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Threads and shared memory

• Multithreading lets multiple threads run 
concurrently
– Each thread has its own local variables (stack and 

registers), but...
– All threads share one memory 
• globals / statics + heap objects

– Use memory to communicate J or interfere L

• Common to exploit multicore hardware
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Naïve view

The following almost works
1. Define your programming language “as usual”
– Don’t think about > 1 thread

2. Compile the code like you’ve learned all quarter
– Don’t think about > 1 thread

3. Provide a run-time library that provides threading
– Create thread
– Create/acquire/release mutual-exclusion locks
– Etc.

4. Profit
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This lecture on one slide

The naïve approach, followed for decades, is fatally flawed
• Compiler must know threads & shared-memory exist
– Else it may perform incorrect optimizations

• Programmer must know threads & shared-memory exist
– The natural definition (“sequential consistency”) of how 

shared-memory works (“the memory model”) is not tractably 
implementable by compilers or hardware

– So we have less-natural weaker definitions to make language 
implementation easier.  Usually defined so that:
• If programmers avoid data races then they can ignore this
• Most compiler optimizations remain legal
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Safety of optimization

• The standard rule for optimization:
If, in some program context, the result of evaluating e1 
cannot be distinguished from the result of evaluating e2, 
the compiler can substitute e2 for e1 in that context

• Now: Three gotchas that arise only with multiple 
threads and shared memory
– Examples use global variables to keep them short; 

same issues arise with shared objects in the heap
– Examples are illegal optimizations in, e.g., Java
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Gotcha #1: Speculation
(Probably the least common / well-motivated, but the 
easiest to understand)

// x and y are globals, initially 0

void foo() {
++x;
if(y==1)
++x;

}
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Gotcha #1: Speculation

// x and y are globals, initially 0

void foo() {  optimized void foo() {   
++x;        ========> x += 2;
if(y==1)                   if(y!=1) 
++x;                       --x;

}                          }
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Before optimization

// x and y are globals, initially 0

Thread 1 Thread 2

void foo() {       void bar() {   
++x;               if(x==2)
if(y==1)             commence_evil();
++x;           }

}                  
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After optimization

// x and y are globals, initially 0

Thread 1 Thread 2

void foo() {       void bar() {   
x += 2;            if(x==2)
if(y!=1)             commence_evil();
--x;           }

}                  
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Recap

So our compiler made a change that:
• Is legal for all single-threaded programs
• Caused execution to “make up” a new value for x

So either:
• Our compiler must not do this (thread-aware)
• Or we must change our language definition to 

allow this (bad idea in this example)
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Gotcha #2:Register promotion
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// x is global, initially 0

void foo(int* a, int n) {     
for(int i=0; i<n; ++i)
x += a[i];

} optimized

=========>
void foo(int* a, int n) {
int reg = x;     
for(int i=0; i<n; ++i)
reg += a[i];

x = reg;
}



Before optimization
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// x is global, initially 0

// Thread 1

void foo(int* a, int n) {
for (int i = 0; i < n; ++i)
x += a[i];

}

// Thread 2

void bar() {
x = 10;
...

}

What happens when n == 0?



After optimization
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// x is global, initially 0

// Thread 1

void foo(int* a, int n) {
int reg = x;
for (int i = 0; i < n; ++i)
reg += a[i];

x = reg;
}

// Thread 2

void bar() {
x = 10;
...

}

What happens (sometimes) when n == 0?



Recap

• In executions where n==0, the compiler 
optimization can “lose an update”

– Original code:  x = 10 is guaranteed for code after 
both threads finish

– Optimized code:  new write of x = 0 creates new 
possible result
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Gotcha #3:Adjacent data
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char arr[4];

void foo() {     
arr[0] = (char)0;
arr[1] = (char)0;
arr[2] = (char)0;

}

Natural assembly for body:
movb $0, _arr
movb $0, _arr+1
movb $0, _arr+2

Assembly with one store:
movl _arr, %eax
andl $0x000000FF, %eax
movl %eax, _arr



Before optimization
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char arr[4];

// Thread 1:
movb $0, _arr
movb $0, _arr+1
movb $0, _arr+2

// Thread 2 
// arr[3] = ‘a’;
movb $98, _arr+3



After optimization
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char arr[4];

// Thread 1:
movl _arr, %eax
andl $0x000000FF, %eax
movl %eax, _arr

// Thread 2
// arr[3] = ‘a’;
movb $98, _arr+3



Recap

The clever compiler is adding the assignment 
“arr[3]=arr[3];”
– That’s fine in single-threaded code

In practice, this is a problem if:
• Your architecture doesn’t have byte-stores
– Leave space between string characters??

