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Agenda

* Dataflow analysis: a framework and algorithm
for many common compiler analyses

* |nitial example: dataflow analysis for common
subexpression elimination

 Other analysis problems that work in the same
framework

 Some of these are optimizations we’ve seen,
but now more formally and with details
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The Story So Far...

 Redundant expression elimination
— Local Value Numbering

— Superlocal Value Numbering
e Extends VN to EBBs
e SSA-like namespace

— Dominator VN Technique (DVNT)
* All of these propagate along forward edges

* None are global
— In particular, can’t handle back edges (loops)
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Dominator Value Numbering
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 Most sophisticated 0= do T Do
algorithm so far No = @ + o
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Available Expressions

* Goal: use dataflow analysis to find common
subexpressions whose range spans basic
olocks

* |dea: calculate available expressions at
oeginning of each basic block

* Avoid re-evaluation of an available expression
— use a copy operation
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“Available” and Other Terms

* An expression e is defined at

point p in the CFG if its value arb
IS computed at p defined 1=a+b

— Sometimes called definition site

* An expression e is killed at l

point p if one of its operands +b
is defined at p available t10 =a + b

— Sometimes called kill site
* An expression e is available

at point p if every path
leading to p contains a prior killed E

definition of e and e is not
killed between that definition
and p

I (€
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Available Expression Sets

 To compute available expressions, for each
block b, define

— AVAIL(b) — the set of expressions available on
entryto b

— NKILL(b) — the set of expressions not killed in b

* i.e., all expressions in the program except for those
killed in b

— DEF(b) — the set of expressions defined in b and
not subsequently killed in b
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Computing Available Expressions

e AVAIL(b) is the set
AVAIL(b) = Mycpreds(o) (DEF(X) LU (AVAIL(x) M NKILL(x)))
— preds(b) is the set of b’s predecessors in the CFG

— The set of expressions available on entry to b is the set
of expressions that were available at the end of every
predecessor basic block x

— The expressions available on exit from block b are

those defined in b or available on entry to b and not
killed in b

* This gives a system of simultaneous equations — a
dataflow problem
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Name Space Issues

* |n previous value-numbering algorithms, we used
a SSA-like renaming to keep track of versions

* |n global dataflow problems, we use the original
namespace

— we require a+b have the same value along all paths to
Its use

— If a or b is updated along any path to its use, then a+b
has the “wrong” value

— so original names are exactly what we want

 The KILL information captures when a value is no
longer available
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Computing Available Expressions

* Big Picture
— Build control-flow graph

— Calculate initial local data — DEF(b) and NKILL(b)

* This only needs to be done once for each block b and
depends only on the statements in b

— |teratively calculate AVAIL(b) by repeatedly
evaluating equations until nothing changes

* Another fixed-point algorithm
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Computing DEF and NKILL (1)

* For each block b with operations 04, 0, ..., O,
KILLED =& // variables killed (later) in b, not expressions
DEF(b) = &
fori=kto1l //note: working back to front
assume o, is x=y + 2"
add x to KILLED
if (y ¢ KILLED and z ¢ KILLED)

add “y + z” to DEF(b) // i.e., neither y nor z killed
// after this point in b
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Computing DEF and NKILL (2)

* After computing DEF and KILLED for a block b,
compute set of all expressions in the program
not killed in b

NKILL(b) = { all expressions }
for each expression e
for each variablev € e
if v € KILLED then
NKILL(b) = NKILL(b) - e

UW CSE P 501 Autumn 2021 T-12



Example: Compute DEF and NKILL

DEF = { 5*n, c+d }
NKILL = exprs w/o
m, X, b

N

XxX=a+b
b=c+d
m=05%*n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c=5*pn| DEF={5%*n}

h=2%*a

NKILL = exprs w/o ¢

DEF = { 2*a }
NKILL = exprs w/o h
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Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b

Worklist = { all blocks b; }
while (Worklist = )
remove a block b from Worklist
recompute AVAIL(b)
if AVAIL(b) changed
Worklist = Worklist W successors(b)
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Example: Find Available Expressions
AVAIL(b) = My predsby (DEF(X) U (AVAIL(X) N NKILL(x)))

