CSE P 501 – Compilers

Dataflow Analysis Hal Perkins Autumn 2019

Agenda

- Dataflow analysis: a framework and algorithm for many common compiler analyses
- Initial example: dataflow analysis for common subexpression elimination
- Other analysis problems that work in the same framework
- Some of these are optimizations we've seen, but now more formally and with details

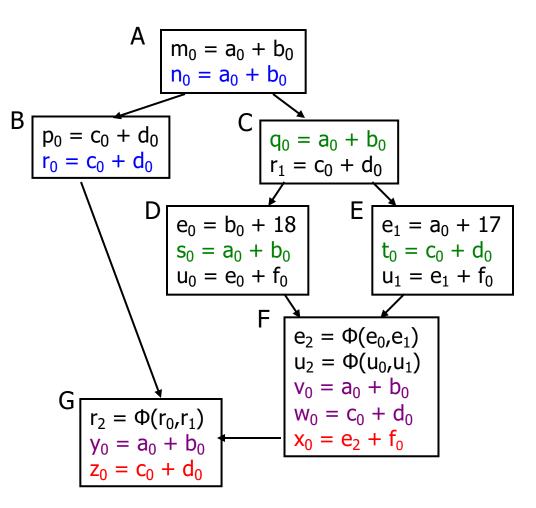
The Story So Far...

- Redundant expression elimination
 - Local Value Numbering
 - Superlocal Value Numbering
 - Extends VN to EBBs
 - SSA-like namespace
 - Dominator VN Technique (DVNT)
- All of these propagate along forward edges
- None are global

In particular, can't handle back edges (loops)

Dominator Value Numbering

- Most sophisticated algorithm so far
- Still misses some opportunities
- Can't handle loops



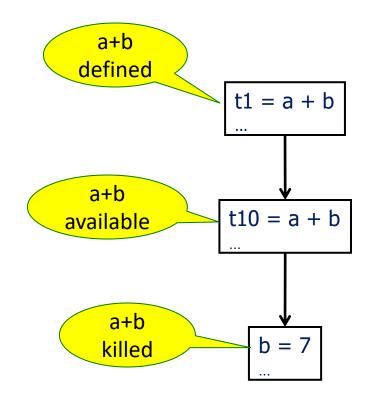
Available Expressions

- Goal: use dataflow analysis to find common subexpressions whose range spans basic blocks
- Idea: calculate *available expressions* at beginning of each basic block
- Avoid re-evaluation of an available expression

 use a copy operation

"Available" and Other Terms

- An expression *e* is *defined* at point *p* in the CFG if its value is computed at *p*
 Sometimes called *definition site*
- An expression *e* is *killed* at point *p* if one of its operands is defined at *p*
 - Sometimes called kill site
- An expression e is available at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p



Available Expression Sets

- To compute available expressions, for each block *b*, define
 - AVAIL(b) the set of expressions available on entry to b
 - NKILL(b) the set of expressions <u>not killed</u> in b
 - i.e., all expressions in the program *except* for those killed in b
 - DEF(b) the set of expressions defined in b and not subsequently killed in b

Computing Available Expressions

- AVAIL(b) is the set
 - $\mathsf{AVAIL}(b) = \bigcap_{x \in \mathsf{preds}(b)} (\mathsf{DEF}(x) \cup (\mathsf{AVAIL}(x) \cap \mathsf{NKILL}(x)))$
 - preds(b) is the set of b's predecessors in the CFG
 - The set of expressions available on entry to b is the set of expressions that were available at the end of every predecessor basic block x
 - The expressions available on exit from block b are those defined in b or available on entry to b and not killed in b
- This gives a system of simultaneous equations a dataflow problem

Name Space Issues

- In previous value-numbering algorithms, we used a SSA-like renaming to keep track of versions
- In global dataflow problems, we use the original namespace
 - we require a+b have the same value along *all* paths to its use
 - If a or b is updated along *any* path to its use, then a+b has the "wrong" value
 - so original names are exactly what we want
- The KILL information captures when a value is no longer available

Computing Available Expressions

- Big Picture
 - Build control-flow graph
 - Calculate initial local data DEF(b) and NKILL(b)
 - This only needs to be done once for each block b and depends only on the statements in b
 - Iteratively calculate AVAIL(b) by repeatedly evaluating equations until nothing changes
 - Another fixed-point algorithm

Computing DEF and NKILL (1)

For each block b with operations o₁, o₂, ..., o_k KILLED = Ø // killed variables, not expressions DEF(b) = Ø for i = k to 1 // note: working back to front assume o_i is "x = y + z" add x to KILLED if (y ∉ KILLED and z ∉ KILLED) add "y + z" to DEF(b) // i.e., neither y nor z killed // after this point in b

...