• You have bit-fields in C (and no bit-stores)
– C++ specifically allows the “clever” code because 

there is no other way (so programmer must avoid 
simultaneous write to bit-fields in same struct)
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Where are we

• So far have emphasized that the compiler must 
limit itself in order to be correct in the presence 
of threads
– This is CSE P 501 after all

• You should also understand that the programmer
must accept unintuitive language definitions
– Otherwise efficient compiler/hardware  too difficult
– Simple answer: Never write code with a data race
– Must discuss memory-consistency models
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Dekker’s example

• Initially, x==0 && y==0

• What are possible executions?
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Thread 1
x = 1; (a)
r1 = y; (b)

Thread 2
y = 1;   (c)
r2 = x; (d)



Dekker’s example

• Initially, x==0 && y==0

• What are possible executions?
• Consider interleavings of thread 1 & 2:
– abcd, acbd, acdb, cdab, cadb, cabd
– (24 permutations, but need a before b and c before d)
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Thread 1
x = 1;  (a)
r1 = y; (b)

Thread 2
y = 1;  (c)
r2 = x; (d)



Dekker’s example

• Initially, x==0 && y==0

• Can r1 == 0 && r2 == 0 ?
– No interleaving gives this results, but...
– Most hardware will allow it (store buffers)
– Most compilers will allow it

• Why...
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Thread 1
x = 1;
r1 = y;

Thread 2
y = 1;
r2 = x;



Compiler reordering

• Almost every compiler optimization has the 
implicit effect of reordering reads and writes!
– Obvious example: Instruction scheduling
– Less-obvious example: Common-subexpression 

elimination 
x=a+b;
y=a;
z=a+b;   //optimize to z=x

– Replacing with z=x has the effect of moving the store 
to z to before the store to y!
• y could see a later write to a by another thread than z sees
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Sequential consistency

• The interleaving model is called sequential 
consistency and was defined in 1979 by Lamport:
“... the result of any execution is the same as if the 
operations of all the processors were executed in some 
sequential order, and the operations of each individual 
processor appear in this sequence in the order specified 
by its program.”

• But no “real” hardware or compiler implements it
• So we have to tell programmers what they can

assume
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Refined notion

• Guarantee sequential consistency only for 
correctly synchronized programs (Adve)
– Give the programmer rules to follow
– Promise interleaving semantics if rules are obeyed

• Correctly synchronized
– Must be intuitive to programmer
– Must not be restrictive for compiler/hardware
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Data races

• Two operations conflict if they both access a 
memory location and one is a write 

• A execution contains a data race if two adjacent 
operations from two different threads conflict

x = 1; y = 1; r1 = y; r2 = x;

• A program is data-race-free if no sequentially 
consistent execution (i.e., interleaving) has a data 
race
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Correct synchronization

• We call a program correctly synchronized if it is 
data race free

• Basic contract – “The Grand Compromise”:
– If programmers write data-race-free programs, 

implementers will provide sequentially consistent 
semantics

– This is the fundamental property of the Java and 
C++ memory models
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How do we avoid races?

• Mutual exclusion:
– Thread acquires lock before accessing a shared 

variable
– Locks exist to avoid races

• Java’s volatile variables (atomics in C++)
– Data races allowed; compiler can’t reorder
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Thread 1
lock (mutex);
tmp1 = x;
tmp2 = tmp1 + 1;
x = tmp2
unlock (mutex);

Thread 2
lock (mutex);
tmp3 = x;
tmp4 = tmp3 + 1;
x = tmp4
unlock (mutex);



What this means for compilers

• In the absence of synchronization, compilers may 
almost operate as if programs were single-
threaded

• Compilers must respect ordering due to 
synchronization (locks, volatiles, fences, etc.)
– Even if “hidden” inside a function/method call

• Compilers must not introduce data races into 
correctly synchronized code 
– This is why Gotchas #2 and #3 are illegal for 

compilers!
– They add writes that race with the program!
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What happens on a race?
• In C++, undefined semantics

• Valid results:
– r1 == 0 and r2 == 0
– r1 == 0 and r2 == 42
– system(rm –rf /*);

• No such thing as a benign data race in C++!
– Hence Gotcha #1 is legal in C++ because the original program 

had a data race
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Thread 1
x = 1; (a)
r1 = y; (b)

Thread 2
y = 1;  (c)
r2 = x; (d)



Type-safety issues

• In Java, data races cannot violate type safety
– Java promises a measure of security
– Cannot allow data races to be used on purpose by 

untrusted code to open / exploit holes
– Java memory model must provide some 

guarantees even in the presence of races
• Gotcha #1 is illegal in Java; cannot make up values
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Java reality

• The actual “memory model” (what can and can’t 
happen with reads/writes) is very complicated
– Took years by brilliant people and still had problems

• Programmers willing to avoid data races do not 
need to understand the definition
– There is a theorem about the definition that all data-

race free programs behave as in the interleaving 
semantics

• But compiler writers must avoid gotchas
– Very roughly speaking, don’t make up values or 

introduce data races
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This lecture on one slide

The naïve approach, followed for decades, is fatally flawed
• Compiler must know threads & shared-memory exist
– Else it may perform incorrect optimizations

• Programmer must know threads & shared-memory exist
– The natural definition (“sequential consistency”) of how 

shared-memory works (“the memory model”) is not tractably 
implementable by compilers or hardware

– So we have less-natural weaker definitions to make language 
implementation easier.  Usually defined so that:
• If programmers avoid data races then they can ignore this
• Most compiler optimizations remain legal
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