
CSE P 501 – Compilers

ASTs, Modularity, and the Visitor Pattern
Hal Perkins

Autumn 2021

UW CSE P 501 Autumn 2021 H-1

Administrivia
• Scanner due Thursday night

– Push to Gitlab then tag scanner-final and push tag.
• GitLab accounts OK? Any other logistics issues?

– Should be fairly straightforward, but do need to figure out what tokens
exist in MiniJava

– Remember that the scanner doesn’t know or care if the token stream
makes any sense as a MiniJava program.

– Will do our best to sanity check over the weekend before parser/AST
• New HW3 (LR constr., LL grammars – today’s stuff) out now, due

next Monday night
• Parser due in 2 weeks, out now

– Add parser rules for MiniJava + semantics to build AST
• Debug grammar rules before adding semantic actions to build the tree

– Add new visitor to print AST as an indented tree structure
• Not the same as the AST->source formatter in starter code
• Needed in any compiler: formatted output of key data structure(s)

UW CSE P 501 Autumn 2021 H-2

Agenda

• Representation of ASTs as Java objects
• Parser semantic actions and AST generation
• AST operations: modularity and encapsulation
• Visitor pattern: basic ideas and variations
• Some of the “why” behind the “how”

• For the project, see the MiniJava web site and
starter code for more details / ideas

UW CSE P 501 Autumn 2021 H-3

Intermediate Representations

• In most compilers, the parser builds an
intermediate representation of the program
– Typically an AST, as in the MiniJava project

• Rest of the compiler transforms the IR to improve
(“optimize”) it and eventually translate to final
target code
– Typically will transform initial IR to one or more

different IRs along the way
• We’ll look at AST’s now – other IRs later when we

look at optimizations and analysis

UW CSE P 501 Autumn 2021 G-4

Abstract Syntax Trees (ASTs)

• Idea: capture the essential structure of a
program; omit extraneous details
– i.e, include only what the rest of the compiler

needs; omit concrete syntax used only to guide
the parse (punctuation, chain productions, etc.)

• Full grammar and derivation needed as part of
parsing (it’s the control flow for the parser),
but a full derivation contains many details that
are only needed for parsing, and not after

UW CSE P 501 Autumn 2021 H-5

Parse Tree / AST example (1)
Full parse tree Abstract syntax (AST)

UW CSE P 501 Autumn 2021 H-6

program

program

statement
statement

ifStmt

assignStmt
statement

expr assignStmt
expr expr

intid

id expr

int
id expr

int

a = 1 ; if (a + 1) b = 2 ;

program

+

ID(a) INT(1)

=

ID(b) INT(2)

=

ID(a) INT(1)

IF

statement list

Parse Tree / AST example (2)
Full parse tree Abstract syntax (AST)

UW CSE P 501 Autumn 2021 H-7

INT(3) INT(4)

INT(2) *

+
expr

int

2

expr term

+

term factor

*

factor

int
int

4

factor

term

3

Implementing ASTs in Java

• Multiple ways to do this, but typically (and in our
our project)
– Simple tree node objects (basically structs/records)

• Subtree pointers plus (usually) other useful information like
source program locations (e.g., line numbers), links to
semantic (symbol table, types) information (later), …

• But not much more!
• Basically dumb data structures with public fields, not “smart

objects”
– Use type system and inheritance to factor common

information and allow polymorphic treatment of
related kinds of nodes

UW CSE P 501 Autumn 2021 H-8

AST Generation

• Idea: each time the parser recognizes a
complete production, it produces as its result
an AST node (with links to the subtrees that
are the components of the production)

• When we finish parsing, the result of the goal
symbol is the complete AST for the program

UW CSE P 501 Autumn 2021 H-9

MiniJava Starter Code

• AST type hierarchy: root is ASTNode. Some subclasses:
– Exp (subclasses: And, Plus, Times, True, Call, …)
– Statement (subclasses: While, Assign, If, Print, …)
– Type (abstract rep. of types, not source code type

declarations – more about that when we get to semantics)
– Declarations, Classes, others parts of abstract grammar, …

• Additional information in all AST nodes
– Source code position info (hooks in starter JFlex and CUP

rules to capture this, use in error messages, AST printout)
– accept methods for visitors (more later this lecture)

• Not required to use this AST, but it is strongly advised

UW CSE P 501 Autumn 2021 H-10

UW CSE P 501 Autumn 2021 H-11

Example: AST generation for a
Recursive-Descent Parser
// parse while (exp) stmt
WhileNode whileStmt() {

// skip “while (”
skipToken(WHILE);
skipToken(LPAREN);

// parse exp
ExpNode cond = exp();

(continued next col.)

