
CSE P 501 – Compilers

Compiler Backend Survey
Hal Perkins

Autumn 2021

UW CSE P 501 Autumn 2021 Q-1

Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring

UW CSE P 501 Autumn 2021 Q-2

Compiler Organization

UW CSE P 501 Autumn 2021 Q-3

pa
rs

e

sc
an

se
m

an
tic

s

front end
op

t2

op
t1

op
tn

middle

isn
tr.

 s
ch

ed

in
st

r.
se

le
ct

re
g.

 a
llo

c

back end

infrastructure – symbol tables, trees, graphs, etc

Big Picture

• Compiler consists of lots of fast stuff followed
by hard problems
– Scanner: O(n)
– Parser: O(n)
– Analysis & Optimization: ~ O(n log n)
– Instruction selection: fast or NP-Complete
– Instruction scheduling: NP-Complete
– Register allocation: NP-Complete

UW CSE P 501 Autumn 2021 Q-4

IR for Code Generation

• Assume a (very) low-level IR
– 3 address, register-register instructions plus

load/store
r1 <- r2 op r3

– Could be tree structure or linear
– Expose as much detail as possible

• Assume “enough” (i.e., ¥) registers
– Invent new temporaries for intermediate results
– Map to actual registers towards the end

UW CSE P 501 Autumn 2021 Q-5

Overview: Instruction Selection

• Map IR into assembly code
• Assume known storage layout and code shape

– i.e., the optimization phases have already done
their thing

• Combine low-level IR operations into machine
instructions (take advantage of addressing
modes, etc.)

UW CSE P 501 Autumn 2021 Q-6

Overview: Instruction Scheduling

• Reorder instructions to minimize execution time
– hide latencies – processor function units,

memory/cache stalls
– Originally invented for supercomputers (60s)
– Required to get reasonable (or correct!) code on

classic RISC architectures (basically 3-address code)
– Still important on most machines

• Even non-RISC machines, e.g., x86 family
• Even if processor reorders on the fly
Good schedules help processor do a better job

• Assume fixed program at this point
UW CSE P 501 Autumn 2021 Q-7

Overview: Register Allocation

• Map values to actual registers
– Previous phases change need for registers

• Add code to spill values to temporaries in
memory and reload as needed, etc.

• Usually worth doing another instruction
scheduling pass afterwards if spill code
inserted

UW CSE P 501 Autumn 2021 Q-8

Conventional Wisdom
• We typically lose little by solving these independently

– But not always, of course (iterating phases on x86-64 can help
because of limited registers; use of memory operands)

• Instruction selection
– Use some form of pattern matching
– ¥ virtual registers – create as needed

• Instruction scheduling
– Within a block, list scheduling is close to optimal
– Across blocks: extended basic blocks or trace scheduling if list

scheduling not good enough
• Register allocation

– Start with unlimited virtual registers and map to some subset of
K real registers

UW CSE P 501 Autumn 2021 Q-9

Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring

UW CSE P 501 Autumn 2021 Q-10

Instruction Selection

• Map IR into assembly code

• Assume known storage layout and code shape

UW CSE P 501 Autumn 2021 Q-11

A Simple Low-Level IR (1)

• This example is from Appel, but details aren’t
really important. What matters is to get a feel for
the level of detail involved.

• Expressions:
– CONST(i) – integer constant i
– TEMP(t) – temporary t (i.e., register)
– BINOP(op,e1,e2) – application of op to e1,e2
– MEM(e) – contents of memory at address e

• Means value when used in an expression
• Means address when used as target of assignment

– CALL(f,args) – apply function f to argument list args

UW CSE P 501 Autumn 2021 Q-12

Simple Low-Level IR (2)
• Statements
– MOVE(TEMP t, e) – evaluate e and store in temporary t
– MOVE(MEM(e1), e2) – evaluate e1 to yield address a;

evaluate e2 and store at a
– EXP(e) – evaluate expressions e and discard result
– SEQ(s1,s2) – execute s1 followed by s2
– NAME(n) – assembly language label n
– JUMP(e) – jump to e, which can be a NAME label, or more

compex (e.g., switch)
– CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to

label t, otherwise jump to f
– LABEL(n) – defines location of label n in the code