Computing DEF and NKILL (2)

 After computing DEF and KILLED for a block b, compute set of all expressions in the program not killed in b

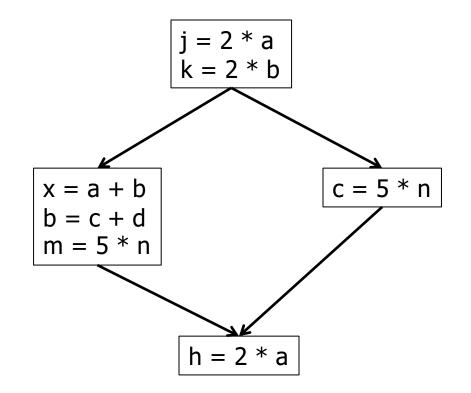
NKILL(*b*) = { all expressions }

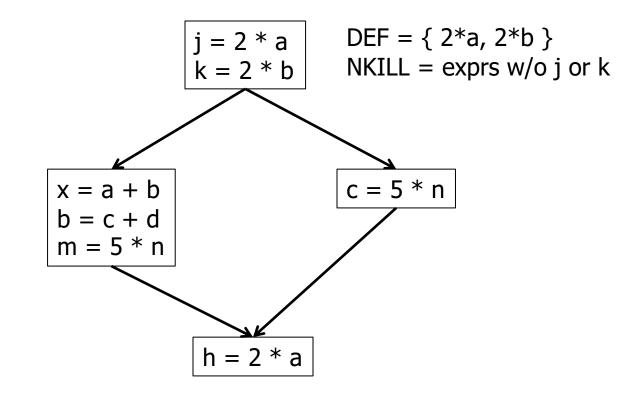
for each expression *e*

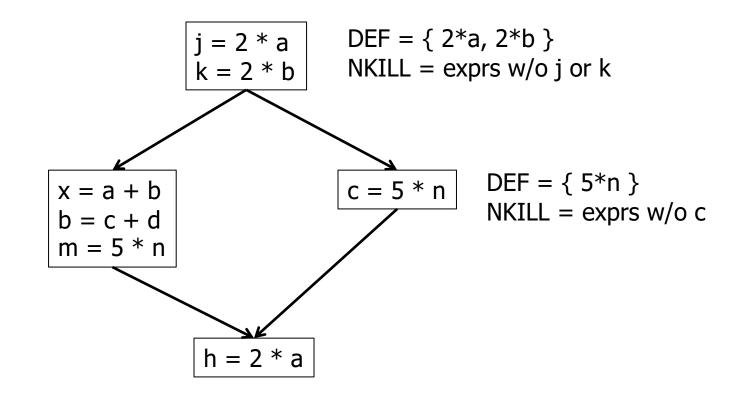
