# CSE P 501 - Compilers 

## LL and Recursive-Descent Parsing

Hal Perkins
Autumn 2021

## Agenda

- Top-Down Parsing
- Predictive Parsers
- LL(k) Grammars
- Recursive Descent
- Grammar Hacking
- Left recursion removal
- Factoring


## Basic Parsing Strategies (1)

- Bottom-up
- Build up tree from leaves
- Shift next input or reduce a handle
- Accept when all input read and reduced to start symbol of the grammar
$-\operatorname{LR}(k)$ and subsets (SLR(k), LALR(k), ...)



## Basic Parsing Strategies (2)

- Top-Down
- Begin at root with start symbol of grammar
- Repeatedly pick a non-terminal and expand
- Success when expanded tree matches input
- LL(k)



## Top-Down Parsing

- Situation: have completed part of a left-most derivation

$$
S=>^{*} w A \alpha=>^{*} w x y
$$

- Basic Step: Pick some production

$$
A::=\beta_{1} \beta_{2} \ldots \beta_{n}
$$

that will properly expand $A$ to match the input

- Want this to be deterministic (i.e., no backtracking)



## Predictive Parsing

- If we are located at some non-terminal $A$, and there are two or more possible productions

$$
\begin{aligned}
& A::=\alpha \\
& A::=\beta
\end{aligned}
$$

we want to make the correct choice by looking at just the next input symbol

- If we can do this, we can build a predictive parser that can perform a top-down parse without backtracking


## Example

- Programming language grammars are often suitable for predictive parsing
- Typical example

$$
\begin{aligned}
\text { stmt }::= & =\text { id }=\exp ; \text { | return exp ; } \\
& \mid \text { if }(\text { exp }) \text { stmt | while }(\exp ) \text { stmt }
\end{aligned}
$$

If the next part of the input begins with the tokens
IF LPAREN ID(x) ...
we should expand stmt to an if-statement

## LL(1) Property

- A grammar has the LL(1) property if, for all non-terminals $A$, if productions $A::=\alpha$ and $A::=\beta$ both appear in the grammar, then it is true that

$\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\varnothing$

(Provided that neither $\alpha$ or $\beta$ is $\varepsilon$ (i.e., empty). If either one is $\varepsilon$ then we need to look at FOLLOW sets. ...)

- If a grammar has the LL(1) property, we can build a predictive parser for it that uses 1-symbol lookahead


## LL(k) Parsers

- An LL(k) parser
- Scans the input Left to right
- Constructs a Leftmost derivation
- Looking ahead at most $\underline{k}$ symbols
- 1-symbol lookahead is enough for many practical programming language grammars
$-L L(k)$ for $k>1$ is rare in practice
- and even if the grammar isn't quite LL(1), it may be close enough that we can pretend it is $\operatorname{LL}(1)$ and cheat a little when it isn't


## Table-Driven LL(k) Parsers

- As with LR(k), a table-driven parser can be constructed from the grammar
- Super-simple example

$$
\begin{aligned}
& \text { 1. } S::=(S) S \\
& \text { 2. } S::=[S] S \\
& \text { 3. } S::=\varepsilon
\end{aligned}
$$

- Table (one row per non-terminal showing which production to apply given the next input symbol)



## LL vs LR (1)

- Tools can automatically generate parsers for both LL(1) and LR(1) grammars
- $\mathrm{LL}(1)$ has to make a decision based on a single non-terminal and the next input symbol
- LR(1) can base the decision on the entire left context (i.e., contents of the stack) as well as the next input symbol


## LL vs LR (2)

$\therefore \mathrm{LR}(1)$ is more powerful than $\mathrm{LL}(1)$

- Includes a larger set of languages
$\therefore$ (editorial opinion) If you're going to use a
tool-generated parser, might as well use LR
- But there are some very good LL parser tools out there (ANTLR, JavaCC, ...) that might win for other reasons (documentation, IDE support, integrated AST generation, local culture/politics/economics etc.)


## Recursive-Descent Parsers

- One big advantage of top-down parsing is that it is easy to implement by hand
- And even if you use automatic tools, the code may be easier to follow and debug
- Key idea: write one function (method, procedure) corresponding to each major nonterminal in the grammar
- Each of these functions is responsible for matching its non-terminal with the next part of the input


## Example: Statements

Grammar<br>stmt ::=id=exp;<br>| return exp;<br>if ( exp ) stmt<br>| while ( exp ) stmt

## Example (more statements)

```
// parse while (exp) stmt
void whileStmt() {
    // skip "while" "("
    skipToken(WHILE);
    skipToken(LPAREN);
    // parse condition
    exp();
    // skip ")"
    skipToken(RPAREN);
```

    // parse stmt
    stmt();
    \}

```
// parse return exp ;
void returnStmt() {
    // skip "return"
    skipToken(RETURN);
    // parse expression
    exp();
    // skip ";"
    skipToken(SCOLON);
}
// aux method: advance past expected token
void skipToken(Token expected) {
    if (nextToken == expected)
        getNextToken();
    else error("token" + expected + "expected");
}
```


## Recursive-Descent Recognizer

- Easy!
- Pattern of method calls traces leftmost derivation in parse tree
- Examples here only handle valid programs and choke on errors. Real parsers need:
- Better error recovery (don't get stuck on bad token)
- Often: skip input until something in the FOLLOW set of the nonterminal being expanded is reached
- Semantic checks (declarations, type checking, ...)
- Some sort of processing after recognizing (build AST, 1-pass code generation, ...)