UW CSE P 501 Autumn 2021 Q-13

Low-Level IR Example (1)

• Access a local variable at a known offset k
from the frame pointer fp
– Linear

MEM(BINOP(PLUS, TEMP fp, CONST k))

– Tree

UW CSE P 501 Autumn 2021 Q-14

MEM

+

TEMP fp CONST k

Low-Level IR Example (2)

• Access an array element e[k], where each
element takes up w storage locations

UW CSE P 501 Autumn 2021 Q-15

MEM

+

MEM *

e k CONST

w

Instruction Selection Issues

• Given the low-level IR, there are many
possible code sequences that implement it
correctly
– e.g. set %rax to 0 on x86-64 (did we miss any?)

movq $0,%rax salq 64,%rax
subq %rax,%rax shrq 64,%rax
xorq %rax,%rax imulq $0,%rax

– Many machine instructions do several things at
once – e.g., register arithmetic and effective
address calculation, e.g.,

movq offset(%rbase, %rindex, scale), %rdest

UW CSE P 501 Autumn 2021 Q-16

Instruction Selection Criteria

• Several possibilities
– Fastest
– Smallest
– Minimize power consumption (ex: don’t use a

function unit if leaving it powered-down is a win)
• Sometimes not obvious
– e.g., if one of the function units in the processor is

idle and we can select an instruction that uses that
unit, it effectively executes for free, even if that
instruction wouldn’t be chosen normally
• (Some interaction with scheduling here…)
• (and it might consume extra power, so bad if that matters)

UW CSE P 501 Autumn 2021 Q-17

Tree Pattern Matching

• Goal: find a sequence of machine instructions
that perform the computation described by
the program IR code
– Describe machine instructions using same low-

level IR used for program, then
– Use tree pattern matching to pick instructions that

match fragments of the program IR tree; use a
combination of these to cover the whole IR tree

UW CSE P 501 Autumn 2021 Q-18

An Example Target Machine (1)

• Arithmetic Instructions
– (unnamed) ri TEMP
– ADD ri <- rj + rk

– MUL ri <- rj * rk

– SUB and DIV are similar

– For some examples, we’ll assume there is at least one
register (R0) hardwired to be 0 always

UW CSE P 501 Autumn 2021 Q-19

+

*

An Example Target Machine (2)

• Immediate Instructions
– ADDI ri <- rj + c

– SUBI ri <- rj - c

UW CSE P 501 Autumn 2021 Q-20

+

CONST

+

CONST

CONST

-

CONST

An Example Target Machine (3)

• Load
– LOAD ri <- M[rj + c]

UW CSE P 501 Autumn 2021 Q-21

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

An Example Target Machine (4)

• Store
– STORE M[rj + c] <- ri

UW CSE P 501 Autumn 2021 Q-22

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

MOVE MOVE MOVE MOVE

Tree Pattern Matching (1)

• Goal: Tile the low-level IR tree with operation
(instruction) trees

• A tiling is a collection of <node,op> pairs
– node is a node in the tree
– op is an operation tree
– <node,op> means that op could implement the

subtree at node

UW CSE P 501 Autumn 2021 Q-23

Tree Pattern Matching (2)

• A tiling “implements” a tree if it covers every
node in the tree and the overlap between any
two tiles (trees) is limited to a single node
– If <node,op> is in the tiling, then node is also

covered by a leaf of another operation tree in the
tiling – unless it is the root

– Where two operation trees meet, they must be
compatible (i.e., expect the same value in the
same location)

UW CSE P 501 Autumn 2021 Q-24

Generating Tilings

Two common algorithms
• Maximal munch:

– Top-down tree walk.
– Find largest tile that fits each node

• Dynamic programming:
– Assign costs to each node in the tree

cost = cost of individual node + subtree costs
– Try all possible combinations bottom-up and pick

cheapest

UW CSE P 501 Autumn 2021 Q-25

Example – Tree for a[i]:=x

UW CSE P 501 Autumn 2021 Q-26

MEM

MOVE

MEM

+

CONST xFP

+

MEM

+

CONST aFP

*

CONST 4TEMP i

Example – Tree for a[i]:=x

UW CSE P 501 Autumn 2021 Q-27

MEM

MOVE

MEM

+

CONST xFP

+

MEM

+

CONST aFP

*

CONST 4TEMP i

1

2

3 4

5

6

7

8

9

Generating Code

Given a tiled tree, to generate code
• Do a postorder treewalk with node-dependant

order for children
• Each tile corresponds to a code sequence;

emit code sequences in order
• Connect tiles by using same register name to

tie boundaries together

UW CSE P 501 Autumn 2021 Q-28

Example – Tree for a[i]:=x

UW CSE P 501 Autumn 2021 Q-29

MEM

MOVE

MEM

+

CONST xFP

+

MEM

+

CONST aFP

*

CONST 4TEMP i

1

2

3 4

5

6

7

8

9

2. LOAD r1 <- M[fp+aoff]

4. ADDI r2 <- 4 + r0

5. MUL r2 <- r2 * ri
6. ADD r1 <- r1 + r2
8. LOAD r2 <- M[fp+xoff]

9. STORE M[r1+0] <- r2

Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring

UW CSE P 501 Autumn 2021 Q-30

Instruction Scheduling

• Reorder instructions to minimize execution
time given instruction and operand latencies

• Assume fixed program at this point

UW CSE P 501 Autumn 2021 Q-31

Some Scheduling Issues (1)

• Many operations have non-zero latencies
• Modern machines can issue several

operations per cycle
– Want to take advantage of multiple function units

on chip

• Loads & Stores may or may not block
– may be (many) cycles after load/store starts to do

other useful work

UW CSE P 501 Autumn 2021 Q-32

Some Scheduling Issues (2)

• Branch costs vary
• Branches on some processors have delay slots
• Modern processors have good heuristics to

predict whether branches are taken and try to
keep pipelines full, but good code from compiler
makes these more effective

GOAL: Scheduler should reorder instructions to hide
latencies, take advantage of multiple function units
and delay slots, and help the processor effectively
pipeline execution

UW CSE P 501 Autumn 2021 Q-33

Latencies for a Simple Example Machine

UW CSE P 501 Autumn 2021 Q-34

Operation Cycles
LOAD 3
STORE 3
ADD 1
MULT 2
SHIFT 1

BRANCH 0 TO 8

Example: w = w*2*x*y*z;
Simple schedule

1 LOAD r1 <- w
4 ADD r1 <- r1,r1
5 LOAD r2 <- x
8 MULT r1 <- r1,r2
9 LOAD r2 <- y
12 MULT r1 <- r1,r2
13 LOAD r2 <- z
16 MULT r1 <- r1,r2
18 STORE w <- r1
21 r1 free

2 registers, 20 cycles

Loads early
1 LOAD r1 <- w
2 LOAD r2 <- x
3 LOAD r3 <- y
4 ADD r1 <- r1,r1
5 MULT r1 <- r1,r2
6 LOAD r2 <- z
7 MULT r1 <- r1,r3
9 MULT r1 <- r1,r2
11 STORE w <- r1
14 r1 is free

3 registers, 13 cycles

UW CSE P 501 Autumn 2021 Q-35

List Scheduling Algorithm Overview

• Build a precedence graph P of instructions,
labeled with priorities (usually number of
cycles on critical path to the end)

• Use list scheduling to construct a schedule,
one cycle at a time

• Rename registers to avoid false dependencies
and conflicts

UW CSE P 501 Autumn 2021 Q-36

Precedence Graph

• Nodes n are operations
• Attributes of each node

type – kind of operation
delay – latency until end of graph

• If node n2 uses the result of node n1, there is
an edge e = (n1,n2) in the graph

