
CSE P 501 – Compilers

Parsing & Context-Free Grammars
Hal Perkins

Autumn 2021

UW CSE P 501 Autumn 2021 C-1

Administrivia (1)

• Written HW2 assigned now, due Monday via
gradescope

• New: Saturday office hours via zoom (only), 3-4 pm
– See the course canvas calendar for the actual zoom link

• HW1 solution available next week in class
• Exam reminder: will be 6:30-8:00 pm, 12/2. Locations

TBA, but hoping to do it simultaneously at UW and on
the east side to save an extra commute.
– Rough poll (raise hands J): how many are inclined to take

the exam at Microsoft (open to everyone)? At UW?

UW CSE P 501 Autumn 2021 C-2

Administrivia (2)
• Project partner signup: please find a partner and fill

out the signup form by noon tomorrow if not done yet
(one form per group please)
– Who’s still looking for a partner?
– Watch for spam from CSE GitLab as repos are set up (will

also post announcement to class once starter code is
pushed)

• First part of project – scanner – out later tomorrow,
due a week from Thursday
– Programming is fairly simple; this is the infrastructure

shakedown cruise + read language/project info carefully
– Short demo after break tonight

UW CSE P 501 Autumn 2021 C-3

Agenda for Today

• Parsing overview
• Context free grammars
• Ambiguous grammars
• Reading: Cooper & Torczon 3.1-3.2
– Dragon book is also particularly strong on

grammars and languages

UW CSE P 501 Autumn 2021 C-4

Syntactic Analysis / Parsing

• Goal: Convert token stream to an abstract
syntax tree

• Abstract syntax tree (AST):
– Captures the structural features of the program
– Primary data structure for next phases of

compilation
• Plan
– Study how context-free grammars specify syntax
– Study algorithms for parsing and building ASTs

UW CSE P 501 Autumn 2021 C-5

Concrete vs Abstract Syntax

• The full parse tree includes all of the derivation details. The
Abstract Syntax Tree (AST) omits information that is necessary
to parse the input, but not needed for later processing

• Example:
Concrete Syntax Abstract Syntax

UW CSE P 501 Autumn 2021 C-6

expr
expr expr

id int

a + 1

+

id:a int:1

Context-free Grammars
• The syntax of most programming languages can be

specified by a context-free grammar (CGF)
• Compromise between

– REs: can’t nest or specify recursive structure
– General grammars: too powerful, undecidable

• Context-free grammars are a sweet spot
– Powerful enough to describe nesting, recursion
– Easy to parse; restrictions on general CFGs improve speed

• Not perfect
– Cannot capture semantics, like “must declare every

variable” or “must be int” – requires later semantic pass
– Can be ambiguous

UW CSE P 501 Autumn 2021 C-7

Derivations and Parse Trees

• Derivation: a sequence of expansion steps,
beginning with a start symbol and leading to a
sequence of terminals

• Parsing: inverse of derivation
– Given a sequence of terminals (aka tokens)

recover (discover) the nonterminals and structure,
i.e., the parse (concrete syntax) tree

UW CSE P 501 Autumn 2021 C-8

Old Example

a = 1 ; if (a + 1) b = 2 ;

UW CSE P 501 Autumn 2021 9

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

program

program

statement
statement

ifStmt

assignStmt
statement

expr assignStmt

expr expr

intid

id expr

int

id expr

int

G

w

Parsing

• Parsing: Given a grammar G and a sentence w
in L(G), traverse the derivation (parse tree) for
w in some standard order and do something
useful at each node
– The tree might not be produced explicitly, but the

control flow of the parser will correspond to a
traversal

UW CSE P 501 Autumn 2021 C-10

“Standard Order”

• For practical reasons we want the parser to be
deterministic (no backtracking), and we want
to examine the source program from left to
right.
– (i.e., parse the program in linear time in the order

it appears in the source file)

UW CSE P 501 Autumn 2021 C-11

Common Orderings

• Top-down
– Start with the root
– Traverse the parse tree depth-first, left-to-right

(leftmost derivation)
– LL(k), recursive-descent

• Bottom-up
– Start at leaves and build up to the root

• Effectively a rightmost derivation in reverse(!)
– LR(k) and subsets (LALR(k), SLR(k), etc.)

