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Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring
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Compiler Organization
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Big Picture

• Compiler consists of lots of fast stuff followed 
by hard problems
– Scanner: O(n)
– Parser: O(n)
– Analysis & Optimization:  ~ O(n log n)
– Instruction selection: fast or NP-Complete
– Instruction scheduling: NP-Complete
– Register allocation: NP-Complete
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IR for Code Generation

• Assume a (very) low-level IR
– 3 address, register-register instructions plus 

load/store
r1 <- r2 op r3

– Could be tree structure or linear
– Expose as much detail as possible

• Assume “enough” (i.e., ¥) registers
– Invent new temporaries for intermediate results
– Map to actual registers towards the end
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Overview: Instruction Selection

• Map IR into assembly code
• Assume known storage layout and code shape

– i.e., the optimization phases have already done 
their thing

• Combine low-level IR operations into machine 
instructions (take advantage of addressing 
modes, etc.)
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Overview: Instruction Scheduling 

• Reorder instructions to minimize execution time
– hide latencies – processor function units, 

memory/cache stalls
– Originally invented for supercomputers (60s)
– Required to get reasonable (or correct!) code on 

classic RISC architectures (basically 3-address code)
– Still important on most machines

• Even non-RISC machines, e.g., x86 family
• Even if processor reorders on the fly
Good schedules help processor do a better job

• Assume fixed program at this point
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Overview: Register Allocation

• Map values to actual registers
– Previous phases change need for registers

• Add code to spill values to temporaries in 
memory and reload as needed, etc.

• Usually worth doing another instruction 
scheduling pass afterwards if spill code 
inserted
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Conventional Wisdom
• We typically lose little by solving these independently

– But not always, of course (iterating phases on x86-64 can help 
because of limited registers; use of memory operands)

• Instruction selection
– Use some form of pattern matching
– ¥ virtual registers – create as needed

• Instruction scheduling
– Within a block, list scheduling is close to optimal
– Across blocks: extended basic blocks or trace scheduling if list 

scheduling not good enough
• Register allocation

– Start with unlimited virtual registers and map to some subset of 
K real registers
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Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring
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Instruction Selection

• Map IR into assembly code

• Assume known storage layout and code shape
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A Simple Low-Level IR (1)

• This example is from Appel, but details aren’t 
really important.  What matters is to get a feel for 
the level of detail involved.

• Expressions:
– CONST(i) – integer constant i
– TEMP(t) – temporary t (i.e., register)
– BINOP(op,e1,e2) – application of op to e1,e2
– MEM(e) – contents of memory at address e

• Means value when used in an expression
• Means address when used as target of assignment

– CALL(f,args) – apply function f to argument list args
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Simple Low-Level IR (2)
• Statements
– MOVE(TEMP t, e) – evaluate e and store in temporary t
– MOVE(MEM(e1), e2) – evaluate e1 to yield address a; 

evaluate e2 and store at a
– EXP(e) – evaluate expressions e and discard result
– SEQ(s1,s2) – execute s1 followed by s2
– NAME(n) – assembly language label n
– JUMP(e) – jump to e, which can be a NAME label, or more 

compex (e.g., switch)
– CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to 

label t, otherwise jump to f
– LABEL(n) – defines location of label n in the code
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Low-Level IR Example (1)

• Access a local variable at a known offset k 
from the frame pointer fp
– Linear

MEM(BINOP(PLUS, TEMP fp, CONST k))

– Tree
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+
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Low-Level IR Example (2)

• Access an array element e[k], where each 
element takes up w storage locations
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Instruction Selection Issues

• Given the low-level IR, there are many 
possible code sequences that implement it 
correctly
– e.g. set %rax to 0 on x86-64  (did we miss any?)

movq $0,%rax salq 64,%rax
subq %rax,%rax shrq 64,%rax
xorq %rax,%rax imulq $0,%rax

– Many machine instructions do several things at 
once – e.g., register arithmetic and effective 
address calculation, e.g.,

movq offset(%rbase, %rindex, scale), %rdest
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Instruction Selection Criteria