DEF = { 5*n, c+d }
NKILL = exprs w/o
m, X, b

= in worklist

= processing

j=2%*a
k=2*b

N

XxX=a+b
b=c+d
m=5%*n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

h=2%*a

NKILL = exprs w/o ¢
DEF = { 2*a }

NKILL = exprs w/o h
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Example: Find Available Expressions
AVAIL(b) = My predsby (DEF(X) U (AVAIL(X) N NKILL(x)))

DEF = { 5*n, c+d }
NKILL = exprs w/o
m, X, b

= in worklist

= processing

j=2%*a
k=2%*Db

N

XxX=a+b
b=c+d
m=5%*n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c=5*pn| DEF={5%*n}

h=2%*a

NKILL = exprs w/o ¢

DEF = { 2*a }
NKILL = exprs w/o h
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Example: Find Available Expressions
AVAIL(b) = My predsby (DEF(X) U (AVAIL(X) N NKILL(x)))

DEF = { 5*n, c+d }
NKILL = exprs w/o
m, X, b

= in worklist

= processing

N

XxX=a+b
b=c+d
m=5%*n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c=5*pn| DEF={5%*n}

h=2%*a

NKILL = exprs w/o ¢

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h
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Example: Find Available Expressions
AVAIL(b) = My predsby (DEF(X) U (AVAIL(X) N NKILL(x)))

AVAIL = { 2*a, 2*b }

DEF = { 5*n, c+d }

NKILL = exprs w/o
m, X, b

= in worklist

= processing

N

XxX=a+b
b=c+d
m=5%*n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c=5*pn| DEF={5%*n}

h=2%*a

NKILL = exprs w/o ¢

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h
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Example:

Find Available Expressions

AVAIL(b) = QXepreds(b) (DEF(X) U (AVAIL(X) M NKILL(X)))

AVAIL = { 2*a, 2*b }

DEF = { 5*n, c+d }

NKILL = exprs w/o
m, X, b

= in worklist

= processing

AVAIL = { }
a DEF = { 2*a, 2*b }
b NKILL = exprs w/o j or k

/\ AVALL = £ 2%, 2% 3

X=a+b c=5%*n DEF = { 5*n }
b=c+d NKILL = exprs w/o c
m=5%*n

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

h=2%*a
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Example:

Find Available Expressions

AVAIL(b) = QXepreds(b) (DEF(X) U (AVAIL(X) M NKILL(X)))

AVAIL = { 2*a, 2*b }

DEF = { 5*n, c+d }

NKILL = exprs w/o
m, X, b

= in worklist

= processing

AVAIL = { }
a DEF = { 2*a, 2*b }
b NKILL = exprs w/o j or k

/\ AVALL = £ 2%, 2% 3

X=a+b c=5%*n DEF = { 5*n }
b=c+d NKILL = exprs w/o c
m=5%*n

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

h=2%*a
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Example: Find Available Expressions
AVAIL(b) = My predsby (DEF(X) U (AVAIL(X) N NKILL(x)))

AVAIL = { }
a DEF = { 2*a, 2*b }
b NKILL = exprs w/o j or k

AVAIL = { 2*a, 2*b } /\ AVAIL = { 2*a, 2*b }

DEF = {5%n,c+d} |X=a+b C=5*N| DEF={5%n}
NKILL = exprs wjo |P=c¢C+d NKILL = exprs w/o ¢
m, X, b m=5*n

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

h=2%*a

= in worklist

And the common subexpression is???
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Example: Find Available Expressions
AVAIL(b) = My predsby (DEF(X) U (AVAIL(X) N NKILL(x)))

AVAIL = { 2*a, 2*b }

DEF = { 5*n, c+d }

NKILL = exprs w/o
m, X, b

= in worklist

= processing

N

XxX=a+b
b=c+d
m=05%*n

AVAIL = { }

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c=5%*n

h=2%a

AVAIL = { 2*a, 2*b }
DEF = { 5*n }
NKILL = exprs w/o ¢

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h
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Comparing Algorithms

