
CSE P 501 – Compilers

Threads and Memory Models
Hal Perkins

Autumn 2019

UW CSE P 501 Autumn 2019 X3-1

References
n Threads Cannot Be Implemented as a Library

Boehm, PLDI 2005

n Foundations of the C++ Concurrency Memory Model
Boehm and Adve, PLDI 2008

n The Java Memory Model
Manson, Pugh, and Adve, POPL 2005

Credits: Earlier versions of lecture by
Vijay Menon, CSE 501, Sp09
Dan Grossman, CSE 401, Wi10

UW CSE P 501 Autumn 2019 X3-2

Threads and shared memory

• Multithreading lets multiple threads run
concurrently
– Each thread has its own local variables (stack and

registers), but...
– All threads share one memory
• globals / statics + heap objects

– Use memory to communicate J or interfere L

• Common to exploit multicore hardware

UW CSE P 501 Autumn 2019 X3-3

Naïve view

The following almost works
1. Define your programming language “as usual”
– Don’t think about > 1 thread

2. Compile the code like you’ve learned all quarter
– Don’t think about > 1 thread

3. Provide a run-time library that provides threading
– Create thread
– Create/acquire/release mutual-exclusion locks
– Etc.

4. Profit

UW CSE P 501 Autumn 2019 X3-4

This lecture on one slide

The naïve approach, followed for decades, is fatally flawed
• Compiler must know threads & shared-memory exist
– Else it may perform incorrect optimizations

• Programmer must know threads & shared-memory exist
– The natural definition (“sequential consistency”) of how

shared-memory works (“the memory model”) is not tractably
implementable by compilers or hardware

– So we have less-natural weaker definitions to make language
implementation easier. Usually defined so that:
• If programmers avoid data races then they can ignore this
• Most compiler optimizations remain legal

UW CSE P 501 Autumn 2019 X3-5

Safety of optimization

• The standard rule for optimization:
If, in some program context, the result of evaluating e1
cannot be distinguished from the result of evaluating e2,
the compiler can substitute e2 for e1 in that context

• Now: Three gotchas that arise only with multiple
threads and shared memory
– Examples use global variables to keep them short;

same issues arise with shared objects in the heap
– Examples are illegal optimizations in, e.g., Java

UW CSE P 501 Autumn 2019 X3-6

Gotcha #1: Speculation
(Probably the least common / well-motivated, but the
easiest to understand)

// x and y are globals, initially 0

void foo() {
++x;
if(y==1)
++x;

}

UW CSE P 501 Autumn 2019 X3-7

Gotcha #1: Speculation

// x and y are globals, initially 0

void foo() { optimized void foo() {
++x; ========> x += 2;
if(y==1) if(y!=1)
++x; --x;

} }

UW CSE P 501 Autumn 2019 X3-8

Before optimization

// x and y are globals, initially 0

Thread 1 Thread 2

void foo() { void bar() {
++x; if(x==2)
if(y==1) commence_evil();
++x; }

}

UW CSE P 501 Autumn 2019 X3-9

After optimization

// x and y are globals, initially 0

Thread 1 Thread 2

void foo() { void bar() {
x += 2; if(x==2)
if(y!=1) commence_evil();
--x; }

}

UW CSE P 501 Autumn 2019 X3-10

Recap

So our compiler made a change that:
• Is legal for all single-threaded programs
• Caused execution to “make up” a new value for x

So either:
• Our compiler must not do this (thread-aware)
• Or we must change our language definition to

allow this (bad idea in this example)

UW CSE P 501 Autumn 2019 X3-11

Gotcha #2:Register promotion

UW CSE P 501 Autumn 2019 X3-12

// x is global, initially 0

void foo(int* a, int n) {
for(int i=0; i<n; ++i)
x += a[i];

} optimized

=========>
void foo(int* a, int n) {
int reg = x;
for(int i=0; i<n; ++i)
reg += a[i];

x = reg;
}

Before optimization

UW CSE P 501 Autumn 2019 X3-13

// x is global, initially 0

// Thread 1

void foo(int* a, int n) {
for (int i = 0; i < n; ++i)
x += a[i];

}

// Thread 2

void bar() {
x = 10;
...