• Several possibilities
– Fastest
– Smallest
– Minimize power consumption (ex: don’t use a 

function unit if leaving it powered-down is a win)
• Sometimes not obvious
– e.g., if one of the function units in the processor is 

idle and we can select an instruction that uses that 
unit, it effectively executes for free, even if that 
instruction wouldn’t be chosen normally
• (Some interaction with scheduling here…)
• (and it might consume extra power, so bad if that matters)
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Tree Pattern Matching

• Goal: find a sequence of machine instructions 
that perform the computation described by 
the program IR code
– Describe machine instructions using same low-

level IR used for program, then
– Use tree pattern matching to pick instructions that 

match fragments of the program IR tree; use a 
combination of these to cover the whole IR tree

UW CSE P 501 Autumn 2021 Q-18



An Example Target Machine (1)

• Arithmetic Instructions
– (unnamed) ri TEMP
– ADD ri <- rj + rk

– MUL ri <- rj * rk

– SUB and DIV are similar

– For some examples, we’ll assume there is at least one 
register (R0) hardwired to be 0 always
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An Example Target Machine (2)

• Immediate Instructions
– ADDI ri <- rj + c

– SUBI ri <- rj - c
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An Example Target Machine (3)

• Load
– LOAD  ri <- M[rj + c]
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An Example Target Machine (4)

• Store
– STORE  M[rj + c] <- ri
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Tree Pattern Matching (1)

• Goal: Tile the low-level IR tree with operation 
(instruction) trees

• A tiling is a collection of <node,op> pairs
– node is a node in the tree
– op is an operation tree
– <node,op> means that op could implement the 

subtree at node
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Tree Pattern Matching  (2)

• A tiling “implements” a tree if it covers every 
node in the tree and the overlap between any 
two tiles (trees) is limited to a single node
– If <node,op> is in the tiling, then node is also 

covered by a leaf of another operation tree in the 
tiling – unless it is the root

– Where two operation trees meet, they must be 
compatible (i.e., expect the same value in the 
same location)
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Generating Tilings

Two common algorithms
• Maximal munch: 

– Top-down tree walk.  
– Find largest tile that fits each node

• Dynamic programming:
– Assign costs to each node in the tree 

cost = cost of individual node + subtree costs
– Try all possible combinations bottom-up and pick 

cheapest
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Example – Tree for a[i]:=x
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Example – Tree for a[i]:=x
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Generating Code

Given a tiled tree, to generate code
• Do a postorder treewalk with node-dependant

order for children
• Each tile corresponds to a code sequence; 

emit code sequences in order
• Connect tiles by using same register name to 

tie boundaries together
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Example – Tree for a[i]:=x
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2. LOAD r1 <- M[fp+aoff]

4. ADDI r2 <- 4 + r0

5. MUL r2 <- r2 * ri
6. ADD r1 <- r1 + r2
8. LOAD r2 <- M[fp+xoff]

9. STORE M[r1+0] <- r2



Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring
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Instruction Scheduling 

• Reorder instructions to minimize execution 
time given instruction and operand latencies

• Assume fixed program at this point
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Some Scheduling Issues (1)

• Many operations have non-zero latencies
• Modern machines can issue several 

operations per cycle
– Want to take advantage of multiple function units 

on chip

• Loads & Stores may or may not block
– may be (many) cycles after load/store starts to do 

other useful work

UW CSE P 501 Autumn 2021 Q-32



Some Scheduling Issues (2)

• Branch costs vary
• Branches on some processors have delay slots
• Modern processors have good heuristics to 

predict whether branches are taken and try to 
keep pipelines full, but good code from compiler 
makes these more effective

GOAL: Scheduler should reorder instructions to hide 
latencies, take advantage of multiple function units 
and delay slots, and help the processor effectively 
pipeline execution
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Latencies for a Simple Example Machine
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Operation Cycles
LOAD 3
STORE 3
ADD 1
MULT 2
SHIFT 1

BRANCH 0 TO 8



Example:  w = w*2*x*y*z;
Simple schedule

1  LOAD  r1 <- w
4  ADD r1 <- r1,r1
5 LOAD r2 <- x
8  MULT r1 <- r1,r2
9  LOAD r2 <- y
12 MULT r1 <- r1,r2
13 LOAD r2 <- z
16 MULT r1 <- r1,r2
18 STORE w <- r1
21 r1 free