for each variable $v \in e$

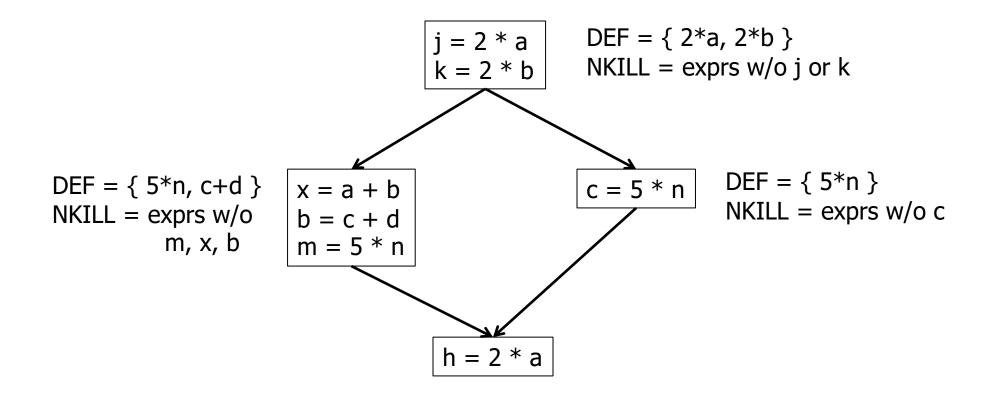
if $v \in KILLED$ then

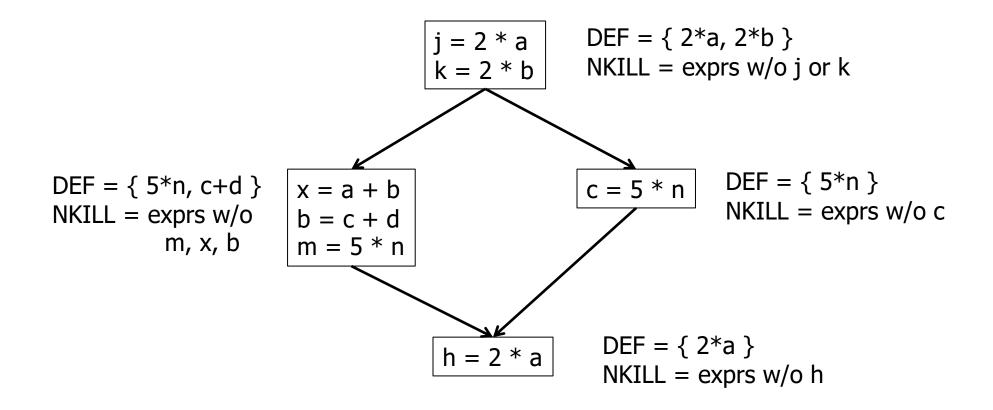
NKILL(b) = NKILL(b) - e







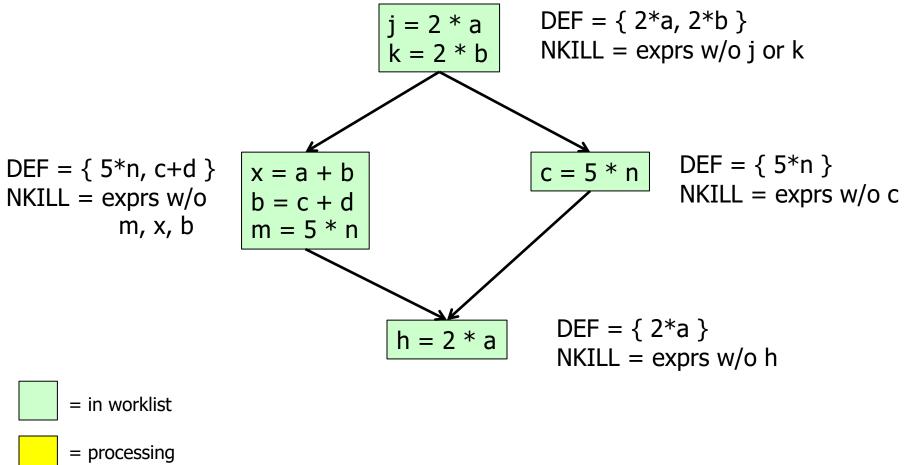


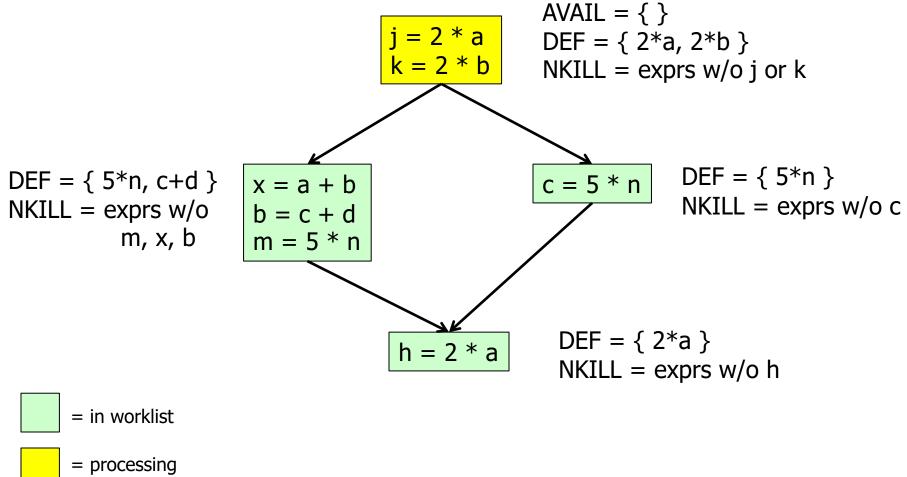


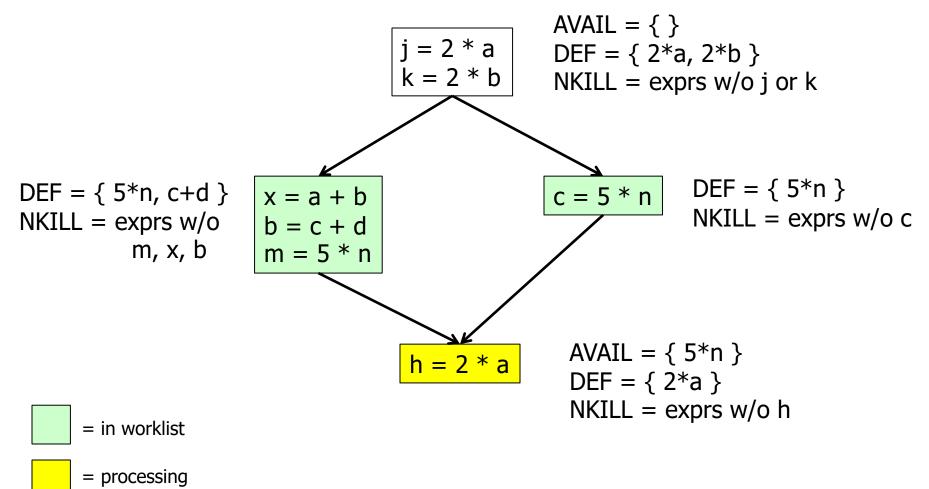