}

What happens when n == 0?

After optimization

UW CSE P 501 Autumn 2019 X3-14

// x is global, initially 0

// Thread 1

void foo(int* a, int n) {
int reg = x;
for (int i = 0; i < n; ++i)
reg += a[i];

x = reg;
}

// Thread 2

void bar() {
x = 10;
...

}

What happens (sometimes) when n == 0?

Recap

• In executions where n==0, the compiler
optimization can “lose an update”

– Original code: x = 10 is guaranteed for code after
both threads finish

– Optimized code: new write of x = 0 creates new
possible result

UW CSE P 501 Autumn 2019 X3-15

Gotcha #3:Adjacent data

UW CSE P 501 Autumn 2019 X3-16

char arr[4];

void foo() {
arr[0] = (char)0;
arr[1] = (char)0;
arr[2] = (char)0;

}

Natural assembly for body:
movb $0, _arr
movb $0, _arr+1
movb $0, _arr+2

Assembly with one store:
movl _arr, %eax
andl $0x000000FF, %eax
movl %eax, _arr

Before optimization

UW CSE P 501 Autumn 2019 X3-17

char arr[4];

// Thread 1:
movb $0, _arr
movb $0, _arr+1
movb $0, _arr+2

// Thread 2
// arr[3] = ‘a’;
movb $98, _arr+3

After optimization

UW CSE P 501 Autumn 2019 X3-18

char arr[4];

// Thread 1:
movl _arr, %eax
andl $0x000000FF, %eax
movl %eax, _arr

// Thread 2
// arr[3] = ‘a’;
movb $98, _arr+3

Recap

The clever compiler is adding the assignment
“arr[3]=arr[3];”
– That’s fine in single-threaded code

In practice, this is a problem if:
• Your architecture doesn’t have byte-stores
– Leave space between string characters??

• You have bit-fields in C (and no bit-stores)
– C++ specifically allows the “clever” code because

there is no other way (so programmer must avoid
simultaneous write to bit-fields in same struct)

UW CSE P 501 Autumn 2019 X3-19

Where are we

• So far have emphasized that the compiler must
limit itself in order to be correct in the presence
of threads
– This is CSE P 501 after all

• You should also understand that the programmer
must accept unintuitive language definitions
– Otherwise efficient compiler/hardware too difficult
– Simple answer: Never write code with a data race
– Must discuss memory-consistency models

UW CSE P 501 Autumn 2019 X3-20

Dekker’s example

• Initially, x==0 && y==0

• What are possible executions?

UW CSE P 501 Autumn 2019 X3-21

Thread 1
x = 1; (a)
r1 = y; (b)

Thread 2
y = 1; (c)
r2 = x; (d)

Dekker’s example

• Initially, x==0 && y==0

• What are possible executions?
• Consider interleavings of thread 1 & 2:
– abcd, acbd, acdb, cdab, cadb, cabd
– (24 permutations, but need a before b and c before d)

UW CSE P 501 Autumn 2019 X3-22

Thread 1
x = 1; (a)
r1 = y; (b)

Thread 2
y = 1; (c)
r2 = x; (d)

Dekker’s example

• Initially, x==0 && y==0

• Can r1 == 0 && r2 == 0 ?
– No interleaving gives this results, but...
– Most hardware will allow it (store buffers)
– Most compilers will allow it

• Why...

UW CSE P 501 Autumn 2019 X3-23

Thread 1
x = 1;
r1 = y;

Thread 2
y = 1;
r2 = x;

Compiler reordering

• Almost every compiler optimization has the
implicit effect of reordering reads and writes!
– Obvious example: Instruction scheduling
– Less-obvious example: Common-subexpression

elimination
x=a+b;
y=a;
z=a+b; //optimize to z=x

– Replacing with z=x has the effect of moving the store
to z to before the store to y!
• y could see a later write to a by another thread than z sees

UW CSE P 501 Autumn 2019 X3-24

Sequential consistency

• The interleaving model is called sequential
consistency and was defined in 1979 by Lamport:
“... the result of any execution is the same as if the
operations of all the processors were executed in some
sequential order, and the operations of each individual
processor appear in this sequence in the order specified
by its program.”