2 registers, 20 cycles

Loads early
1 LOAD r1 <- w
2 LOAD r2 <- x
3 LOAD r3 <- y
4 ADD r1 <- r1,r1
5 MULT r1 <- r1,r2
6 LOAD r2 <- z
7 MULT r1 <- r1,r3
9 MULT r1 <- r1,r2
11 STORE w <- r1
14 r1 is free

3 registers, 13 cycles
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List Scheduling Algorithm Overview

• Build a precedence graph P of instructions, 
labeled with priorities (usually number of 
cycles on critical path to the end)

• Use list scheduling to construct a schedule, 
one cycle at a time

• Rename registers to avoid false dependencies 
and conflicts
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Precedence Graph

• Nodes n are operations 
• Attributes of each node 

type – kind of operation
delay – latency until end of graph

• If node n2 uses the result of node n1, there is 
an edge e = (n1,n2) in the graph
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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List Scheduling

• Construct a schedule, one cycle at a time
– Keep a list of operations that are ready to execute
– At each cycle, chose a ready operation and 

schedule it
• Best pick: one that is on the “critical path” – i.e., an 

instruction that has longest latency from end of graph

– Update ready list, deleting scheduled op and add 
ones that will be ready on next cycle
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List Scheduling Algorithm
Cycle = 1;  Ready = leaves of P;  Active = empty;
while (Ready and/or Active are not empty)

if (Ready is not empty)
remove an op from Ready;
S(op) = Cycle;
Active = Active È op;

Cycle++;
for each op in Active

if (S(op) + delay(op) <= Cycle)
remove op from Active;
for each successor s of op in P

if (s is ready – i.e., all operands available)
add s to Ready
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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cycle: 1 2
ready: a c e g
active: a

3

5

87

109

1210

13



Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done

1 a  LOAD 4

2 c  LOAD 5

3 e  LOAD 6

cycle: 1 2 3
ready: a c e g
active: a c

3

5

87

109

1210

13



Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done

1 a  LOAD 4

2 c  LOAD 5

3 e  LOAD 6
4 b  ADD 5

cycle: 1 2 3 4
ready: a c e g b
active: a c e
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done

1 a  LOAD 4

2 c  LOAD 5

3 e  LOAD 6
4 b  ADD 5

5 d  MULT 7

cycle: 1 2 3 4 5
ready: a c e g b d
active: a c e b
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done

1 a  LOAD 4

2 c  LOAD 5

3 e  LOAD 6
4 b  ADD 5

5 d  MULT 7

6 g  LOAD 9

cycle: 1 2 3 4 5 6
ready: a c e g b d
active: a c e b d
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done

1 a  LOAD 4

2 c  LOAD 5

3 e  LOAD 6
4 b  ADD 5

5 d  MULT 7

6 g  LOAD 9

7 f  MULT 9

cycle: 1 2 3 4 5 6 7
ready: a c e g b d f 
active: a c e b d g
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done

1 a  LOAD 4

2 c  LOAD 5

3 e  LOAD 6
4 b  ADD 5

5 d  MULT 7

6 g  LOAD 9

7 f  MULT 9

8 ---

cycle: 1 2 3 4 5 6 7 8
ready: a c e g b d f
active: a c e b d g f
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done

1 a  LOAD 4

2 c  LOAD 5

3 e  LOAD 6
4 b  ADD 5

5 d  MULT 7

6 g  LOAD 9

7 f  MULT 9

8 ---
9 h  MULT 11

cycle: 1 2 3 4 5 6 7 8 9
ready: a c e g b d f h
active: a c e b d g f

3

5
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done

1 a  LOAD 4

2 c  LOAD 5

3 e  LOAD 6
4 b  ADD 5

5 d  MULT 7

6 g  LOAD 9

7 f  MULT 9

8 ---
9 h  MULT 11

10 ---

cycle: 1 2 3 4 5 6 7 8 9 10
ready: a c e g b d f h
active: a c e b d g f h
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done

1 a  LOAD 4

2 c  LOAD 5

3 e  LOAD 6
4 b  ADD 5

5 d  MULT 7

6 g  LOAD 9

7 f  MULT 9

8 ---
9 h  MULT 11

10 ---

11 i STORE 14
cycle: 1 2 3 4 5 6 7 8 9 10 11
ready: a c e g b d f h i
active: a c e b d g f h
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Forward vs Backwards

