CSE P 501 — Compilers

Dataflow Analysis
Hal Perkins
Autumn 2021

UW CSE P 501 Autumn 2021

T-1

Agenda

* Dataflow analysis: a framework and algorithm
for many common compiler analyses

* |nitial example: dataflow analysis for common
subexpression elimination

 Other analysis problems that work in the same
framework

 Some of these are optimizations we’ve seen,
but now more formally and with details

UW CSE P 501 Autumn 2021 T-2

The Story So Far...

 Redundant expression elimination
— Local Value Numbering

— Superlocal Value Numbering
e Extends VN to EBBs
e SSA-like namespace

— Dominator VN Technique (DVNT)
* All of these propagate along forward edges

* None are global
— In particular, can’t handle back edges (loops)

UW CSE P 501 Autumn 2021

T-3

Dominator Value Numbering

A Mg=ag+Db
 Most sophisticated 0= do T Do
algorithm so far No = @ + o
e Still misses some Br—— ‘d/ C AN
opportunitie Po =%+ %o Go = 3 + b
pp,) ” fo = Co + do ry = Cp + dg
e Can’t handle loops 7 <
De0=b0+18 Ee1=ao+17
50=a0+b0 t0=C0+d0
U0=60+f0 U1=el+f0
N 7
e, = ®(ey,&4)
u; = ®(uo,Uy)
G Vo =4dg + bo
rh = q)(ro,rl) Wo =Co + dO
Yo=ag+by T | X =€+
Zo = Cy + do

UW CSE P 501 Autumn 2021 T-4

Available Expressions

* Goal: use dataflow analysis to find common
subexpressions whose range spans basic
olocks

* |dea: calculate available expressions at
oeginning of each basic block

* Avoid re-evaluation of an available expression
— use a copy operation

UW CSE P 501 Autumn 2021 T-5

“Available” and Other Terms

* An expression e is defined at

point p in the CFG if its value arb
IS computed at p defined 1=a+b

— Sometimes called definition site

* An expression e is killed at l

point p if one of its operands +b
is defined at p available t10 =a + b

— Sometimes called kill site
* An expression e is available

at point p if every path
leading to p contains a prior killed E

definition of e and e is not
killed between that definition
and p

I (€

UW CSE P 501 Autumn 2021 T-6

Available Expression Sets

 To compute available expressions, for each
block b, define

— AVAIL(b) — the set of expressions available on
entryto b

— NKILL(b) — the set of expressions not killed in b

* i.e., all expressions in the program except for those
killed in b

— DEF(b) — the set of expressions defined in b and
not subsequently killed in b

UW CSE P 501 Autumn 2021 T-7

Computing Available Expressions

e AVAIL(b) is the set
AVAIL(b) = Mycpreds(o) (DEF(X) LU (AVAIL(x) M NKILL(x)))
— preds(b) is the set of b’s predecessors in the CFG

— The set of expressions available on entry to b is the set
of expressions that were available at the end of every
predecessor basic block x

— The expressions available on exit from block b are

those defined in b or available on entry to b and not
killed in b

* This gives a system of simultaneous equations — a
dataflow problem

UW CSE P 501 Autumn 2021 T-8

Name Space Issues

* |n previous value-numbering algorithms, we used
a SSA-like renaming to keep track of versions

* |n global dataflow problems, we use the original
namespace

— we require a+b have the same value along all paths to
Its use

— If a or b is updated along any path to its use, then a+b
has the “wrong” value

— so original names are exactly what we want

 The KILL information captures when a value is no
longer available

UW CSE P 501 Autumn 2021 T-9

Computing Available Expressions

* Big Picture
— Build control-flow graph

— Calculate initial local data — DEF(b) and NKILL(b)

* This only needs to be done once for each block b and
depends only on the statements in b

— |teratively calculate AVAIL(b) by repeatedly
evaluating equations until nothing changes

* Another fixed-point algorithm

UW CSE P 501 Autumn 2021 T-10

Computing DEF and NKILL (1)