## Invariant for Parser Functions

- The parser functions need to agree on where they are in the input
- Useful invariant: When a parser function is called, the current token (next unprocessed piece of the input) is the token that begins the expanded nonterminal being parsed
- Corollary: when a parser function is done, it must have completely consumed the input correspond to that nonterminal


## Possible Problems

- Two common problems for recursive-descent (and LL(1)) parsers
- Left recursion (e.g., $E::=E+T \mid$...)
- Common prefixes on the right side of productions


## Left Recursion Problem

Grammar rule
expr ::= expr + term
| term

Code
// parse expr ::= ...
void expr() \{
expr();
if (current token is PLUS) \{ skipToken(PLUS); term();
\}
And the bug is????
\}

## Left Recursion Problem

- If we code up a left-recursive rule as-is, we get an infinite recursion
- Non-solution: replace with a right-recursive rule
expr ::= term + expr | term
- Why isn't this the right thing to do?


## Formal Left Recursion Solution

- Rewrite using right recursion and a new non-terminal
- Original: expr ::= expr + term | term
- New
expr ::= term exprtail
exprtail ::=+ term exprtail | $\varepsilon$
- Properties
- No infinite recursion if coded up directly
- Maintains required left associatively (if you handle things correctly in the semantic actions)


## Another Way to Look at This

- Observe that
expr ::= expr + term | term
generates the sequence
(... ((term + term) + term) + ...) + term
- We can sugar the original rule to reflect this
expr ::= term $\{+ \text { term }\}^{*}$
- This leads directly to parser code
- Just be sure to do the correct thing to handle associativity as the terms are parsed


## Code for Expressions (1)

```
// parse
// expr ::= term {+ term }*
void expr() {
    term();
    while (next symbol is PLUS) {
        skipToken(PLUS);
        term();
    }
}
```

// parse
// term ::= factor \{ * factor \}*
void term() \{
factor();
while (next symbol is TIMES) \{
skipToken(TIMES);
factor()
\}
\}

## Code for Expressions (2)

| // parse |  |
| :--- | :--- |
| // factor ::= int \\| id \| ( expr ) | case ID: |
| void factor() \{ | process identifier; |
|  | getNextToken(); |
| switch(nextToken) \{ | break; |
|  | case LPAREN: |
| process int constant; | skipToken(LPAREN); |
| getNextToken(); | expr(); |
| break; | skipToken(RPAREN); |
| $\ldots$ | $\}$ |

## What About Indirect Left Recursion?

- A grammar might have a derivation that leads to a left recursion

$$
A=>\beta_{1}=>^{*} \beta_{n}=>A \gamma
$$

- Solution: transform the grammar to one where all productions are either

$$
\begin{array}{ll}
A::=a \alpha & \text { - i.e., starts with a terminal symbol, or } \\
A::=A \alpha & \text { - i.e., direct left recursion }
\end{array}
$$

then use formal left-recursion removal to eliminate all direct left recursions

## Eliminating Indirect Left Recursion

- Basic idea: Rewrite all productions $A$ ::= $B$... where $A$ and $B$ are different non-terminals by using all $B::=$... productions to replace the original rhs $B$
- Example: Suppose we have $A::=B \delta, B::=\alpha$, and $B::=\beta$. Replace $A::=B \delta$ with $A::=\alpha \delta$ and $A::=\beta \delta$.
- Need to pick an order to process the nonterminals to avoid re-introducing indirect left recursions. Not complicated, just be systematic.
- Details in any compiler or formal-language textbook


## Second Problem: Left Factoring

- If two rules for a non-terminal have right hand sides that begin with the same symbol, we can't predict which one to use
- Formal solution: Factor the common prefix into a separate production


## Left Factoring Example

- Original grammar

ifStmt ::= if ( expr ) stmt<br>| if ( expr ) stmt else stmt

- Factored grammar
ifStmt ::= if ( expr ) stmt ifTail
ifTail ::= else stmt | $\varepsilon$


## Parsing if Statements

- But it's easiest to just directly code up "else matches closest if" rule
- (If you squint properly this is really just left factoring where the two productions are parsed by a single routine)

```
// parse
// if (expr) stmt [ else stmt ]
void ifStmt() {
    skipToken(IF);
    skipToken(LPAREN);
    expr();
    skipToken(RPAREN);
    stmt();
    if (next symbol is ELSE) {
        skipToken(ELSE);
        stmt();
    }
}
```


## Another Lookahead Problem

- In languages like FORTRAN and Basic, parentheses are used for array subscripts
- A FORTRAN grammar includes something like
factor ::= id ( subscripts ) | id ( arguments ) | ...
- When the parser sees "id (", how can it decide whether this begins an array element reference or a function call?


## Two Ways to Handle id( ... )

- Use the type of id to decide
- Requires declare-before-use restriction if we want to parse in 1 pass; also means parser needs semantic information, not just grammar
- Use a covering grammar
factor ::= id (commaSeparatedList ) | ...
and fix/check later when more information is available (e.g., types)


## Top-Down Parsing Concluded

- Works with a smaller set of grammars than bottom-up, but can be done for most sensible programming language constructs
- Possibly with some grammar refactoring
- And maybe a little cheating (occasional extra lookahead, ...)
- If you need to write a quick-n-dirty parser, recursive descent is often the method of choice
- And some sophisticated hand-written parsers for real languages (e.g., C++) are "based on" LL parsing, but with lots of customizations


## Parsing Concluded

- That's it!
- On to the rest of the compiler
- Coming attractions
- Intermediate representations (ASTs etc.)
- Semantic analysis (including type checking)
- Symbol tables
- \& more...