• But no “real” hardware or compiler implements it
• So we have to tell programmers what they can

assume

UW CSE P 501 Autumn 2019 X3-25

Refined notion

• Guarantee sequential consistency only for
correctly synchronized programs (Adve)
– Give the programmer rules to follow
– Promise interleaving semantics if rules are obeyed

• Correctly synchronized
– Must be intuitive to programmer
– Must not be restrictive for compiler/hardware

UW CSE P 501 Autumn 2019 X3-26

Data races

• Two operations conflict if they both access a
memory location and one is a write

• A execution contains a data race if two adjacent
operations from two different threads conflict

x = 1; y = 1; r1 = y; r2 = x;

• A program is data-race-free if no sequentially
consistent execution (i.e., interleaving) has a data
race

UW CSE P 501 Autumn 2019 X3-27

Correct synchronization

• We call a program correctly synchronized if it is
data race free

• Basic contract – “The Grand Compromise”:
– If programmers write data-race-free programs,

implementers will provide sequentially consistent
semantics

– This is the fundamental property of the Java and
C++ memory models

UW CSE P 501 Autumn 2019 X3-28

How do we avoid races?

• Mutual exclusion:
– Thread acquires lock before accessing a shared

variable
– Locks exist to avoid races

• Java’s volatile variables (atomics in C++)
– Data races allowed; compiler can’t reorder

UW CSE P 501 Autumn 2019 X3-29

Thread 1
lock (mutex);
tmp1 = x;
tmp2 = tmp1 + 1;
x = tmp2
unlock (mutex);

Thread 2
lock (mutex);
tmp3 = x;
tmp4 = tmp3 + 1;
x = tmp4
unlock (mutex);

What this means for compilers

• In the absence of synchronization, compilers may
almost operate as if programs were single-
threaded

• Compilers must respect ordering due to
synchronization (locks, volatiles, fences, etc.)
– Even if “hidden” inside a function/method call

• Compilers must not introduce data races into
correctly synchronized code
– This is why Gotchas #2 and #3 are illegal for

compilers!
– They add writes that race with the program!

UW CSE P 501 Autumn 2019 X3-30

What happens on a race?
• In C++, undefined semantics

• Valid results:
– r1 == 0 and r2 == 0
– r1 == 0 and r2 == 42
– system(rm –rf /*);

• No such thing as a benign data race in C++!
– Hence Gotcha #1 is legal in C++ because the original program

had a data race

UW CSE P 501 Autumn 2019 X3-31

Thread 1
x = 1; (a)
r1 = y; (b)

Thread 2
y = 1; (c)
r2 = x; (d)

Type-safety issues

• In Java, data races cannot violate type safety
– Java promises a measure of security
– Cannot allow data races to be used on purpose by

untrusted code to open / exploit holes
– Java memory model must provide some

guarantees even in the presence of races
• Gotcha #1 is illegal in Java; cannot make up values

UW CSE P 501 Autumn 2019 X3-32

Java reality

• The actual “memory model” (what can and can’t
happen with reads/writes) is very complicated
– Took years by brilliant people and still had problems

• Programmers willing to avoid data races do not
need to understand the definition
– There is a theorem about the definition that all data-

race free programs behave as in the interleaving
semantics

• But compiler writers must avoid gotchas
– Very roughly speaking, don’t make up values or

introduce data races

UW CSE P 501 Autumn 2019 X3-33

This lecture on one slide

The naïve approach, followed for decades, is fatally flawed
• Compiler must know threads & shared-memory exist
– Else it may perform incorrect optimizations

• Programmer must know threads & shared-memory exist
– The natural definition (“sequential consistency”) of how

shared-memory works (“the memory model”) is not tractably
implementable by compilers or hardware

– So we have less-natural weaker definitions to make language
implementation easier. Usually defined so that:
• If programmers avoid data races then they can ignore this
• Most compiler optimizations remain legal

UW CSE P 501 Autumn 2019 X3-34