* For each block b with operations 04, 0, ..., O,
KILLED =& // variables killed (later) in b, not expressions
DEF(b) = &
fori=kto1l //note: working back to front
assume o, is x=y + 2"
add x to KILLED
if (y ¢ KILLED and z ¢ KILLED)

add “y + z” to DEF(b) // i.e., neither y nor z killed
// after this point in b

UW CSE P 501 Autumn 2021 T-11

Computing DEF and NKILL (2)

* After computing DEF and KILLED for a block b,
compute set of all expressions in the program
not killed in b

NKILL(b) = { all expressions }
for each expression e
for each variablev € e
if v € KILLED then
NKILL(b) = NKILL(b) - e

UW CSE P 501 Autumn 2021 T-12

Example: Compute DEF and NKILL

DEF = { 5*n, c+d }
NKILL = exprs w/o
m, X, b

N

XxX=a+b
b=c+d
m=05%*n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c=5*pn| DEF={5%*n}

h=2%*a

NKILL = exprs w/o ¢

DEF = { 2*a }
NKILL = exprs w/o h

UW CSE P 501 Autumn 2021 T-13

Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b

Worklist = { all blocks b; }
while (Worklist =)
remove a block b from Worklist
recompute AVAIL(b)
if AVAIL(b) changed
Worklist = Worklist W successors(b)

UW CSE P 501 Autumn 2021 T-14

Example: Find Available Expressions
AVAIL(b) = My predsby (DEF(X) U (AVAIL(X) N NKILL(x)))

DEF = { 5*n, c+d }
NKILL = exprs w/o
m, X, b

= in worklist

= processing

j=2%*a
k=2*b

N

XxX=a+b
b=c+d
m=5%*n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

h=2%*a

NKILL = exprs w/o ¢
DEF = { 2*a }

NKILL = exprs w/o h

UW CSE P 501 Autumn 2021

T-15

Example: Find Available Expressions
AVAIL(b) = My predsby (DEF(X) U (AVAIL(X) N NKILL(x)))

DEF = { 5*n, c+d }
NKILL = exprs w/o
m, X, b

= in worklist

= processing

j=2%*a
k=2%*Db

N

XxX=a+b
b=c+d
m=5%*n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c=5*pn| DEF={5%*n}

h=2%*a

NKILL = exprs w/o ¢

DEF = { 2*a }
NKILL = exprs w/o h

UW CSE P 501 Autumn 2021 T-16

Example: Find Available Expressions
AVAIL(b) = My predsby (DEF(X) U (AVAIL(X) N NKILL(x)))

DEF = { 5*n, c+d }
NKILL = exprs w/o
m, X, b

= in worklist

= processing

N

XxX=a+b
b=c+d
m=5%*n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c=5*pn| DEF={5%*n}

h=2%*a

NKILL = exprs w/o ¢

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

UW CSE P 501 Autumn 2021 T-17

Example: Find Available Expressions
AVAIL(b) = My predsby (DEF(X) U (AVAIL(X) N NKILL(x)))

AVAIL = { 2*a, 2*b }

DEF = { 5*n, c+d }

NKILL = exprs w/o
m, X, b

= in worklist

= processing

N

XxX=a+b
b=c+d
m=5%*n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c=5*pn| DEF={5%*n}

h=2%*a

NKILL = exprs w/o ¢

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

UW CSE P 501 Autumn 2021 T-18

Example:

Find Available Expressions

AVAIL(b) = QXepreds(b) (DEF(X) U (AVAIL(X) M NKILL(X)))

AVAIL = { 2*a, 2*b }

DEF = { 5*n, c+d }

NKILL = exprs w/o
m, X, b

= in worklist

= processing

AVAIL = { }
a DEF = { 2*a, 2*b }
b NKILL = exprs w/o j or k

/\ AVALL = £ 2%, 2% 3

X=a+b c=5%*n DEF = { 5*n }
b=c+d NKILL = exprs w/o c
m=5%*n

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

h=2%*a

UW CSE P 501 Autumn 2021 T-19

Example:

Find Available Expressions

AVAIL(b) = QXepreds(b) (DEF(X) U (AVAIL(X) M NKILL(X)))

AVAIL = { 2*a, 2*b }

DEF = { 5*n, c+d }

NKILL = exprs w/o
m, X, b

= in worklist

= processing

AVAIL = { }
a DEF = { 2*a, 2*b }
b NKILL = exprs w/o j or k

/\ AVALL = £ 2%, 2% 3

X=a+b c=5%*n DEF = { 5*n }
b=c+d NKILL = exprs w/o c
m=5%*n

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

h=2%*a

UW CSE P 501 Autumn 2021 T-20

Example: Find Available Expressions
AVAIL(b) = My predsby (DEF(X) U (AVAIL(X) N NKILL(x)))

AVAIL = { }
a DEF = { 2*a, 2*b }
b NKILL = exprs w/o j or k

AVAIL = { 2*a, 2*b } /\ AVAIL = { 2*a, 2*b }

DEF = {5%n,c+d} |X=a+b C=5*N| DEF={5%n}
NKILL = exprs wjo |P=c¢C+d NKILL = exprs w/o ¢
m, X, b m=5*n

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

h=2%*a

= in worklist

And the common subexpression is???
UW CSE P 501 Autumn 2021 T-21

= processing

Example: Find Available Expressions
AVAIL(b) = My predsby (DEF(X) U (AVAIL(X) N NKILL(x)))

AVAIL = { 2*a, 2*b }

DEF = { 5*n, c+d }

NKILL = exprs w/o
m, X, b

= in worklist

= processing

N

XxX=a+b
b=c+d
m=05%*n

AVAIL = { }

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

c=5%*n

h=2%a

AVAIL = { 2*a, 2*b }
DEF = { 5*n }
NKILL = exprs w/o ¢

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

UW CSE P 501 Autumn 2021

T-22

Comparing Algorithms

* LVN - Local Value :—_aa:bb
Numbering —
/ \
e SVN - Superlocal Value Br— r C
Numberin p=c+ q=a+b
& r=c+d r=c+d
/
De=b+18 Ee=a+17
e GRE — Global Redundancy s=a+b t=c+d
Elimination u=e+f u=e+f
N 7
G X=e+f
z=Cc+d /

UW CSE P 501 Autumn 2021 T-23

Comparing Algorithms (2)

 LVN =>SVN => DVN form a strict hierarchy — later
algorithms find a superset of previous information
* Global RE finds a somewhat different set

— Discovers e+f in F (computed in both D and E)

— Misses identical values if they have different names (e.g.,
a+b and c+d when a=c and b=d)

e Value Numbering catches this

UW CSE P 501 Autumn 2021 T-24

Scope of Analysis

e Larger context (EBBs, regions, global,
interprocedural) sometimes helps

— More opportunities for optimizations

e But not always
— Introduces uncertainties about flow of control
— Usually only allows weaker analysis
— Sometimes has unwanted side effects

e Can create additional pressure on registers, for example

UW CSE P 501 Autumn 2021

T-25

Dataflow analysis

* Available expressions are an example of a
dataflow analysis problem

 Many similar problems can be expressed in a
similar framework

* Only the first part of the story — once we’ve
discovered facts, we then need to use them to
improve code

UW CSE P 501 Autumn 2021 T-32

Characterizing Dataflow Analysis

* All of these algorithms involve sets of facts about
each basic block b

IN(b) — facts true on entry to b

OUT(b) — facts true on exit from b
GEN(b) — facts created and not killed in b
KILL(b) — facts killed in b

* These are related by the equation
OUT(b) = GEN(b) W (IN(b) — KILL(b))
— Solve this iteratively for all blocks

— Sometimes information propagates forward;
sometimes backward

UW CSE P 501 Autumn 2021 T-33

Dataflow Analysis (1)