// skip “)”
skipToken(RPAREN);

// parse stmt
StmtNode body = stmt();

// return AST node for while
return new WhileNode (cond, body);

}

AST Generation in YACC/CUP

• A result type can be specified for each item in
the grammar specification

• Each parser rule can be annotated with a
semantic action, which is just a piece of Java
code that returns a value of the result type

• The semantic action is executed when the rule
is reduced

UW CSE P 501 Autumn 2021 H-12

UW CSE P 501 Autumn 2021 H-13

YACC/CUP Parser Specification

• CUP code
non terminal StmtNode stmt, whileStmt;
non terminal ExpNode exp;
…
stmt ::= …

| WHILE LPAREN exp:e RPAREN stmt:s
{: RESULT = new WhileNode(e,s); :}

;

– See the starter code for examples showing how to capture additional
things in the AST like line numbers

Operations on ASTs

• Once we have the AST, we may want to:
– Print a readable dump of the tree
– Print a parseable (source-code) version of the tree (so-

called pretty-printing)
– Do static semantic analysis:

• Type checking
• Verify that things are declared and initialized properly
• Etc. etc. etc. etc.

– Perform optimizing transformations on the tree
– Generate code from the tree, or
– Generate another IR from the tree for further

processing

UW CSE P 501 Autumn 2021 H-14

Modularity

• Classic slogans:
– Do one thing well
– Minimize coupling, maximize cohesion
– Isolate operations/abstractions in modules
– Hide implementation details

• Okay, so where in the MiniJava compiler does
the typechecker module belong?

UW CSE P 501 Autumn 2021 H-15

Where do the Operations Go?

• Pure “object-oriented” style
– Really, really, really smart AST nodes
– Each node knows how to perform every operation on itself

public class WhileNode extends StmtNode {
public WhileNode(…);
public typeCheck(…);
public StrengthReductionOptimize(…);
public DeadCodeEliminationOptimize(…);
public generateCode(…);
public prettyPrint(…);
…

}

UW CSE P 501 Autumn 2021 H-16

Critique

• This is nicely encapsulated – all details about a
WhileNode are hidden in that class

• But it is poor modularity
• What happens if we want to add a new

optimization (or any other) operation?
– Have to modify every node class L

• Worse: the details of any particular operation
(optimization, type checking) are scattered
across the node classes

UW CSE P 501 Autumn 2021 H-17

Modularity Issues

• Smart nodes make sense if the set of operations
is relatively fixed, but we expect to need flexibility
to add new kinds of nodes

• Example: graphics system
– Operations: draw, move, iconify, highlight
– Objects: textbox, scrollbar, canvas, menu, dialog box,

window, plus new objects defined as the system
evolves

• Another example: objects in a game or simulation

UW CSE P 501 Autumn 2021 H-18

Modularity in a Compiler

• Abstract syntax does not change frequently over
time – language changes are usually incremental
\ Kinds of nodes are relatively fixed

• As a compiler evolves, it is common to modify or
add operations on the AST nodes
– Want to modularize each operation (type check,

optimize, code gen) so its parts are together in the
source code

– Want to avoid having to change node classes when we
modify or add an operation on the tree

UW CSE P 501 Autumn 2021 H-19

Two Views of Modularity

UW CSE P 501 Autumn 2021 H-20

Type check

Optim
ize

Generate x86

Flatten

Print

IDENT X X X X X

exp X X X X X

while X X X X X

if X X X X X

Binop X X X X X

…

draw

m
ove

iconify

highlight

transm
ogrify

circle X X X X X

text X X X X X

canvas X X X X X

scroll X X X X X

dialog X X X X X

…

Visitor Pattern

• Idea: Package each operation (optimization, print,
code gen, …) in a separate visitor class (module)

• Create exactly one instance of each visitor class (a
singleton!)
– Sometimes called a “function object”
– Contains all of the methods for that particular

operation, one for each kind of AST node
• Include a generic “accept visitor” method in

every node class
• To perform an operation, pass the appropriate

“visitor object” around the AST during a traversal

UW CSE P 501 Autumn 2021 H-21

Here’s the idea
To type-check this AST:
1. Create an object (instance) v of

the Type-Check visitor class
2. Pass the type-check object to

the root note accept(visitor)
method

3. Each node passes the visitor
object around the tree by
calling accept(v) in subtrees to
type-check the subtree, and
then combine results (a tree
traversal)

4. When each node “accepts” the
visitor, it arranges to call the
visitor method that knows how
to type-check that particular
kind of node

UW CSE P 501 Autumn 2021 H-22

program

+

ID(a) INT(1)

=

ID(b) INT(2)

=

ID(a) INT(1)

IF

statement list

type-
check

v

Visitor issue: avoiding instanceof

• We’d like to avoid huge if-elseif nests in the visitor
to discover the node types as it is passed around
the tree

void checkTypes(ASTNode p) {
if (p instanceof WhileNode) { … }
else if (p instanceof IfNode) { … }
else if (p instanceof BinExp) { … }

…
}

UW CSE P 501 Autumn 2021 H-23

Visitor “Double Dispatch”

• Include a “visit” method for every AST node type
in each Visitor

void visit(WhileNode);
void visit(ExpNode);
etc.