UW CSE P 501 Autumn 2021 C-12

program

program

statement
statement

ifStmt

assignStmt
statement

expr assignStmt
expr expr

intid

id expr

int
id expr

int

a = 1 ; if (a + 1) b = 2 ;

“Something Useful”

• At each point (node) in the traversal, perform
some semantic action
– Construct nodes of full parse tree (rare)
– Construct abstract syntax tree (AST) (common)
– Construct linear, lower-level representation (often

produced in later phases of production compilers by
traversing initial AST)

– Generate target code on the fly (done in 1-pass
compilers; not common in production compilers)
• Can’t generate great code in one pass, – but useful if you

need a quick ‘n dirty working compiler

UW CSE P 501 Autumn 2021 C-13

Context-Free Grammars

• Formally, a grammar G is a tuple <N,Σ,P,S>
where
– N is a finite set of non-terminal symbols
– Σ is a finite set of terminal symbols (alphabet)
– P is a finite set of productions

• A subset of N × (N È Σ)*

– S is the start symbol, a distinguished element of N
• If not specified otherwise, this is usually assumed to be

the non-terminal on the left of the first production

UW CSE P 501 Autumn 2021 C-14

Standard Notations

a, b, c elements of Σ
w, x, y, z elements of Σ*
A, B, C elements of N
X, Y, Z elements of N∪Σ
a, b, g elements of (N∪Σ)*
A ➝ a or A ::= a if <A, a> ∈ P

UW CSE P 501 Autumn 2021 C-15

Derivation Relations (1)

• a A g => a b g iff A ::= b in P
– derives

• A =>* a if there is a chain of productions
starting with A that generates a
– transitive closure

UW CSE P 501 Autumn 2021 C-16

Derivation Relations (2)

• w A g =>lm w b g iff A ::= b in P
– derives leftmost

• a A w =>rm a b w iff A ::= b in P
– derives rightmost

• We will only be interested in leftmost and
rightmost derivations – not random orderings

UW CSE P 501 Autumn 2021 C-17

Languages

• For A in N, L(A) = { w | A =>* w }
• If S is the start symbol of grammar G, define

L(G) = L(S)
– Nonterminal on left of first rule is taken to be the

start symbol if one is not specified explicitly

UW CSE P 501 Autumn 2021 C-18

Reduced Grammars

• Grammar G is reduced iff for every
production A ::= a in G there is a derivation

S =>* x A z => x a z =>* xyz
– i.e., no production is useless

• Convention: we will use only reduced
grammars
– There are algorithms for pruning useless

productions from grammars – see a formal
language or compiler book for details

UW CSE P 501 Autumn 2021 C-19

Ambiguity

• Grammar G is unambiguous iff every w in L(G)
has a unique leftmost (or rightmost) derivation
– Fact: unique leftmost or unique rightmost implies the

other

• A grammar without this property is ambiguous
– But other grammars that generate the same language

may be unambiguous, i.e., ambiguity is a property of
grammars, not languages

• We need unambiguous grammars for parsing

UW CSE P 501 Autumn 2021 C-20

Example: Ambiguous Grammar for
Arithmetic Expressions

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
• Exercise: show that this is ambiguous
– How? Show two different leftmost or rightmost

derivations for the same string
– Equivalently: show two different parse trees for

the same string

UW CSE P 501 Autumn 2021 C-21

Example (cont)

• Give a leftmost derivation of 2+3*4 and show
the parse tree

UW CSE P 501 Autumn 2021 C-22

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Example (cont)

• Give a leftmost derivation of 2+3*4 and show
the parse tree

UW CSE P 501 Autumn 2021 C-23

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

expr

int

2

expr expr

+

expr expr

*

int int

3 4

Example (cont)

• Give a different leftmost derivation of
2+3*4 and show the parse tree

UW CSE P 501 Autumn 2021 C-24

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Example (cont)

• Give a different leftmost derivation of
2+3*4 and show the parse tree

UW CSE P 501 Autumn 2021 C-25

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

expr

int

4

exprexpr

*

expr expr

+

int int

2 3

expr

int

2

expr expr

+

expr expr

*

int int

3 4

(2+3) * 4 2 + (3* 4)

Another example

• Give two different derivations of 5+6+7

UW CSE P 501 Autumn 2021 C-26

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Another example

• Give two different derivations of 5+6+7

UW CSE P 501 Autumn 2021 C-27

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

expr

int

5

expr expr

+

expr expr

+

int int

6 7

expr

int

7

exprexpr

+

expr expr

+

int int

5 6

5 + (6+7) (5+6) + 7

What’s going on here?