• Alternative: backward list scheduling
– Work from the root to the leaves
– Schedules instructions from end to beginning of 

the block
• In practice, compilers try both and pick the 

result that minimizes costs
– Little extra expense since the precedence graph 

and other information can be reused
– Different directions win in different cases
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Beyond Basic Blocks

• List scheduling dominates, but moving beyond 
basic blocks can improve quality of the code.  
Some possibilities:
– Schedule extended basic blocks
• Watch for exit points – limits reordering or requires 

compensating
– Trace scheduling
• Use profiling information to select regions for 

scheduling using traces (paths) through code
– Optimize schedules for high-frequency paths
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Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring
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k

• Intermediate code typically assumes infinite 
number of registers

• Real machine has k registers available
• Goals

– Produce correct code that uses k or fewer 
registers

– Minimize added loads and stores
– Minimize space needed for spilled values
– Do this efficiently – O(n), O(n log n), maybe O(n2)
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Register Allocation

• Task
– At each point in the code, pick the values to keep 

in registers
– Insert code to move values between registers and 

memory
• No additional transformations – scheduling should have 

done its job
– But we will usually rerun scheduling if we insert spill code

– Minimize inserted code, both dynamically and 
statically
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Allocation vs Assignment

• Allocation: deciding which values to keep in 
registers

• Assignment: choosing specific registers for 
values

• Compiler must do both
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Local Register Allocation

• Apply to basic blocks
• Produces decent register usage inside a block

– But can have inefficiencies at boundaries between 
blocks

• Two variations: top-down, bottom-up
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Top-down Local Allocation

• Principle: keep most heavily used values in 
registers
– Priority = # of times register referenced in block

• If more virtual registers than physical, 
– Reserve some registers for values allocated to 

memory
• Need enough to address and load two operands and store 

result
– Other registers dedicated to “hot” values

• But are tied up for entire block with particular value, even if 
only needed for part of the block
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Bottom-up Local Allocation (1)

• Keep a list of available registers (initially all 
registers at beginning of block)

• Scan the code
• Allocate a register when one is needed
• Free register as soon as possible

– In x:=y op z, free y and z if they are no longer 
needed before allocating x
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Bottom-up Local Allocation (2)

• If no registers are free when one is needed for 
allocation:
– Look at values assigned to registers – find the one 

not needed for longest forward stretch in the code
– Insert code to spill the value to memory and insert 

code to reload it when needed later
• If a copy already exists in memory, no need to spill
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Local "bottom-up" Register Allocation, -1
1. ; load v2 from memory
2. ; load v3 from memory
3. v1  = v2 + v3
4. ; load v5, v6 from memory
5. v4  = v5 - v6
6. v7  = v2 - 29
7. ; load v9 from memory
8. v8  = - v9
9. v10 = v6 * v4 
10. v11 = v10 - v3
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• Still in LIR.  So lots (too many!) virtual registers required (v2, etc).
• Grey instructions (1,2,4,7) load operands from memory into virtual registers.
• We will ignore these going forward.  Focus on mapping virtual to physical.



Local "bottom-up" Register Allocation, 0

1. v1  = v2 + v3
2. v4  = v5 - v6
3. v7  = v2 - 29
4. v8  = - v9
5. v10 = v6 * v4 
6. v11 = v10 - v3
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v1 1
v2 1
v3 1
v4 2
v5 2
v6 2
v7 3
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 -
R2 -
R3 -
R4 -

pReg vReg



Local "bottom-up" Register Allocation, 1

1. v1  = v2 + v3
2. v4  = v5 - v6
3. v7  = v2 - 29
4. v8  = - v9
5. v10 = v6 * v4 
6. v11 = v10 - v3

UW CSE P 501 Autumn 2021 P-64

v1 1 ¥
v2 1 3
v3 1 6
v4 2
v5 2
v6 2
v7 3
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 v2
R2 v3
R3 v1
R4 -

pReg vReg

R3 = R1 + R2



Local "bottom-up" Register Allocation, 2

1. v1  = v2 + v3
2. v4  = v5 - v6
3. v7  = v2 - 29
4. v8  = - v9
5. v10 = v6 * v4 
6. v11 = v10 - v3
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v1 ¥
v2 3
v3 6
v4 2 5
v5 2 ¥
v6 2 5
v7 3
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 v2
R2 v3 v4
R3 v1 v6
R4 v5

pReg vReg

R3 = R1 + R2
; spill R3
; spill R2? - no - still clean
R2 = R4 - R3



Local "bottom-up" Register Allocation, 3

1. v1  = v2 + v3
2. v4  = v5 - v6
3. v7  = v2 - 29
4. v8  = - v9
5. v10 = v6 * v4 
6. v11 = v10 - v3
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v1 ¥
v2 3 ¥
v3 6
v4 5
v5 ¥
v6 5
v7 3 ¥
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 v2
R2 v4
R3 v6
R4 v5 v7

pReg vReg

And so on . . .