UW CSE P 501 Autumn 2021 Q-37

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE P 501 Autumn 2021 Q-38

i

h

gf

d

b

a

c

e

3

5

87

109

1210

13

List Scheduling

• Construct a schedule, one cycle at a time
– Keep a list of operations that are ready to execute
– At each cycle, chose a ready operation and

schedule it
• Best pick: one that is on the “critical path” – i.e., an

instruction that has longest latency from end of graph

– Update ready list, deleting scheduled op and add
ones that will be ready on next cycle

UW CSE P 501 Autumn 2021 Q-39

List Scheduling Algorithm
Cycle = 1; Ready = leaves of P; Active = empty;
while (Ready and/or Active are not empty)

if (Ready is not empty)
remove an op from Ready;
S(op) = Cycle;
Active = Active È op;

Cycle++;
for each op in Active

if (S(op) + delay(op) <= Cycle)
remove op from Active;
for each successor s of op in P

if (s is ready – i.e., all operands available)
add s to Ready

UW CSE P 501 Autumn 2021 O-40

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE P 501 Autumn 2021 Q-41

i

h

gf

d

b

a

c

e

instr done

1 a LOAD 4

cycle: 1
ready: a c e g
active: --

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE P 501 Autumn 2021 Q-42

i

h

gf

d

b

a

c

e

instr done

1 a LOAD 4

2 c LOAD 5

cycle: 1 2
ready: a c e g
active: a

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE P 501 Autumn 2021 Q-43

i

h

gf

d

b

a

c

e

instr done

1 a LOAD 4

2 c LOAD 5

3 e LOAD 6

cycle: 1 2 3
ready: a c e g
active: a c

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE P 501 Autumn 2021 Q-44

i

h

gf

d

b

a

c

e

instr done

1 a LOAD 4

2 c LOAD 5

3 e LOAD 6
4 b ADD 5

cycle: 1 2 3 4
ready: a c e g b
active: a c e

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE P 501 Autumn 2021 Q-45

i

h

gf

d

b

a

c

e

instr done

1 a LOAD 4

2 c LOAD 5

3 e LOAD 6
4 b ADD 5

5 d MULT 7

cycle: 1 2 3 4 5
ready: a c e g b d
active: a c e b

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE P 501 Autumn 2021 Q-46

i

h

gf

d

b

a

c

e

instr done

1 a LOAD 4

2 c LOAD 5

3 e LOAD 6
4 b ADD 5

5 d MULT 7

6 g LOAD 9

cycle: 1 2 3 4 5 6
ready: a c e g b d
active: a c e b d

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE P 501 Autumn 2021 Q-47

i

h

gf

d

b

a

c

e

instr done

1 a LOAD 4

2 c LOAD 5

3 e LOAD 6
4 b ADD 5

5 d MULT 7

6 g LOAD 9

7 f MULT 9

cycle: 1 2 3 4 5 6 7
ready: a c e g b d f
active: a c e b d g

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE P 501 Autumn 2021 Q-48

i

h

gf

d

b

a

c

e

instr done

1 a LOAD 4

2 c LOAD 5

3 e LOAD 6
4 b ADD 5

5 d MULT 7

6 g LOAD 9

7 f MULT 9

8 ---

cycle: 1 2 3 4 5 6 7 8
ready: a c e g b d f
active: a c e b d g f

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE P 501 Autumn 2021 Q-49

i

h

gf

d

b

a

c

e

instr done

1 a LOAD 4

2 c LOAD 5

3 e LOAD 6
4 b ADD 5

5 d MULT 7

6 g LOAD 9

7 f MULT 9

8 ---
9 h MULT 11

cycle: 1 2 3 4 5 6 7 8 9
ready: a c e g b d f h
active: a c e b d g f

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE P 501 Autumn 2021 Q-50

i

h

gf

d

b

a

c

e

instr done

1 a LOAD 4

2 c LOAD 5

3 e LOAD 6
4 b ADD 5

5 d MULT 7

6 g LOAD 9

7 f MULT 9

8 ---
9 h MULT 11

10 ---

cycle: 1 2 3 4 5 6 7 8 9 10
ready: a c e g b d f h
active: a c e b d g f h

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE P 501 Autumn 2021 Q-51

i

h

gf

d

b

a

c

e

instr done

1 a LOAD 4

2 c LOAD 5

3 e LOAD 6
4 b ADD 5

5 d MULT 7

6 g LOAD 9

7 f MULT 9

8 ---
9 h MULT 11

10 ---

11 i STORE 14
cycle: 1 2 3 4 5 6 7 8 9 10 11
ready: a c e g b d f h i
active: a c e b d g f h

3

5

87

109

1210

13

Forward vs Backwards