Computing Available Expressions

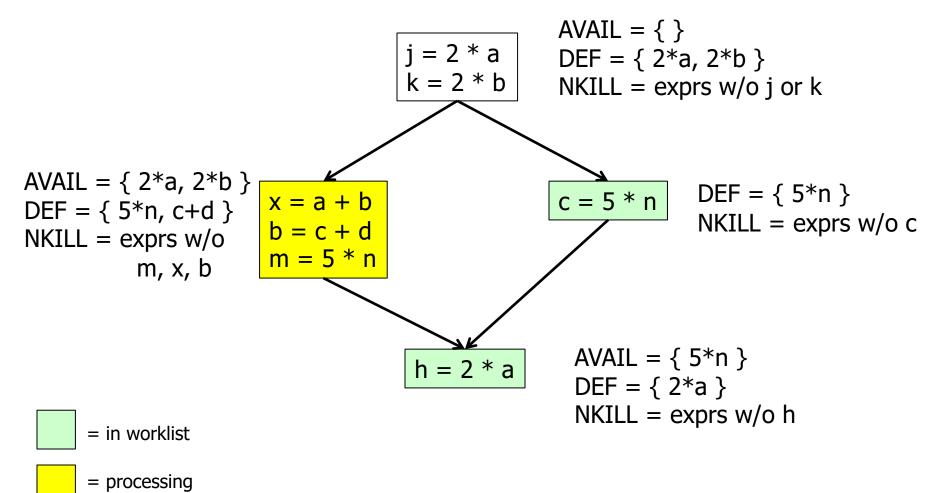
Once DEF(b) and NKILL(b) are computed for all blocks b

```
Worklist = { all blocks b_i }
while (Worklist \neq \emptyset)
remove a block b from Worklist
recompute AVAIL(b)
if AVAIL(b) changed
Worklist = Worklist \cup successors(b)
```