* A collection of techniques for compile-time
reasoning about run-time values

* Almost always involves building a graph

— Trivial for basic blocks

— Control-flow graph or derivative for global
problems

— Call graph or derivative for whole-program
problems

UW CSE P 501 Autumn 2021 T-34

Dataflow Analysis (2)

e Usually formulated as a set of simultaneous
equations (dataflow problem)
— Sets attached to nodes and edges

— Need a lattice (or semilattice) to describe values

* |In particular, has an appropriate operator to combine
values and an appropriate “bottom” or minimal value

UW CSE P 501 Autumn 2021 T-35

Dataflow Analysis (3)

* Desired solution is usually a meet over all
paths (MOP) solution

— “What is true on every path from entry”
— “What can happen on any path from entry”

— Usually relates to safety of optimization

UW CSE P 501 Autumn 2021 T-36

Dataflow Analysis (4)

* Limitations
— Precision — “up to symbolic execution”
* Assumes all paths taken
— Sometimes cannot afford to compute full solution

— Arrays — classic analysis treats each array as a single
fact

— Pointers — difficult, expensive to analyze
* Imprecision rapidly adds up
* But gotta do it to effectively optimize things like C/C++
* For scalar values we can quickly solve simple
problems

UW CSE P 501 Autumn 2021 T-37

Example:Live Variable Analysis

* Avariable vis live at point p iff there is any path from
p to a use of v along which v is not redefined

e Some uses:

— Register allocation — only live variables need a register

— Eliminating useless stores — if variable not live at store,
then stored variable will never be used

— Detecting uses of uninitialized variables — if live at

declaration (before initialization) then it might be used
uninitialized

— Improve SSA construction — only need ®-function for
variables that are live in a block (later)

UW CSE P 501 Autumn 2021 T-38

Liveness Analysis Sets

* For eac

n block b, define

— use|b]
— def[b]

= variable used in b before any def
= variable defined in b & not killed

— in[b] = variables live on entry to b

— out[b] = variables live on exit from b

UW CSE P 501 Autumn 2021

T-39

Equations for Live Variables

* Given the preceding definitions, we have
in[b] = use[b] U (out[b] — def[b])
out[b] = Usesucclp] in[S]
e Algorithm
— Set in[b] = out[b] = D
— Update in, out until no change

UW CSE P 501 Autumn 2021 T-40

Example (1 stmt per block)

* Code 1:a:=0
a:=0 2: b:=a+1 /\
L: b:=a+l

c=c+b 3: c:=c+b

a:=b*2 4: a:=b*2

ifa<NgotoL

return c >ra<n \j
6: return c

in[b] = use[b] U (out[b] — def[b])
out[b] = Ysesucc[b] in[s]

UW CSE P 501 Autumn 2021 T-41

Calculation

1:a:=0
block | use def out in out in out in
6 2: b:=a+1
> 3: c:=c+b
4
4: a:=b+2
3
5:a <N
2 \j
1 6: return ¢

in[b] = use[b] U (out[b] — def[b])
out[b] = Ysesucc[b] in[s]

UW CSE P 501 Autumn 2021 T-42

Calculation

U

ra:=0
block | use def out in out in out in

6 C _ _ C - C . b:=a+1
5 a -- C a,c a,c a,c " c'=c+b
4 b a a,c b,c a,c b,c

ra.:=b+2
3 b,c C b,c b,c b,c b,c

ra <N
2 a b b,c a,c b,c a,c
1 - 3 a,c c a,c c : return ¢

in[b] = use[b] U (out[b] — def[b])

out[b] = Uscsuccpy iNLS]

UW CSE P 501 Autumn 2021

T-43

Equations for Live Variables v2

* Many problems have more than one
formulation. For example, Live Variables...

e Sets

— USED(b) — variables used in b before being defined
inb

— NOTDEF(b) — variables not defined in b
— LIVE(b) — variables live on exit from b

* Equation
LIVE(b) = Uscsuee)USED(s) W (LIVE(s) N NOTDEF(s))