• Alternative: backward list scheduling
– Work from the root to the leaves
– Schedules instructions from end to beginning of

the block
• In practice, compilers try both and pick the

result that minimizes costs
– Little extra expense since the precedence graph

and other information can be reused
– Different directions win in different cases

UW CSE P 501 Autumn 2021 Q-52

Beyond Basic Blocks

• List scheduling dominates, but moving beyond
basic blocks can improve quality of the code.
Some possibilities:
– Schedule extended basic blocks
• Watch for exit points – limits reordering or requires

compensating
– Trace scheduling
• Use profiling information to select regions for

scheduling using traces (paths) through code
– Optimize schedules for high-frequency paths

UW CSE P 501 Autumn 2021 Q-53

Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring

UW CSE P 501 Autumn 2021 Q-54

k

• Intermediate code typically assumes infinite
number of registers

• Real machine has k registers available
• Goals

– Produce correct code that uses k or fewer
registers

– Minimize added loads and stores
– Minimize space needed for spilled values
– Do this efficiently – O(n), O(n log n), maybe O(n2)

UW CSE P 501 Autumn 2021 P-55

Register Allocation

• Task
– At each point in the code, pick the values to keep

in registers
– Insert code to move values between registers and

memory
• No additional transformations – scheduling should have

done its job
– But we will usually rerun scheduling if we insert spill code

– Minimize inserted code, both dynamically and
statically

UW CSE P 501 Autumn 2021 P-56

Allocation vs Assignment

• Allocation: deciding which values to keep in
registers

• Assignment: choosing specific registers for
values

• Compiler must do both

UW CSE P 501 Autumn 2021 P-57

Local Register Allocation

• Apply to basic blocks
• Produces decent register usage inside a block

– But can have inefficiencies at boundaries between
blocks

• Two variations: top-down, bottom-up

UW CSE P 501 Autumn 2021 P-58

Top-down Local Allocation

• Principle: keep most heavily used values in
registers
– Priority = # of times register referenced in block

• If more virtual registers than physical,
– Reserve some registers for values allocated to

memory
• Need enough to address and load two operands and store

result
– Other registers dedicated to “hot” values

• But are tied up for entire block with particular value, even if
only needed for part of the block

UW CSE P 501 Autumn 2021 P-59

Bottom-up Local Allocation (1)

• Keep a list of available registers (initially all
registers at beginning of block)

• Scan the code
• Allocate a register when one is needed
• Free register as soon as possible

– In x:=y op z, free y and z if they are no longer
needed before allocating x

UW CSE P 501 Autumn 2021 P-60

Bottom-up Local Allocation (2)

• If no registers are free when one is needed for
allocation:
– Look at values assigned to registers – find the one

not needed for longest forward stretch in the code
– Insert code to spill the value to memory and insert

code to reload it when needed later
• If a copy already exists in memory, no need to spill

UW CSE P 501 Autumn 2021 P-61

Local "bottom-up" Register Allocation, -1
1. ; load v2 from memory
2. ; load v3 from memory
3. v1 = v2 + v3
4. ; load v5, v6 from memory
5. v4 = v5 - v6
6. v7 = v2 - 29
7. ; load v9 from memory
8. v8 = - v9
9. v10 = v6 * v4
10. v11 = v10 - v3

UW CSE P 501 Autumn 2021 P-62

• Still in LIR. So lots (too many!) virtual registers required (v2, etc).
• Grey instructions (1,2,4,7) load operands from memory into virtual registers.
• We will ignore these going forward. Focus on mapping virtual to physical.