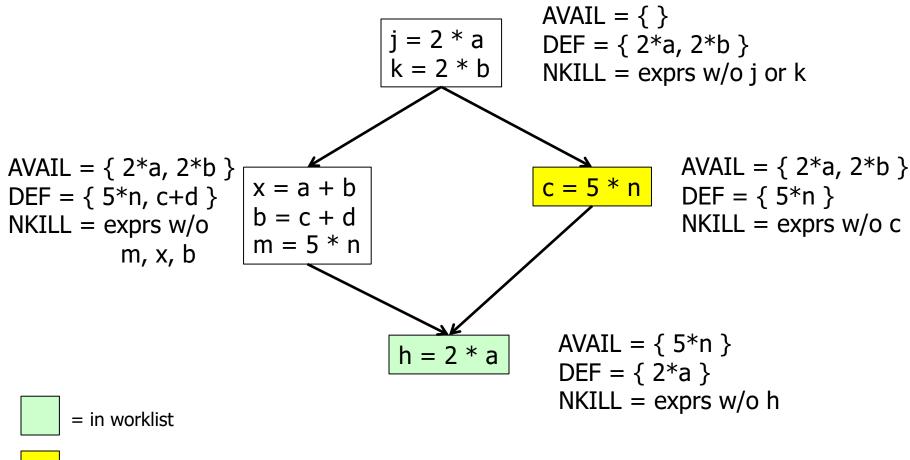






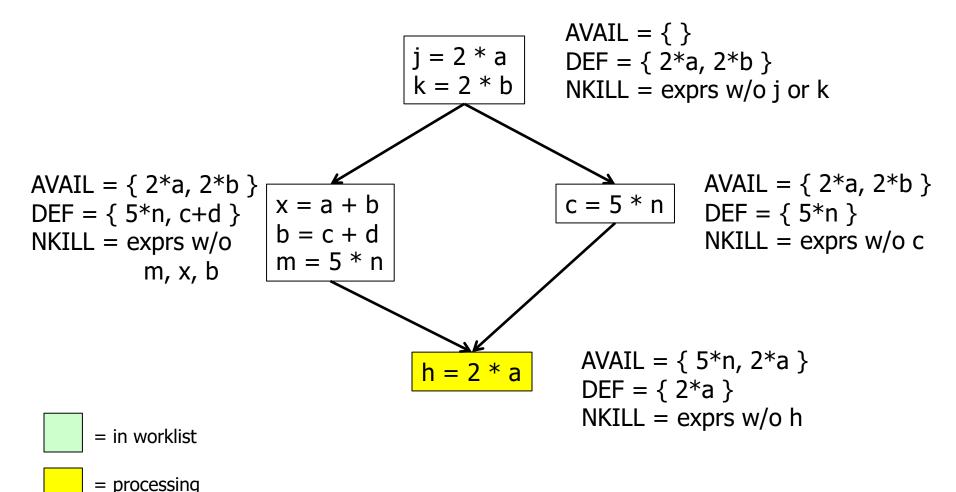


 $\mathsf{AVAIL}(b) = \cap_{x \in \mathsf{preds}(b)} \left(\mathsf{DEF}(x) \cup \left(\mathsf{AVAIL}(x) \cap \mathsf{NKILL}(x)\right)\right)$

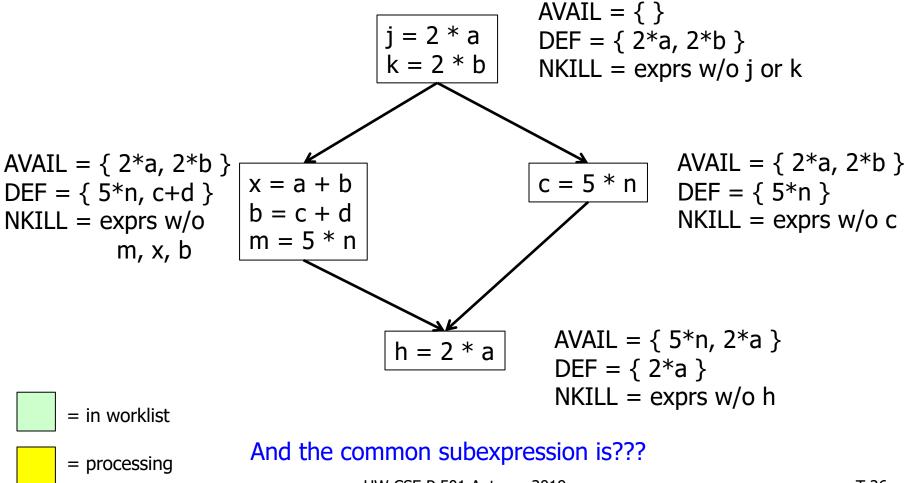


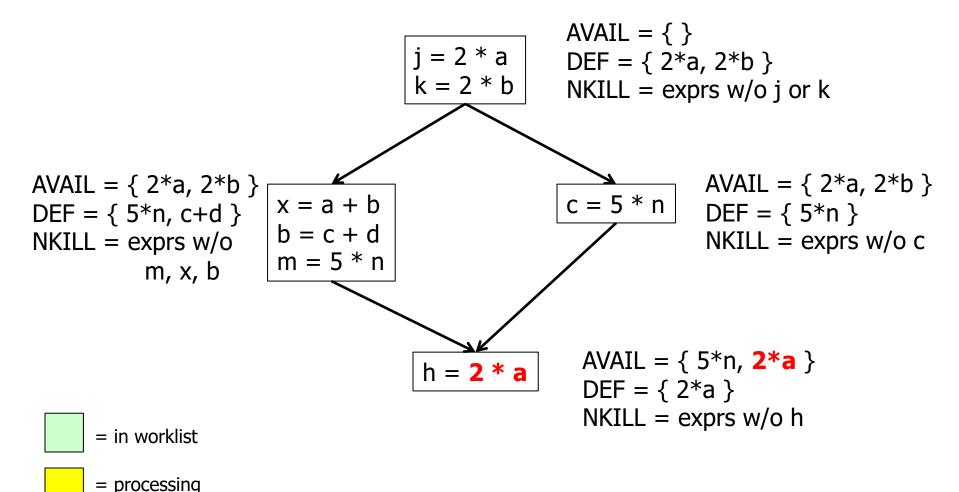
= processing

 $\mathsf{AVAIL}(b) = \cap_{x \in \mathsf{preds}(b)} \left(\mathsf{DEF}(x) \cup \left(\mathsf{AVAIL}(x) \cap \mathsf{NKILL}(x)\right)\right)$



