
 CSE P 501 Exam 3/3/16 Sample Solution

 Page 1 of 11

Question 1. (10 points) Regular expressions. (a) (5 points) Give a regular expression
that generates strings representing currency amounts formatted as follows: each string
starts with the character ‘$’ followed by comma-separated groups of decimal digits
followed by a ‘.’ and two decimal digits. Each group of digits to the left of the decimal
point consists of three digits except for the leftmost one, which might only have one or
two digits. Examples: $0.00, $12,345.67, $0,000,000.00. Strings that are not in this set:
$.00 (no digit to the left of ‘.’), $1234.56 (no comma between 1 and 2), $0 (no ‘.’
followed by two digits), $1.5 (only one digit following the ‘.’), $12,34,567.89 (only two
digits ‘34’ between two commas), $,123.45 (no digit to the left of the comma).

Ground rules (the fine print): You may only use the basic operations of concatenation, choice (|),
and repetition (*) plus the derived operators ? and +, and simple character classes like [abc0-
9] and [^a-z]. You may use abbreviations like vowels = [aeiou]. You may not use
more complex operators found in various software tools that handle extended regular expressions
and should not use ‘\’ or other escape characters.

d = [0-9]

$ d d? d? (, d d d)* . d d

(b) (5 points) Draw a DFA that accepts currency amounts as defined above.

d" d" d" ," d" d" d" ." d" d"

,"
,"

."
."
."

,"

$"

 CSE P 501 Exam 3/3/16 Sample Solution

 Page 2 of 11

Question 2. (10 points) CFGs and ambiguity. Consider the following grammar that
generates all sequences of balanced parentheses, including the empty string. Examples:
(), (()), (())((())), ()()(), etc.

S ::= (S) | S S | ε

(a) (5 points) Show that this grammar is ambiguous.

Here are two distinct leftmost derivations of () :

S => S S => (S) S => () S => ()

S => (S) => ()

It would, of course, also be fine to show the ambiguity by drawing two structurally
different parse trees for the same sentence or use rightmost derivations. There are
many other possible examples.

(b) (5 points) Give an unambiguous grammar that generates the same set of strings as the
original grammar.

One possibility:

S ::= (S) S | ε

 CSE P 501 Exam 3/3/16 Sample Solution

 Page 3 of 11

Question 3. (18 points) The more-or-less-same-old LR-parsing question. Consider the
following grammar, which is meant to represent expressions with optional parentheses
and type casts.

0. exp' ::= exp $
1. exp::= id
2. exp::= (exp)
3. exp::= (type) exp
4. type ::= id

(a) (10 points) Draw the LR(0) state machine for this grammar. (You do not need to
include the table with shift/reduce and goto actions, although you can write that out later
if you find it useful to answer other parts of the question.)

(continued next page)

exp’"::="."exp$$"
exp$::="."id"
exp$::="."("exp$)"
exp$::="."("type")"exp"

exp’"::="exp".$$"

exp$::="id"."

exp$::="("."exp$)"
exp$::="("."type")"exp$
exp$::="."id"
exp$::="."("exp$)"
exp$::="."("type")"exp"
type"::="."id"

exp$::="("exp$.$)"

exp$::="("type".")"exp$

exp$::="id"."
type"::="id"."

*"

exp$::="("exp$)"."

exp$::="("type")"."exp"
exp$::="."id"
exp$::="."("exp$)"
exp$::="."("type")"exp"

exp$

id"

exp$

type$

id"

)"

)"

exp$::="("type")"exp$."

exp$$

("

("

id"

("

 CSE P 501 Exam 3/3/16 Sample Solution

 Page 4 of 11

Question 3. (cont.) Grammar repeated for reference

0. exp' ::= exp $
1. exp::= id
2. exp::= (exp)
3. exp::= (type) exp
4. type ::= id

(b) (4 points) Compute First, Follow, and Nullable for each of the non-terminals in this
grammar.

 Nullable First Follow
exp' no id (
exp no id () $
type no id)

(c) (2 points) Is this grammar LR(0)? Why or why not?

No. There is a reduce-reduce conflict in the state marked *.

(d) (2 points) Is this grammar SLR? Why or why not?