* LVN - Local Value :—_aa:bb
Numbering —
/ \
e SVN - Superlocal Value Br— r C
Numberin p=c+ q=a+b
& r=c+d r=c+d
/
De=b+18 Ee=a+17
e GRE — Global Redundancy s=a+b t=c+d
Elimination u=e+f u=e+f
N 7
G X=e+f
z=Cc+d /
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Comparing Algorithms (2)

 LVN =>SVN => DVN form a strict hierarchy — later
algorithms find a superset of previous information
* Global RE finds a somewhat different set

— Discovers e+f in F (computed in both D and E)

— Misses identical values if they have different names (e.g.,
a+b and c+d when a=c and b=d)

e Value Numbering catches this
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Scope of Analysis

e Larger context (EBBs, regions, global,
interprocedural) sometimes helps

— More opportunities for optimizations

e But not always
— Introduces uncertainties about flow of control
— Usually only allows weaker analysis
— Sometimes has unwanted side effects

e Can create additional pressure on registers, for example
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Dataflow analysis

* Available expressions are an example of a
dataflow analysis problem

 Many similar problems can be expressed in a
similar framework

* Only the first part of the story — once we’ve
discovered facts, we then need to use them to
improve code
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Characterizing Dataflow Analysis

* All of these algorithms involve sets of facts about
each basic block b

IN(b) — facts true on entry to b

OUT(b) — facts true on exit from b
GEN(b) — facts created and not killed in b
KILL(b) — facts killed in b

* These are related by the equation
OUT(b) = GEN(b) W (IN(b) — KILL(b))
— Solve this iteratively for all blocks

— Sometimes information propagates forward;
sometimes backward
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Dataflow Analysis (1)

* A collection of techniques for compile-time
reasoning about run-time values

* Almost always involves building a graph

— Trivial for basic blocks

— Control-flow graph or derivative for global
problems

— Call graph or derivative for whole-program
problems
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Dataflow Analysis (2)

e Usually formulated as a set of simultaneous
equations (dataflow problem)
— Sets attached to nodes and edges

— Need a lattice (or semilattice) to describe values

* |In particular, has an appropriate operator to combine
values and an appropriate “bottom” or minimal value
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Dataflow Analysis (3)

* Desired solution is usually a meet over all
paths (MOP) solution

— “What is true on every path from entry”
— “What can happen on any path from entry”

— Usually relates to safety of optimization
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Dataflow Analysis (4)

* Limitations
— Precision — “up to symbolic execution”
* Assumes all paths taken
— Sometimes cannot afford to compute full solution

— Arrays — classic analysis treats each array as a single
fact

— Pointers — difficult, expensive to analyze
* Imprecision rapidly adds up
* But gotta do it to effectively optimize things like C/C++
* For scalar values we can quickly solve simple
problems
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Example:Live Variable Analysis

* Avariable vis live at point p iff there is any path from
p to a use of v along which v is not redefined

e Some uses:

— Register allocation — only live variables need a register

— Eliminating useless stores — if variable not live at store,
then stored variable will never be used

— Detecting uses of uninitialized variables — if live at

declaration (before initialization) then it might be used
uninitialized

— Improve SSA construction — only need ®-function for
variables that are live in a block (later)
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Liveness Analysis Sets

* For eac

n block b, define

— use|b]
— def[b]

= variable used in b before any def
= variable defined in b & not killed

— in[b] = variables live on entry to b

— out[b] = variables live on exit from b
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Equations for Live Variables

* Given the preceding definitions, we have
in[b] = use[b] U (out[b] — def[b])
out[b] = Usesucclp] in[S]
e Algorithm
— Set in[b] = out[b] = D
— Update in, out until no change
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Example (1 stmt per block)

* Code 1:a:=0
a:=0 2: b:=a+1 /\
L: b:=a+l

c=c+b 3: c:=c+b

a:=b*2 4: a:=b*2

ifa<NgotoL

return c >ra<n \j
6: return c

in[b] = use[b] U (out[b] — def[b])
out[b] = Ysesucc[b] in[s]
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Calculation