• The grammar has no notion of precedence or
associatively

• Traditional solution
– Create a non-terminal for each level of precedence
– Isolate the corresponding part of the grammar
– Force the parser to recognize higher precedence

subexpressions first
– Use left- or right-recursion for left- or right-associative

operators (non-associative operators are not
recursive)

UW CSE P 501 Autumn 2021 C-28

Classic Expression Grammar
(first used in ALGOL 60)

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

UW CSE P 501 Autumn 2021 C-29

Check:
Derive 2 + 3 * 4

UW CSE P 501 Autumn 2021 C-30

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Check:
Derive 2 + 3 * 4

UW CSE P 501 Autumn 2021 C-31

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

expr

int

2

expr term

+

term factor

*

factor

int
int

4

factor

term

3

Separation of non-
terminals enforces
precedence

Check:
Derive 5 + 6 + 7

UW CSE P 501 Autumn 2021 C-32

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

expr

+

term

Check:
Derive 5 + 6 + 7

Note interaction
between left- vs
right-recursive
rules and resulting
associativity

UW CSE P 501 Autumn 2021 C-33

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

expr

int

5

factor

int
factor

term

7

factor

int

6 +

termexpr

Check:
Derive 5 + (6 + 7)

(left as an exercise J)

UW CSE P 501 Autumn 2021 C-34

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Another Classic Example

• Grammar for conditional statements
stmt ::= if (expr) stmt

| if (expr) stmt else stmt

(This is the “dangling else” problem found in many, many
grammars for languages beginning with Algol 60)

– Exercise: show that this is ambiguous
• How?

UW CSE P 501 Autumn 2021 C-35

One Derivation

if (cond) if (cond) stmt else stmt

UW CSE P 501 Autumn 2021 C-36

stmt ::= if (cond) stmt
| if (cond) stmt else stmt

One Derivation

if (cond) if (cond) stmt else stmt

UW CSE P 501 Autumn 2021 C-37

stmt ::= if (cond) stmt
| if (cond) stmt else stmt

stmt

stmt

if (cond)
if (cond)

stmt
else

stmt

Another Derivation

if (cond) if (cond) stmt else stmt

UW CSE P 501 Autumn 2021 C-38

stmt ::= if (cond) stmt
| if (cond) stmt else stmt

Another Derivation

if (cond) if (cond) stmt else stmt

UW CSE P 501 Autumn 2021 C-39

stmt ::= if (cond) stmt
| if (cond) stmt else stmt

stmt

stmt

if (cond)
if (cond)

stmt
else

stmt

Solving “if” Ambiguity

• Fix the grammar to separate if statements
with else clause and if statements with no else
– Done in Java reference grammar
– Adds lots of non-terminals

• or, Change the language
– But it’d better be ok to do this – you need to

“own” the language or get permission from owner
• or, Use some ad-hoc rule in the parser
– “else matches closest unpaired if”

UW CSE P 501 Autumn 2021 C-40

Resolving Ambiguity with Grammar (1)

Stmt ::= MatchedStmt | UnmatchedStmt
MatchedStmt ::= ... |

if (Expr) MatchedStmt else MatchedStmt
UnmatchedStmt ::= … |

if (Expr) Stmt |
if (Expr) MatchedStmt else UnmatchedStmt

– formal, no additional rules beyond syntax
– can be more obscure than original grammar

UW CSE P 501 Autumn 2021 C-41

Check

(exercise J)

if (cond) if (cond) stmt else stmt

UW CSE P 501 Autumn 2021 C-42

Stmt ::= MatchedStmt | UnmatchedStmt
MatchedStmt ::= ... |

if (Expr) MatchedStmt else MatchedStmt
UnmatchedStmt ::= if (Expr) Stmt |

if (Expr) MatchedStmt else UnmatchedStmt

Resolving Ambiguity with Grammar (2)

• If you can (re-)design the language, just avoid the
problem entirely

Stmt ::= ... |
if Expr then Stmt end |
if Expr then Stmt else Stmt end

– formal, clear, elegant
– allows sequence of Stmts in then and else branches, no { }

needed
– extra end required for every if

(But maybe this is a good idea anyway?)

UW CSE P 501 Autumn 2021 C-43

Parser Tools and Operators

• Most parser tools can cope with ambiguous
grammars
– Makes life simpler if used with discipline

• Usually can specify precedence & associativity
– Allows simpler, ambiguous grammar with fewer

nonterminals as basis for parser – let the tool handle
the details (but only when it makes sense)
• (i.e., expr ::= expr+expr | expr*expr | … with assoc. &

precedence declarations can be the best solution)

• Take advantage of this to simplify the grammar
when using parser-generator tools

UW CSE P 501 Autumn 2021 C-44

Parser Tools and Ambiguous
Grammars
• Possible rules for resolving other problems:
– Earlier productions in the grammar preferred to

later ones (danger here if parser input changed)
– Longest match used if there is a choice (good

solution for dangling if and similar things)
• Parser tools normally allow for this
– But be sure that what the tool does is really what

you want
• And that it’s part of the permanent tool spec, so that v2

won’t do something different (that you don’t want!)

UW CSE P 501 Autumn 2021 C-45

Coming Attractions

• Next topic: LR parsing
– Continue reading ch. 3

UW CSE P 501 Autumn 2021 C-46