Local "bottom-up" Register Allocation, 0

1. v1 = v2 + v3
2. v4 = v5 - v6
3. v7 = v2 - 29
4. v8 = - v9
5. v10 = v6 * v4
6. v11 = v10 - v3

UW CSE P 501 Autumn 2021 P-63

v1 1
v2 1
v3 1
v4 2
v5 2
v6 2
v7 3
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 -
R2 -
R3 -
R4 -

pReg vReg

Local "bottom-up" Register Allocation, 1

1. v1 = v2 + v3
2. v4 = v5 - v6
3. v7 = v2 - 29
4. v8 = - v9
5. v10 = v6 * v4
6. v11 = v10 - v3

UW CSE P 501 Autumn 2021 P-64

v1 1 ¥
v2 1 3
v3 1 6
v4 2
v5 2
v6 2
v7 3
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 v2
R2 v3
R3 v1
R4 -

pReg vReg

R3 = R1 + R2

Local "bottom-up" Register Allocation, 2

1. v1 = v2 + v3
2. v4 = v5 - v6
3. v7 = v2 - 29
4. v8 = - v9
5. v10 = v6 * v4
6. v11 = v10 - v3

UW CSE P 501 Autumn 2021 P-65

v1 ¥
v2 3
v3 6
v4 2 5
v5 2 ¥
v6 2 5
v7 3
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 v2
R2 v3 v4
R3 v1 v6
R4 v5

pReg vReg

R3 = R1 + R2
; spill R3
; spill R2? - no - still clean
R2 = R4 - R3

Local "bottom-up" Register Allocation, 3

1. v1 = v2 + v3
2. v4 = v5 - v6
3. v7 = v2 - 29
4. v8 = - v9
5. v10 = v6 * v4
6. v11 = v10 - v3

UW CSE P 501 Autumn 2021 P-66

v1 ¥
v2 3 ¥
v3 6
v4 5
v5 ¥
v6 5
v7 3 ¥
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 v2
R2 v4
R3 v6
R4 v5 v7

pReg vReg

And so on . . .

R3 = R1 + R2
; spill R3
; spill R2? - no!
R2 = R4 - R3
; spill R4? - no!
R4 = R1 - 29

Bottom-Up Allocator

• Invented about once per decade
– Sheldon Best, 1955, for Fortran I
– Laslo Belady, 1965, for analyzing paging

algorithms
– William Harrison, 1975, ECS compiler work
– Chris Fraser, 1989, LCC compiler
– Vincenzo Liberatore, 1997, Rutgers

• Will be reinvented again, no doubt
• Many arguments for optimality of this

UW CSE P 501 Autumn 2021 P-67

Global Register Allocation
by Graph Coloring
• Convert the (seemingly) infinite sequence of

temporary data references, t1, t2, … into
assignments to finite number of actual registers

• Goal: Use available registers with minimum
spilling

• Problem: Minimizing the number of registers is
NP-complete … it is equivalent to chromatic
number – minimum colors needed to color nodes
of a graph so no edge connects same color

UW CSE P 501 Autumn 2021 Q-68

Begin With Data Flow Graph

• procedure-wide register allocation
• only live variables require register storage

• two variables(values) interfere when their live
ranges overlap

UW CSE P 501 Autumn 2021 Q-69

dataflow analysis: a variable is live at node N if
the value it holds is used on some path further

down the control-flow graph; otherwise it is dead

Live Variable Analysis

UW CSE P 501 Autumn 2021 Q-70

a := read();

b := read();
c := read();

d := a + b*c;

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

f

c

e

e

a
b

d

a := read();
b := read();
c := read();

d := a + b*c;
if (d < 10) then

e := c+8;

print(c);
else

f := 10;
e := f + d;
print(f);

fi
print(e);