No. The SLR one-symbol lookahead can sometimes be used to resolve shift-reduce
conflicts, but it cannot resolve reduce-reduce conflicts.

 CSE P 501 Exam 3/3/16 Sample Solution

 Page 5 of 11

Question 4. (8 points) (LL parsing/grammars) Consider the following grammar:

0. S' ::= S $
1. S ::= w D y
2. D ::= D x
3. D ::= z

Is this a LL(1) grammar suitable for top-down predictive parsing? If yes, give a specific
technical justification for your answer. If not, give a grammar that generates the same
language and is LL(1) if that is possible. If no LL(1) grammar can generate the same
language produced by the original grammar, give an explanation of why this is not
possible.

No. The right-hand sides of productions 2 and 3 have overlapping FIRST sets.
FIRST(D x) and FIRST(z) both contain z.

A fix is to get rid of the direct left recursion in rule 2, giving a grammar like the
following:

0. S' ::= S $
1. S ::= w D y
2. D ::= z D'
3. D' ::= x D' | ε

 CSE P 501 Exam 3/3/16 Sample Solution

 Page 6 of 11

Question 5. (10 points) Abstract syntax and semantics. Suppose we have the following
assignment statement in a MiniJava program:

 x = this.m(17, p&&q);

(a) (5 points) Draw an abstract syntax tree (AST) for this statement in the blank space at
the bottom of the page. You are not expected to remember the exact names of the classes
or node types in the MiniJava AST package or your project code, but your AST should
have the appropriate level of detail that would be found there and should use reasonable
names for the nodes if you don’t remember the specific MiniJava ones.

(b) (5 points) After you have drawn your AST, annotate it by outlining the semantic and
type checks that would need to be done at each point in the AST to verify that this
statement is a semantically as well as syntactically legal MiniJava statement.

Answers that had basically this structure received full credit even if the exact details
were different.

=	

id:x	 call	

•	

id:m	this	

params	

exp	 exp	

int:17	 &&	

id:p	 id:q	

check:	ids	declared	
and	in	scope	

check:	class	has	
field	named	m	

check:	lhs	is	func<on	with	2	parameters	
and	argument	types	are	assignment-	
compa<ble	with	parameter	types	

check:	operand	
types	are	both	
boolean	

check:	lhs	is	a	loca<on	and	type	
of	rhs	is	assignment	compa<ble	
with	type	of	lhs	

 CSE P 501 Exam 3/3/16 Sample Solution

 Page 7 of 11

Question 6. (18 points) A little x86-64 hacking. A clever way to implement a function
to calculate n! is as follows:

int fact(int n) {
 return factaux(n, 1);
}

// return n! * acc
int factaux(int n, int acc) {
 if (n < 2)
 return acc;
 else
 return factaux(n-1, n*acc);
}

(For programming language geeks – yes, this is a tail-recursive version of the factorial
function. Feel free to ignore this observation and just get on with the question.)

Your job is to translate these two functions into x86-64 assembly language using the
gcc/AT&T/Linux assembler syntax and the x86-64 register and function call conventions
that we have used in our code examples.

You must implement the code for fact exactly as given using the standard x86-64
function call and stack frame conventions. But, if you want, you can take advantage of
the observation that factaux is basically implementing a loop, where each time the
function calls itself recursively it simply goes back to the beginning of factaux after
updating the parameters n and acc to be n-1 and n*acc respectively. So, if you want,
you can implement factaux using a loop, or you can implement the recursive function
calls as written, or otherwise hand-optimize the code – whichever is easiest and fastest
during an exam.

We suggest you use the remainder of this page for scratch work, and then write the actual
code on the next page.

(write your code on next page – feel free to detach this page while you’re working.)

 CSE P 501 Exam 3/3/16 Sample Solution

 Page 8 of 11

Question 6. (cont.) Write your x86-64 versions of fact and factaux below.

fact:
 pushq %rbp # standard prologue
 movq %rsp, %rbp
 movq $1, %rsi # call factaux -- set acc=1
 call factaux # (n in %rdi already)
 movq %rbp, %rsp # exit with factaux result in %rax
 popq %rbp
 ret

factaux:
 pushq %rbp # standard prologue
 movq %rsp, %rbp
 movq %rsi, %rax # copy acc to %rax
 cmpq $1, %rdi # if n <= 1 return acc
 jle exit
 imulq %rdi, %rsi # acc = n*acc
 subq $1, %rdi # n = n - 1
 call factaux # call factaux(n,acc) recursively
exit: # return with result in %rax
 movq %rbp, %rsp
 popq %rbp
 ret

There are, of course, many possible solutions, particularly for factaux. This one
is similar to the code produced by gcc with no significant optimizations enabled.

