (j = j0; j < j0+c; j++) { c[i,j] = 0.0;for (k = 0; k < n; k++) c[i,j] = c[i,j] + a[i,k]*b[k,j]}

Parallelizing Code

- There is a large literature about how to rearrange loops for better locality and to detect parallelism
- Some starting points
 - Latest edition of *Dragon book*, ch. 11
 - Allen & Kennedy Optimizing Compilers for Modern Architectures
 - Wolfe, High-Performance Compilers for Parallel Computing