1:a:=0
block | use def out in out in out in
6 2: b:=a+1
> 3: c:=c+b
4
4: a:=b+2
3
5:a <N
2 \j
1 6: return ¢

in[b] = use[b] U (out[b] — def[b])
out[b] = Ysesucc[b] in[s]
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Calculation

U

ra:=0
block | use def out in out in out in

6 C _ _ C - C . b:=a+1
5 a -- C a,c a,c a,c " c'=c+b
4 b a a,c b,c a,c b,c

ra.:=b+2
3 b,c C b,c b,c b,c b,c

ra <N
2 a b b,c a,c b,c a,c
1 - 3 a,c c a,c c : return ¢

in[b] = use[b] U (out[b] — def[b])

out[b] = Uscsuccpy iNLS]
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Equations for Live Variables v2

* Many problems have more than one
formulation. For example, Live Variables...

e Sets

— USED(b) — variables used in b before being defined
inb

— NOTDEF(b) — variables not defined in b
— LIVE(b) — variables live on exit from b

* Equation
LIVE(b) = Uscsuee)USED(s) W (LIVE(s) N NOTDEF(s))
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Efficiency of Dataflow Analysis

 The algorithms eventually terminate, but the
expected time needed can be reduced by
picking a good order to visit nodes in the CFG

— Forward problems — reverse postorder

— Backward problems — postorder
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Example: Reaching Definitions

* A definition d of some variable v reaches
operation i iff i reads the value of v and there
Is a path from d to i that does not define v

e Uses

— Find all of the possible definition points for a
variable in an expression
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Equations for Reaching Definitions

* Sets

— DEFOUT(b) — set of definitions in b that reach the end of b
(i.e., not subsequently redefined in b)

— SURVIVED(b) — set of all definitions not obscured by a
definitionin b
— REACHES(b) — set of definitions that reach b
* Equation
REACHES(b) = U, ¢ predsip) DEFOUT(p) L
(REACHES(p) ™ SURVIVED(p))
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Example: Very Busy Expressions

* An expression e is considered very busy at
some point p if e is evaluated and used along
every path that leaves p, and evaluating e at p
would produce the same result as evaluating it
at the original locations

e Uses

— Code hoisting — move e to p (reduces code size; no
effect on execution time)
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Equations for Very Busy Expressions

* Sets

— USED(b) — expressions used in b before they are killed

— KILLED(b) — expressions redefined in b before they are
used

— VERYBUSY(b) — expressions very busy on exit from b
* Equation
VERYBUSY(b) = Mycsyecn) USED(S) U
(VERYBUSY(s) - KILLED(s))
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Using Dataflow Information

* A few examples of possible transformations...
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Classic Common-Subexpression
Elimination (CSE)

* Inastatements:z:=xopy,ifxopyis
available at s then it need not be recomputed

* Analysis: compute reaching expressions i.e.,
statements n: v := x op y such that the path
from n to s does not compute x op y or define
XOory

UW CSE P 501 Autumn 2021 T-51



Classic CSE Transformation

* |f x opyisdefined at n and reaches s

— Create new temporary t;

— Rewrite n: v:=xo0p y as
n:t;:=xopy
n:v:.=t

— Rewrite statement s: z :=x op y to be
S:z2:=t

— (Rely on copy propagation to remove extra
assignments that are not really needed)
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Revisiting Example (w/small change)

j=2%a AVAIL =
= = * = Xx x
AVAIL={2*a,2*b}X—a+b c=5%*n| AVAIL ={2*a, 2*b }

b=c+d
m=05%*n

h=2%3 AVAIL = { 5*n, 2*a }
i=5%n
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Revisiting Example (w/small change)

ti=2%a| AvAIL = {}

j=1t1

k=2%*Db
= — L % — * *

AVAIL = { 2*a, 2*b } E;zig ’22=—t;5 n| AVAIL ={ 2*a, 2*b }

t2=5*n
m = t2

h=tl AVAIL = { 5*n, 2*a }

| =12
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Then Apply Very Busy...