Register Interference Graph

UW CSE P 501 Autumn 2021 Q-71

a := read();

b := read();
c := read();

d := a + b*c;

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

f

c

e

e

a
b

a b

e

dc

f

d

Graph Coloring

• NP complete problem

• Heuristic: color easy nodes last
– find node N with lowest degree
– remove N from the graph
– color the simplified graph
– set color of N to the first color that is not used by any

of N ’s neighbors
• Basics due to Chaitin (1982), refined by Briggs

(1992)

UW CSE P 501 Autumn 2021 Q-72

a b

e

dc

f

Apply Heuristic

UW CSE P 501 Autumn 2021 Q-73

a b

e

dc

f

Apply Heuristic

UW CSE P 501 Autumn 2021 Q-74

a b

e

dc

f

a b

e

dc

f

Apply Heuristic

UW CSE P 501 Autumn 2021 Q-75

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

Apply Heuristic

UW CSE P 501 Autumn 2021 Q-76

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

Continued

UW CSE P 501 Autumn 2021 Q-77

a b

e

dc

f

Continued

UW CSE P 501 Autumn 2021 Q-78

a b

e

dc

f

a b

e

dc

f

Continued

UW CSE P 501 Autumn 2021 Q-79

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

Continued

UW CSE P 501 Autumn 2021 Q-80

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

Continued

UW CSE P 501 Autumn 2021 Q-81

a b

e

dc

f

Continued

UW CSE P 501 Autumn 2021 Q-82

a b

e

dc

f

a b

e

dc

f

Continued

UW CSE P 501 Autumn 2021 Q-83

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

Continued

UW CSE P 501 Autumn 2021 Q-84

a b

e

dc

f

Continued

UW CSE P 501 Autumn 2021 Q-85

a b

e

dc

f

a b

e

dc

f

Final Assignment

UW CSE P 501 Autumn 2021 Q-86

a b

e

dc

f

a := read();

b := read();
c := read();
d := a + b*c;
if (d < 10) then

e := c+8;

print(c);
else

f := 10;
e := f + d;

print(f);
fi
print(e);

Some Graph Coloring Issues

• May run out of registers
– Solution: insert spill code and reallocate

• Special-purpose and dedicated registers
– Examples: function return register, function

argument registers, registers required for
particular instructions

– Solution: “pre-color” some nodes to force
allocation to a particular register

UW CSE P 501 Autumn 2021 Q-87

Live Ranges

• Real graph-coloring register allocators don’t
allocate temp registers – they allocate live ranges

• A live range is a set of definitions and uses that
flow together
– Every definition can reach every use
– Every use that a definition can reach is in the same

live range
• Idea: disjoint uses of a variable in different parts

of the program don’t actually interfere so they
should be in separate live ranges
– So we build a SSA form of the IR to construct the

interference graph!
UW CSE P 501 Autumn 2021 Q-90

Live Ranges: Example
1. loadi … ® rfp
2. loadai rfp, 0 ® rw
3. loadi 2 ® r2
4. loadai rfp,xoffset ® rx
5. loadai rfp,yoffset ® ry
6. loadai rfp,zoffset ® rz
7. mult rw, r2 ® rw
8. mult rw, rx ® rw
9. mult rw, ry ® rw
10. mult rw, rz ® rw
11. storeai rw ® rfp, 0

Register Interval
rfp [1,11]
rw [2,7]
rw [7,8]
rw [8,9]
rw [9,10]
rw [10,11]
r2 [3,7]
rx [4,8]
ry [5,9]
rz [6,10]

UW CSE P 501 Autumn 2021 P-91

Coloring by Simplification

• Linear-time approximation that generally gives
good results
1. Build: Construct the interference graph
2. Simplify: Color the graph by repeatedly

simplification
3. Spill: If simplify cannot reduce the graph

completely, mark some node for spilling
4. Select: Assign colors to nodes in the graph