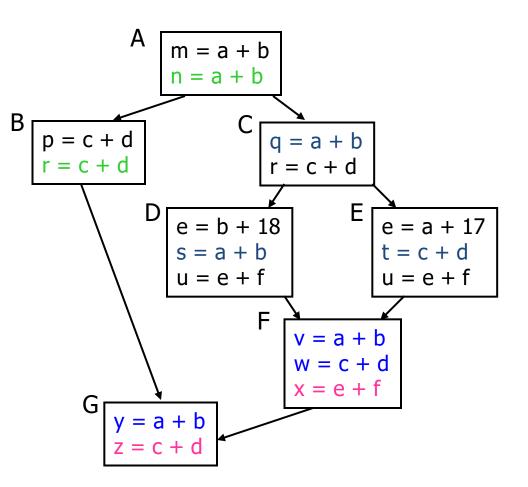
 $\mathsf{AVAIL}(b) = \cap_{x \in \mathsf{preds}(b)} \left(\mathsf{DEF}(x) \cup \left(\mathsf{AVAIL}(x) \cap \mathsf{NKILL}(x)\right)\right)$





Comparing Algorithms

- LVN Local Value Numbering
- SVN Superlocal Value Numbering
- DVN Dominator-based Value Numbering
- GRE Global Redundancy Elimination



Comparing Algorithms (2)

- LVN => SVN => DVN form a strict hierarchy later algorithms find a superset of previous information
- Global RE finds a somewhat different set
 - Discovers e+f in F (computed in both D and E)
 - Misses identical values if they have different names (e.g., a+b and c+d when a=c and b=d)
 - Value Numbering catches this

Scope of Analysis

- Larger context (EBBs, regions, global, interprocedural) sometimes helps
 - More opportunities for optimizations
- But not always
 - Introduces uncertainties about flow of control
 - Usually only allows weaker analysis
 - Sometimes has unwanted side effects
 - Can create additional pressure on registers, for example

Dataflow analysis

- Available expressions are an example of a dataflow analysis problem
- Many similar problems can be expressed in a similar framework
- Only the first part of the story once we've discovered facts, we then need to use them to improve code

Characterizing Dataflow Analysis

 All of these algorithms involve sets of facts about each basic block b

> IN(b) – facts true on entry to b OUT(b) – facts true on exit from b

GEN(b) – facts created and not killed in b

KILL(b) – facts killed in b

- These are related by the equation $OUT(b) = GEN(b) \cup (IN(b) KILL(b))$
 - Solve this iteratively for all blocks
 - Sometimes information propagates forward; sometimes backward

Dataflow Analysis (1)

- A collection of techniques for compile-time reasoning about run-time values
- Almost always involves building a graph
 - Trivial for basic blocks
 - Control-flow graph or derivative for global problems
 - Call graph or derivative for whole-program problems

Dataflow Analysis (2)

- Usually formulated as a set of *simultaneous equations* (dataflow problem)
 - Sets attached to nodes and edges
 - Need a lattice (or semilattice) to describe values
 - In particular, has an appropriate operator to combine values and an appropriate "bottom" or minimal value

Dataflow Analysis (3)

- Desired solution is usually a *meet over all* paths (MOP) solution
 - "What is true on every path from entry"
 - "What can happen on any path from entry"
 - Usually relates to safety of optimization

Dataflow Analysis (4)

- Limitations
 - Precision "up to symbolic execution"
 - Assumes all paths taken
 - Sometimes cannot afford to compute full solution
 - Arrays classic analysis treats each array as a single fact
 - Pointers difficult, expensive to analyze
 - Imprecision rapidly adds up
 - But gotta do it to effectively optimize things like C/C++
- For scalar values we can quickly solve simple problems

Example:Live Variable Analysis

- A variable v is *live* at point p iff there is any path from p to a use of v along which v is not redefined
- Some uses:
 - Register allocation only live variables need a register
 - Eliminating useless stores if variable not live at store, then stored variable will never be used
 - Detecting uses of uninitialized variables if live at declaration (before initialization) then it might be used uninitialized
 - Improve SSA construction only need Φ-function for variables that are live in a block (later)