tl=2%*a

j=1t1 _

K=2*b AVAIL ={ }

t2=5%*n
_ _ — * *

AVAIL = { 2*a, 2*b } E;zig je2—-£..—"<—|c}c_t2 AVAIL = { 2*a, 2*b }

t2=5"*n
m = t2

h =t1 AVAIL = { 5*n, 2*a }

i =12
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Constant Propagation

* Suppose we have
— Statement d: t := ¢, where c is constant
— Statement n that uses t

 |f d reaches n and no other definitions of t
reach n, then rewrite n to use cinstead of t
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Copy Propagation

* Similar to constant propagation
* Setup:

— Statementd: t:=z

— Statement n uses t

* If d reaches n and no other definition of t
reaches n, and there is no definition of z on
any path from d to n, then rewrite n to use z
instead of t

— Recall that this can help remove dead assignments

UW CSE P 501 Autumn 2021 T-57



Copy Propagation Tradeoffs

* Downside is that this can increase the lifetime
of variable z and increase need for registers or
memory traffic

e But it can expose other optimizations, e.g.,

a:=y+z
u:=y
C:=U+z // copy propagation makes thisy + z

— After copy propagation we can recognize the
common subexpression
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Dead Code Elimination

* |If we have an instruction
s:a:=bopc
and a is not live-out after s, then s can be
eliminated

— Provided it has no implicit side effects that are
visible (output, exceptions, etc.)

* If b or ¢ are function calls, they have to be assumed to
have unknown side effects unless the compiler can
prove otherwise
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Aliases

* Avariable or memory location may have
multiple names or aliases
— Call-by-reference parameters
— Variables whose address is taken (&x)

— Expressions that dereference pointers
(p-x, *p)

— Expressions involving subscripts (a[i])

— Variables in nested scopes
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Aliases vs Optimizations

 Example:
P.X:=5; g.Xx:=7; a:=p.X;

— Does reaching definition analysis show that the
definition of p.x reaches a?

— (Or: do p and g refer to the same variable/object?)
— (Or: can p and q refer to the same thing?)
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Aliases vs Optimizations

 Example
int f(int *p, int *q) {
*p=1,%q=2;
return *p;
}

— How do we account for the possibility that p and g
might refer to the same thing?

— Safe approximation: since it’s possible, assume it is
true (but rules out a lot)

e C programmers can use “restrict” to indicate no other
pointer is an alias for this one
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Types and Aliases (1)

* |InJava, ML, Minilava, and others, if two
variables have incompatible types they cannot
be names for the same location

— Also helps that programmer cannot create
arbitrary pointers to storage in these languages

UW CSE P 501 Autumn 2021 T-63



Types and Aliases (2)

e Strategy: Divide memory locations into alias
classes based on type information (every type,
array, record field is a class)

* Implication: need to propagate type
information from the semantics pass to
optimizer
— Not normally true of a minimally typed IR

 |tems in different alias classes cannot refer to
each other
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Aliases and Flow Analysis

* |dea: Base alias classes on points where a
value is created

— Every new/malloc and each local or global variable
whose address is taken is an alias class

— Pointers can refer to values in multiple alias
classes (so each memory reference is to a set of
alias classes)

— Use to calculate “may alias” information (e.g., p
“may alias” g at program point s)
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Using “may-alias” information

* Treat each alias class as a “variable” in
dataflow analysis problems

 Example: framework for available expressions
— Given statement s: M[a]:=b,

gen[s] ={}
kill[s] = { M[x] | a may alias x at s }
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May-Alias Analysis

* Without alias analysis, e Code

#2 kills M[t] since x and 1: u:=MJt]
t might be related 2: M[x]:=r
* |f analysis determines 3: w = M[t]
that “x may-alias t” is 4: b :=u+w

false, M[t] is still
available at #3; can
eliminate the common
subexpression and use
copy propagation
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Where are we now?

e Dataflow

analysis is the core of classical

optimizations

— Althoug
 Still to ex

n not the only possible story

nlore:

— Discovering and optimizing loops

— SSA — Static Single Assignment form
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