UW CSE P 501 Autumn 2021 P-92

1. Build

• Construct the interference graph
• Find live ranges – SSA!
– Build SSA form of IR
– Each SSA name is initially a singleton set
– A F-function means form the union of the sets that

includes those names (union-find algorithm)
– Resulting sets represent live ranges
– Either rewrite code to use live range names or keep a

mapping between SSA names and live-range names

UW CSE P 501 Autumn 2021 P-93

1. Build

• Use dataflow information to build interference
graph
– Nodes = live ranges
– Add an edge in the graph for each pair of live

ranges that overlap
• But watch copy operations. MOV ri ® rj does not

create interference between ri, rj since they can be the
same register if the ranges do not otherwise interfere

UW CSE P 501 Autumn 2021 P-94

2. Simplify

• Heuristic: Assume we have K registers
• Find a node m with fewer than K neighbors
• Remove m from the graph. If the resulting graph

can be colored, then so can the original graph
(the neighbors of m have at most K-1 colors
among them)

• Repeat by removing and pushing on a stack all
nodes with degree less than K
– Each simplification decreases other node degrees –

may make more simplifications possible

UW CSE P 501 Autumn 2021 P-95

3. Spill

• If simplify stops because all nodes have
degree ≥ k, mark some node for spilling
– This node is in memory during execution
– \ Spilled node no longer interferes with

remaining nodes, reducing their degree.
– Continue by removing spilled node and push on

the stack (optimistic – hope that spilled node does
not interfere with remaining nodes – Briggs
allocator)

UW CSE P 501 Autumn 2021 P-96

3. Spill

• Spill decisions should be based on costs of
spilling different values

• Issues
– Address computation needed for spill
– Cost of memory operation
– Estimated execution frequency

(e.g., inner loops first)

UW CSE P 501 Autumn 2021 P-97

4. Select

• Assign nodes to colors in the graph:
– Start with empty graph
– Rebuild original graph by repeatedly adding node

from top of the stack
• (When we do this, there must be a color for it if it didn’t

represent a potential spill – pick a different color from
any adjacent node)

– When a potential spill node is popped it may not
be colorable (neighbors may have k colors
already). This is an actual spill.

UW CSE P 501 Autumn 2021 P-98

5. Start Over

• If Select phase cannot color some node (must
be a potential spill node), add loads before
each use and stores after each definition
– Creates new temporaries with tiny live ranges

• Repeat from beginning
– Iterate until Simplify succeeds
– In practice a couple of iterations are enough

UW CSE P 501 Autumn 2021 P-99

Coalescing Live Ranges

• Idea: if two live ranges are connected by a
copy operation (MOV ri ® rj) but do not
otherwise interfere, then the live ranges can
be coalesced (combined)
– Rewrite all references to rj to use ri
– Remove the copy instruction

• Then need to fix up interference graph

UW CSE P 501 Autumn 2021 Q-100

Advantages?

• Makes the code smaller, faster (no copy
operation)

• Shrinks set of live ranges
• Reduces the degree of any live range that

interfered with both live ranges ri, rj
• But: coalescing two live ranges can prevent

coalescing of others, so ordering matters
– Best: Coalesce most frequently executed ranges first

(e.g., inner loops)
• Can have a substantial payoff – do it!

UW CSE P 501 Autumn 2021 Q-101

Graph Representation

• The interference graph representation drives the
time and space requirements for the allocator
(and maybe the compiler)

• Not unknown to have O(5K) nodes and O(1M)
edges

• Dual representation works best
– Triangular bit matrix for efficient access to

interference information
– Vector of adjacency vectors for efficient access to

node neighbors

UW CSE P 501 Autumn 2021 P-102

Overall Structure

• Then you may want to iterate with additional instruction selection
and scheduling passes, particularly on a complex machine where
operations can have both memory or register operands (e.g., x86)

UW CSE P 501 Autumn 2021 Q-103

Find live
ranges

Build int.
graph Coalesce Spill

Costs
Find

Coloring

Insert
Spills

No Spills

More Coalescing Possible

Spills

And that’s it!

Modulo all the picky details, that is…

UW CSE P 501 Autumn 2021 Q-104