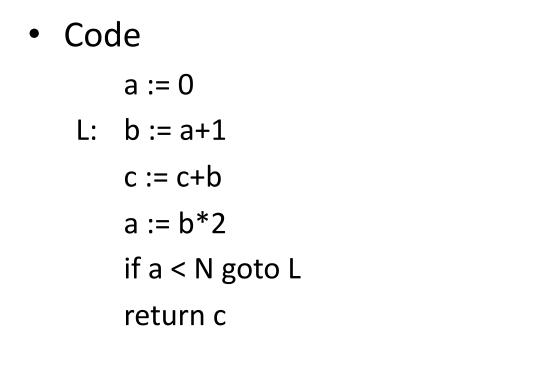
Liveness Analysis Sets

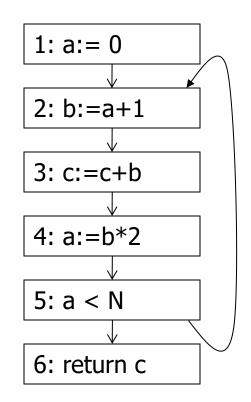
- For each block b, define
 - use[b] = variable used in b before any def
 - def[b] = variable defined in b & not killed
 - in[b] = variables live on entry to b
 - out[b] = variables live on exit from b

Equations for Live Variables

- Given the preceding definitions, we have
 in[b] = use[b] ∪ (out[b] def[b])
 out[b] = ∪s∈succ[b] in[s]
- Algorithm
 - Set in[b] = out[b] = \emptyset
 - Update in, out until no change

Example (1 stmt per block)

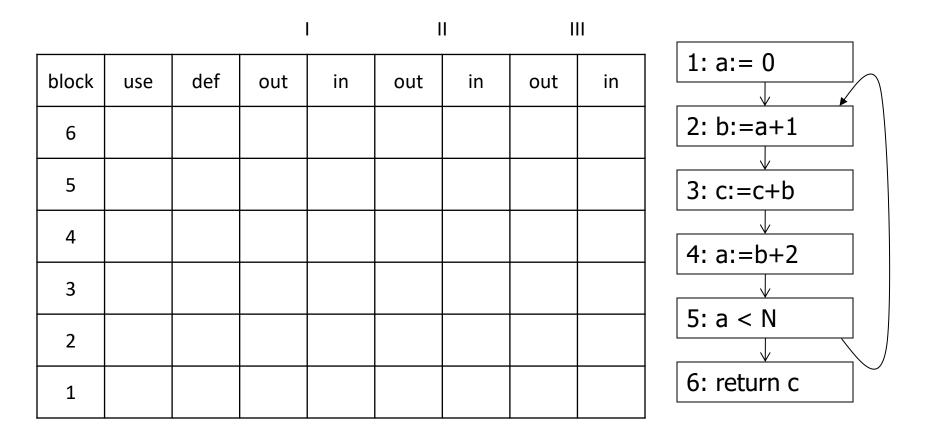




 $\begin{array}{l} \text{in[b]} = \text{use[b]} \cup (\text{out[b]} - \text{def[b]}) \\ \text{out[b]} = \cup_{s \in \text{succ[b]}} \text{in[s]} \end{array}$

UW CSE P 501 Autumn 2019

Calculation



 $\begin{array}{l} \text{in[b]} = \text{use[b]} \cup (\text{out[b]} - \text{def[b]}) \\ \text{out[b]} = \cup_{s \in \text{succ[b]}} \text{in[s]} \end{array}$

Calculation

				l	I	I	I	11	
block	use	def	out	in	out	in	out	in	1: a:= 0
6	С			С		С			2: b:=a+1
5	а		С	a,c	a,c	a,c			→ 3: c:=c+b
4	b	а	a,c	b,c	a,c	b,c			↓ 4: a:=b+2
3	b,c	С	b,c	b,c	b,c	b,c			5: a < N 6: return c
2	а	b	b,c	a,c	b,c	a,c			
1		а	a,c	С	a,c	С			

 $\begin{array}{l} \text{in[b]} = \text{use[b]} \cup (\text{out[b]} - \text{def[b]}) \\ \text{out[b]} = \cup_{s \in \text{succ[b]}} \text{in[s]} \end{array}$

Equations for Live Variables v2

- Many problems have more than one formulation. For example, Live Variables...
- Sets
 - USED(b) variables used in b before being defined in b
 - NOTDEF(b) variables not defined in b
 - LIVE(b) variables live on *exit* from b
- Equation

 $\mathsf{LIVE}(\mathsf{b}) = \cup_{\mathsf{s} \in \mathsf{succ}(\mathsf{b})} \mathsf{USED}(\mathsf{s}) \cup (\mathsf{LIVE}(\mathsf{s}) \cap \mathsf{NOTDEF}(\mathsf{s}))$

Efficiency of Dataflow Analysis

- The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG
 - Forward problems reverse postorder
 - Backward problems postorder

Example: Reaching Definitions

- A definition d of some variable v reaches operation i iff i reads the value of v and there is a path from d to i that does not define v
- Uses
 - Find all of the possible definition points for a variable in an expression