R3 = R1 + R2
; spill R3
; spill R2? - no!
R2 = R4 - R3
; spill R4? - no!
R4 = R1 - 29



Bottom-Up Allocator

• Invented about once per decade
– Sheldon Best, 1955, for Fortran I
– Laslo Belady, 1965, for analyzing paging 

algorithms
– William Harrison, 1975, ECS compiler work
– Chris Fraser, 1989, LCC compiler
– Vincenzo Liberatore, 1997, Rutgers

• Will be reinvented again, no doubt
• Many arguments for optimality of this

UW CSE P 501 Autumn 2021 P-67



Global Register Allocation
by Graph Coloring
• Convert the (seemingly) infinite sequence of 

temporary data references, t1, t2, … into 
assignments to finite number of actual registers

• Goal: Use available registers with minimum 
spilling

• Problem: Minimizing the number of registers is 
NP-complete … it is equivalent to chromatic 
number – minimum colors needed to color nodes 
of a graph so no edge connects same color
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Begin With Data Flow Graph

• procedure-wide register allocation
• only live variables require register storage

• two variables(values) interfere when their live 
ranges overlap
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dataflow analysis: a variable is live at node N if 
the value it holds is used on some path further 

down the control-flow graph; otherwise it is dead



Live Variable Analysis
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a := read();

b := read();
c := read();

d := a + b*c;

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

f

c

e

e

a
b

d

a := read();
b := read();
c := read();

d := a + b*c;
if (d < 10 ) then

e := c+8;

print(c);
else

f := 10;
e := f + d;
print(f);

fi
print(e);



Register Interference Graph
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a := read();

b := read();
c := read();

d := a + b*c;

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

f

c

e

e

a
b

a b

e

dc

f

d



Graph Coloring

• NP complete problem

• Heuristic: color easy nodes last
– find node N with lowest degree
– remove N from the graph
– color the simplified graph 
– set color of N to the first color that is not used by any 

of N ’s neighbors
• Basics due to Chaitin (1982), refined by Briggs 

(1992)
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a b

e

dc

f



Apply Heuristic
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a b

e

dc

f



Apply Heuristic
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a b
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Apply Heuristic
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Apply Heuristic
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Continued
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a b

e

dc

f



Continued
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Continued
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Continued
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Continued
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Continued
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Continued
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Continued
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Continued
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Final Assignment

UW CSE P 501 Autumn 2021 Q-86

a b

e

dc

f

a := read();

b := read();
c := read();
d := a + b*c;
if (d < 10 ) then

e := c+8;

print(c);
else

f := 10;
e := f + d;

print(f);
fi
print(e);



Some Graph Coloring Issues

• May run out of registers
– Solution: insert spill code and reallocate

• Special-purpose and dedicated registers
– Examples: function return register, function 

argument registers, registers required for 
particular instructions

– Solution: “pre-color” some nodes to force 
allocation to a particular register
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Live Ranges

• Real graph-coloring register allocators don’t 
allocate temp registers – they allocate live ranges

• A live range is a set of definitions and uses that 
flow together
– Every definition can reach every use
– Every use that a definition can reach is in the same 

live range
• Idea: disjoint uses of a variable in different parts 

of the program don’t actually interfere so they 
should be in separate live ranges
– So we build a SSA form of the IR to construct the 

interference graph!
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Live Ranges: Example
1. loadi …    ® rfp
2. loadai rfp, 0 ® rw
3. loadi 2 ® r2
4. loadai rfp,xoffset ® rx
5. loadai rfp,yoffset ® ry
6. loadai rfp,zoffset ® rz
7. mult rw, r2 ® rw
8. mult rw, rx ® rw
9. mult rw, ry ® rw
10. mult rw, rz ® rw
11. storeai rw ® rfp, 0