 CSE P 501 Exam 3/3/16 Sample Solution

 Page 9 of 11

The next two questions concern the following control flow graph:

Question 7. (12 points) Dataflow analysis. Recall from lecture that live-variable analysis
determines for each point p in a program which variables are live at that point. A live
variable v at point p is one where there exists a path from point p to another point q where
v is used without v being redefined anywhere along that path. The sets for the live
variable dataflow problem are:

 use[b] = variables used in block b before any definition
 def[b] = variables defined in block b and not later killed in b
 in[b] = variables live on entry to block b
 out[b] = variables live on exit from block b

The dataflow equations for live variables are

 in[b] = use[b] ∪ (out[b] – def[b])
 out[b] = ∪ s ∈ succ[b] in[s]

On the next page, calculate the use and def sets for each block, then solve for the in and
out sets of each block. A table is provided with room for the use and def sets for each
block and up to three iterations of the main algorithm to solve for the in and out sets. If
the algorithm does not converge after three iterations, use additional space until it does.

Hint: remember that live-variables is a backwards dataflow problem, so the algorithm
should update the sets from the end of the flowgraph towards the beginning to reduce the
total amount of work needed.

You may remove this page for reference while working these problems.

x"="a"
y"="b"

x"="x"+"1" z"="x"+"y"
y"="17"

x"="y"+"z"

B0"

B1" B2"

B3"

 CSE P 501 Exam 3/3/16 Sample Solution

 Page 10 of 11

Question 7. (cont.) Write the results of calculations for live variables in the chart below.
Use the rest of the page for additional space if needed.

Block use def out (1) in (1) out (2) in (2) out (3) in (3)

B3 y, z x --- y, z --- y, z

B2 x, y y, z y, z x, y y, z x, y

B1 x x x, y x, y x, y x, y

B0 [a, b]* x, y x, y --- x, y ---

*B0 uses a and b, which are assumed to be input variables, and it is fine to omit
them from the analysis.

There are no changes in the second round, so the algorithm terminates after two
rounds and the remaining columns in the table are not needed.

 CSE P 501 Exam 3/3/16 Sample Solution

 Page 11 of 11

Question 8. Dominators and SSA. (14 points) (a) (6 points) Using the same control flow
graph from the previous problem, complete the following table. List for each node: the
nodes that dominate it, the node that is its immediate dominator (if any), and the nodes
that are in its dominance frontier (if any):

Node Dominators IDOM Dominance Frontier

B0 B0 --- B0

B1 B0, B1 B0 B2

B2 B0, B2 B0 B0

B3 B0, B2, B3 B2 ---

(b) (8 points) Now redraw the flowgraph in SSA (static single-assignment) form. You
need to insert appropriate Φ-functions where they are required and add appropriate
version numbers to all variables. Do not insert Φ-functions at the beginning of a block if
they clearly would not be appropriate there, but we will not penalize extra Φ-functions
elsewhere if they are inserted correctly. You do not need to trace the steps of any
particular algorithm to place the Φ-functions as long as you add them to the flowgraph in
appropriate places. Additional space is provided on the next page if needed.

Note: We did not make any deductions if the Φ-functions in B0 were omitted. The
dominator function criteria places Φ-functions there, but since all of those
assignments are dead because the original variables are reassigned before use, these
statements would have no effect in the final program.

x1#=#Φ(x0,#x4)#
y1#=#Φ(y0,#y3)#
z1#=#Φ(z0,#z2)#
x2"="a"
y2"="b"

x3"="x2"+"1"
x4#=#Φ(x2,#x3)#
z2"="x4"+"y2"
y3"="17"

x5"="y3"+"z2"

B0"

B1"
B2"

B3"