• Include an accept(Visitor v) method in each AST
node class

• When Visitor v is passed to an AST node, the
node’s accept method calls v.visit(this)
– Selects correct Visitor method for this node
– Often called “double dispatch”, but really single

dispatch + overloading

UW CSE P 501 Autumn 2021 H-24

Visitor Interface
interface Visitor {

// overload visit for each AST node type
public void visit(WhileNode s);
public void visit(IfNode s);
public void visit(BinExp e);
…

}
– Every separate Visitor class implements this interface
– Aside: The result type can be whatever is convenient,

doesn’t have to be void, although that is common
– Note: could also give methods unique names e.g.,

visitWhile, visitIf, visitBinExp, etc. instead of overloading
visit(…). Best to follow existing code if either convention
already adopted, otherwise individual preference.

UW CSE P 501 Autumn 2021 H-25

Accept Method in Each AST Node Class
• Every AST class overrides accept(Visitor)
• Example

public class WhileNode extends StmtNode {
…

// accept a visit from a Visitor object v
@Override
public void accept(Visitor v) {

v.visit(this); // dynamic dispatch on “this” (WhileNode)
}
…

}
• Key points

– Visitor object passed as a parameter to WhileNode
– WhileNode calls visit, which calls visit(WhileNode) automatically

because of overloading – i.e., the correct method for this kind of node
• Note: if visitor methods have unique names instead of overloading

visit(…) then WhileNode would call something like v.visitWhile(this).
UW CSE P 501 Autumn 2021 H-26

Composite Objects (1)

• How do we handle composite objects?
• One possibility: the accept method passes the visitor

down to subtrees before (or after) visiting itself
public class WhileNode extends StmtNode {

Expr exp; Stmt stmt; // children
…
// accept a visit from visitor v
public void accept (Visitor v) {

this.exp.accept(v);
this.stmt.accept(v);
v.visit(this);

}

UW CSE P 501 Autumn 2021 H-27

Composite Objects (2)

• Another possibility: the visitor can control the
traversal inside the visit method for that
particular kind of node

public void visit(WhileNode w) {
w.expr.accept(this);
w.stmt.accept(this);

}

UW CSE P 501 Autumn 2021 H-28

So which to choose?
• Possibilities:

– Node objects drive the traversal and pass the visitors around the
tree in standard ways

– Visitor object drives the traversal (the visitor has access to the
node, including references to child subtrees)

• In a compiler:
– First choice handles many common cases
– Big compilers often have multiple visitor schemes (e.g., several

different traversals defined in Node interface – postorder,
inorder, … – plus custom traversals in some visitors)

– For MiniJava: keep it simple and start with supplied examples,
but if you really need to do something different, you can
• (i.e., keep an open mind, but not so open that you create needless

complexity)

UW CSE P 501 Autumn 2021 H-29

Encapsulation

• A visitor object often needs to be able to
access state in the AST nodes
\May need to expose more node state than we

might have done otherwise
• i.e., lots of public fields in AST node objects

– Overall a good tradeoff – better modularity
(plus, the nodes should be relatively simple data objects
anyway – not hiding much of anything)

UW CSE P 501 Autumn 2021 H-30

Visitor Actions and State
• A visitor function has a reference to the node it is

visiting (the parameter)
\can access and manipulate subtrees directly

• Visitor object can also include local data (state)
shared by methods in the visitor
– This data is effectively “global” to the methods in the

visitor object, and can be used to store and pass around
information accumulated by the visit methods

public class TypeCheckVisitor extends NodeVisitor {
public void visit(WhileNode s) { … }
public void visit(IfNode s) { … }
…
private <local state>; // all typecheck visitor methods can read/write this

}

UW CSE P 501 Autumn 2021 H-31

Why is it so complicated?

• What we’re really trying to do: 2-argument
dynamic dispatch
– Pick correct method to execute based on dynamic

types of both the node and the visitor

• But Java and most O-O languages only support
single dispatch
– So we use single dispatch plus overloading to get

the effect we want

UW CSE P 501 Autumn 2021 H-32

References

• For Visitor pattern (and many others)
– Design Patterns: Elements of Reusable Object-

Oriented Software, Gamma, Helm, Johnson, and
Vlissides, Addison-Wesley, 1995 (the classic;
examples are in old C++ and Smalltalk)

– Object-Oriented Design & Patterns, Horstmann,
A-W, 2nd ed, 2006 (uses Java)

• Specific information for MiniJava AST and
visitors in Appel textbook & online

UW CSE P 501 Autumn 2021 H-33

Coming Attractions

• Static Analysis
– Type checking & representation of types
– Non-context-free rules (variables and types must

be declared, etc.)
• Symbol Tables
• & more

• Later, more about compiler IRs when we get
to optimizations

UW CSE P 501 Autumn 2021 H-34