Register   Interval
rfp [1,11]
rw [2,7]
rw [7,8]
rw [8,9]
rw [9,10]
rw [10,11]
r2 [3,7]
rx [4,8]
ry [5,9]
rz [6,10]
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Coloring by Simplification

• Linear-time approximation that generally gives 
good results
1. Build: Construct the interference graph
2. Simplify: Color the graph by repeatedly 

simplification
3. Spill: If simplify cannot reduce the graph 

completely, mark some node for spilling
4. Select: Assign colors to nodes in the graph 
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1. Build

• Construct the interference graph 
• Find live ranges – SSA!
– Build SSA form of IR
– Each SSA name is initially a singleton set
– A F-function means form the union of the sets that 

includes those names (union-find algorithm)
– Resulting sets represent live ranges
– Either rewrite code to use live range names or keep a 

mapping between SSA names and live-range names
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1. Build

• Use dataflow information to build interference 
graph
– Nodes = live ranges
– Add an edge in the graph for each pair of live 

ranges that overlap
• But watch copy operations.  MOV ri ® rj does not 

create interference between ri, rj since they can be the 
same register if the ranges do not otherwise interfere
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2. Simplify

• Heuristic: Assume we have K registers
• Find a node m with fewer than K neighbors
• Remove m from the graph.  If the resulting graph 

can be colored, then so can the original graph 
(the neighbors of m have at most K-1 colors 
among them)

• Repeat by removing and pushing on a stack all 
nodes with degree less than K
– Each simplification decreases other node degrees –

may make more simplifications possible
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3. Spill

• If simplify stops because all nodes have 
degree ≥ k, mark some node for spilling
– This node is in memory during execution
– \ Spilled node no longer interferes with 

remaining nodes, reducing their degree.
– Continue by removing spilled node and push on 

the stack (optimistic – hope that spilled node does 
not interfere with remaining nodes – Briggs 
allocator)
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3. Spill

• Spill decisions should be based on costs of 
spilling different values 

• Issues
– Address computation needed for spill
– Cost of memory operation
– Estimated execution frequency

(e.g., inner loops first)
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4. Select

• Assign nodes to colors in the graph:
– Start with empty graph
– Rebuild original graph by repeatedly adding node 

from top of the stack
• (When we do this, there must be a color for it if it didn’t 

represent a potential spill – pick a different color from 
any adjacent node)

– When a potential spill node is popped it may not 
be colorable (neighbors may have k colors 
already).  This is an actual spill.
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5. Start Over 

• If Select phase cannot color some node (must 
be a potential spill node), add loads before 
each use and stores after each definition
– Creates new temporaries with tiny live ranges

• Repeat from beginning
– Iterate until Simplify succeeds
– In practice a couple of iterations are enough
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Coalescing Live Ranges

• Idea: if two live ranges are connected by a 
copy operation (MOV ri ® rj) but do not 
otherwise interfere, then the live ranges can 
be coalesced (combined)
– Rewrite all references to rj to use ri
– Remove the copy instruction

• Then need to fix up interference graph
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Advantages?

• Makes the code smaller, faster (no copy 
operation)

• Shrinks set of live ranges
• Reduces the degree of any live range that 

interfered with both live ranges ri, rj
• But: coalescing two live ranges can prevent 

coalescing of others, so ordering matters
– Best: Coalesce most frequently executed ranges first 

(e.g., inner loops)
• Can have a substantial payoff – do it!
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Graph Representation

• The interference graph representation drives the 
time and space requirements for the allocator 
(and maybe the compiler)

• Not unknown to have O(5K) nodes and O(1M) 
edges

• Dual representation works best
– Triangular bit matrix for efficient access to 

interference information
– Vector of adjacency vectors for efficient access to 

node neighbors
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Overall Structure

• Then you may want to iterate with additional instruction selection 
and scheduling passes, particularly on a complex machine where 
operations can have both memory or register operands (e.g., x86)
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Find live 
ranges

Build int. 
graph Coalesce Spill 

Costs
Find 

Coloring

Insert 
Spills

No Spills

More Coalescing Possible

Spills



And that’s it!

Modulo all the picky details, that is…
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