UW CSE P 501 Autumn 2021 T-44

Efficiency of Dataflow Analysis

 The algorithms eventually terminate, but the
expected time needed can be reduced by
picking a good order to visit nodes in the CFG

— Forward problems — reverse postorder

— Backward problems — postorder

UW CSE P 501 Autumn 2021 T-45

Example: Reaching Definitions

* A definition d of some variable v reaches
operation i iff i reads the value of v and there
Is a path from d to i that does not define v

e Uses

— Find all of the possible definition points for a
variable in an expression

UW CSE P 501 Autumn 2021 T-46

Equations for Reaching Definitions

* Sets

— DEFOUT(b) — set of definitions in b that reach the end of b
(i.e., not subsequently redefined in b)

— SURVIVED(b) — set of all definitions not obscured by a
definitionin b
— REACHES(b) — set of definitions that reach b
* Equation
REACHES(b) = U, ¢ predsip) DEFOUT(p) L
(REACHES(p) ™ SURVIVED(p))

UW CSE P 501 Autumn 2021 T-47

Example: Very Busy Expressions

* An expression e is considered very busy at
some point p if e is evaluated and used along
every path that leaves p, and evaluating e at p
would produce the same result as evaluating it
at the original locations

e Uses

— Code hoisting — move e to p (reduces code size; no
effect on execution time)

UW CSE P 501 Autumn 2021 T-48

Equations for Very Busy Expressions

* Sets

— USED(b) — expressions used in b before they are killed

— KILLED(b) — expressions redefined in b before they are
used

— VERYBUSY(b) — expressions very busy on exit from b
* Equation
VERYBUSY(b) = Mycsyecn) USED(S) U
(VERYBUSY(s) - KILLED(s))

UW CSE P 501 Autumn 2021 T-49

Using Dataflow Information

* A few examples of possible transformations...

UW CSE P 501 Autumn 2021 T-50

Classic Common-Subexpression
Elimination (CSE)

* Inastatements:z:=xopy,ifxopyis
available at s then it need not be recomputed

* Analysis: compute reaching expressions i.e.,
statements n: v := x op y such that the path
from n to s does not compute x op y or define
XOory

UW CSE P 501 Autumn 2021 T-51

Classic CSE Transformation

* |f x opyisdefined at n and reaches s

— Create new temporary t;

— Rewrite n: v:=xo0p y as
n:t;:=xopy
n:v:.=t

— Rewrite statement s: z :=x op y to be
S:z2:=t

— (Rely on copy propagation to remove extra
assignments that are not really needed)

UW CSE P 501 Autumn 2021 T-52

Revisiting Example (w/small change)

j=2%a AVAIL =
= = * = Xx x
AVAIL={2*a,2*b}X—a+b c=5%*n| AVAIL ={2*a, 2*b }

b=c+d
m=05%*n

h=2%3 AVAIL = { 5*n, 2*a }
i=5%n

UW CSE P 501 Autumn 2021 T-53

Revisiting Example (w/small change)

ti=2%a| AvAIL = {}

j=1t1

k=2%*Db
= — L % — * *

AVAIL = { 2*a, 2*b } E;zig ’22=—t;5 n| AVAIL ={ 2*a, 2*b }

t2=5*n
m = t2

h=tl AVAIL = { 5*n, 2*a }

| =12

UW CSE P 501 Autumn 2021 T-54

Then Apply Very Busy...

tl=2%*a

j=1t1 _

K=2*b AVAIL ={ }

t2=5%*n
_ _ — * *

AVAIL = { 2*a, 2*b } E;zig je2—-£..—"<—|c}c_t2 AVAIL = { 2*a, 2*b }

t2=5"*n
m = t2

h =t1 AVAIL = { 5*n, 2*a }

i =12

UW CSE P 501 Autumn 2021 T-55

Constant Propagation

* Suppose we have
— Statement d: t := ¢, where c is constant
— Statement n that uses t

 |f d reaches n and no other definitions of t
reach n, then rewrite n to use cinstead of t

UW CSE P 501 Autumn 2021 T-56

Copy Propagation

* Similar to constant propagation
* Setup:

— Statementd: t:=z

— Statement n uses t

* If d reaches n and no other definition of t
reaches n, and there is no definition of z on
any path from d to n, then rewrite n to use z
instead of t

— Recall that this can help remove dead assignments

UW CSE P 501 Autumn 2021 T-57

Copy Propagation Tradeoffs

* Downside is that this can increase the lifetime
of variable z and increase need for registers or
memory traffic

e But it can expose other optimizations, e.g.,

a:=y+z
u:=y
C:=U+z // copy propagation makes thisy + z

— After copy propagation we can recognize the
common subexpression

UW CSE P 501 Autumn 2021 T-58

Dead Code Elimination

* |If we have an instruction
s:a:=bopc
and a is not live-out after s, then s can be
eliminated

— Provided it has no implicit side effects that are
visible (output, exceptions, etc.)

* If b or ¢ are function calls, they have to be assumed to
have unknown side effects unless the compiler can
prove otherwise

UW CSE P 501 Autumn 2021 T-59

Aliases

* Avariable or memory location may have
multiple names or aliases
— Call-by-reference parameters
— Variables whose address is taken (&x)

— Expressions that dereference pointers
(p-x, *p)

— Expressions involving subscripts (a[i])

— Variables in nested scopes

UW CSE P 501 Autumn 2021 T-60

Aliases vs Optimizations

 Example:
P.X:=5; g.Xx:=7; a:=p.X;

— Does reaching definition analysis show that the
definition of p.x reaches a?

— (Or: do p and g refer to the same variable/object?)
— (Or: can p and q refer to the same thing?)

UW CSE P 501 Autumn 2021 T-61

Aliases vs Optimizations

 Example
int f(int *p, int *q) {
*p=1,%q=2;
return *p;
}

— How do we account for the possibility that p and g
might refer to the same thing?

— Safe approximation: since it’s possible, assume it is
true (but rules out a lot)

e C programmers can use “restrict” to indicate no other
pointer is an alias for this one

UW CSE P 501 Autumn 2021 T-62

Types and Aliases (1)

* |InJava, ML, Minilava, and others, if two
variables have incompatible types they cannot
be names for the same location

— Also helps that programmer cannot create
arbitrary pointers to storage in these languages

UW CSE P 501 Autumn 2021 T-63

Types and Aliases (2)

e Strategy: Divide memory locations into alias
classes based on type information (every type,
array, record field is a class)

* Implication: need to propagate type
information from the semantics pass to
optimizer
— Not normally true of a minimally typed IR

 |tems in different alias classes cannot refer to
each other

UW CSE P 501 Autumn 2021 T-64

Aliases and Flow Analysis

* |dea: Base alias classes on points where a
value is created

— Every new/malloc and each local or global variable
whose address is taken is an alias class

— Pointers can refer to values in multiple alias
classes (so each memory reference is to a set of
alias classes)

— Use to calculate “may alias” information (e.g., p
“may alias” g at program point s)

UW CSE P 501 Autumn 2021 T-65

Using “may-alias” information

* Treat each alias class as a “variable” in
dataflow analysis problems

 Example: framework for available expressions
— Given statement s: M[a]:=b,

gen[s] ={}
kill[s] = { M[x] | a may alias x at s }

UW CSE P 501 Autumn 2021 T-66

May-Alias Analysis

* Without alias analysis, e Code

#2 kills M[t] since x and 1: u:=MJt]
t might be related 2: M[x]:=r
* |f analysis determines 3: w = M[t]
that “x may-alias t” is 4: b :=u+w

false, M[t] is still
available at #3; can
eliminate the common
subexpression and use
copy propagation

UW CSE P 501 Autumn 2021 T-67

Where are we now?

e Dataflow

analysis is the core of classical

optimizations

— Althoug
 Still to ex

n not the only possible story

nlore:

— Discovering and optimizing loops

— SSA — Static Single Assignment form

UW CSE P 501 Autumn 2021

T-68