Equations for Reaching Definitions

• Sets

- DEFOUT(b) set of definitions in b that reach the end of b (i.e., not subsequently redefined in b)
- SURVIVED(b) set of all definitions not obscured by a definition in b
- REACHES(b) set of definitions that reach b
- Equation

 $\begin{aligned} \mathsf{REACHES}(b) &= \cup_{\mathsf{p} \in \mathsf{preds}(b)} \mathsf{DEFOUT}(\mathsf{p}) \cup \\ (\mathsf{REACHES}(\mathsf{p}) \cap \mathsf{SURVIVED}(\mathsf{p})) \end{aligned}$

Example: Very Busy Expressions

- An expression e is considered very busy at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations
- Uses
 - Code hoisting move *e* to *p* (reduces code size; no effect on execution time)

Equations for Very Busy Expressions

- Sets
 - USED(b) expressions used in b before they are killed
 - KILLED(b) expressions redefined in b before they are used
 - VERYBUSY(b) expressions very busy on exit from b
- Equation

 $VERYBUSY(b) = \bigcap_{s \in succ(b)} USED(s) \cup \\ (VERYBUSY(s) - KILLED(s))$

Using Dataflow Information

• A few examples of possible transformations...

Classic Common-Subexpression Elimination (CSE)

- In a statement s: t := x op y, if x op y is available at s then it need not be recomputed
- Analysis: compute *reaching expressions* i.e., statements n: v := x op y such that the path from n to s does not compute x op y or define x or y

Classic CSE Transformation

- If x op y is defined at n and reaches s
 - Create new temporary w
 - Rewrite n: v := x op y as

```
n: w := x op y
```

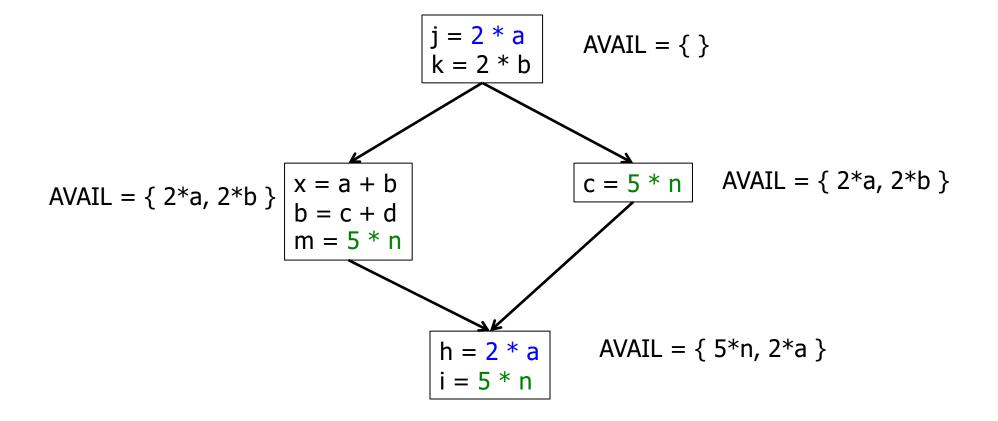
```
n': v := w
```

- Modify statement s to be

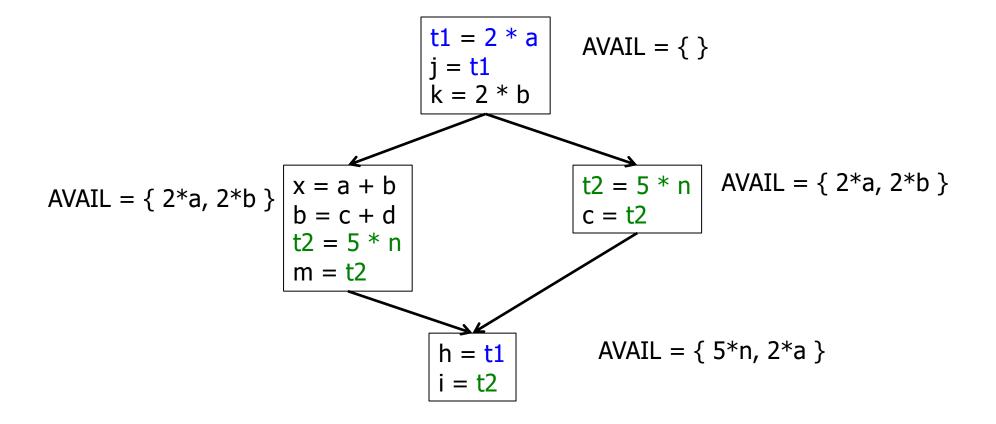
s: t := w

– (Rely on copy propagation to remove extra assignments that are not really needed)

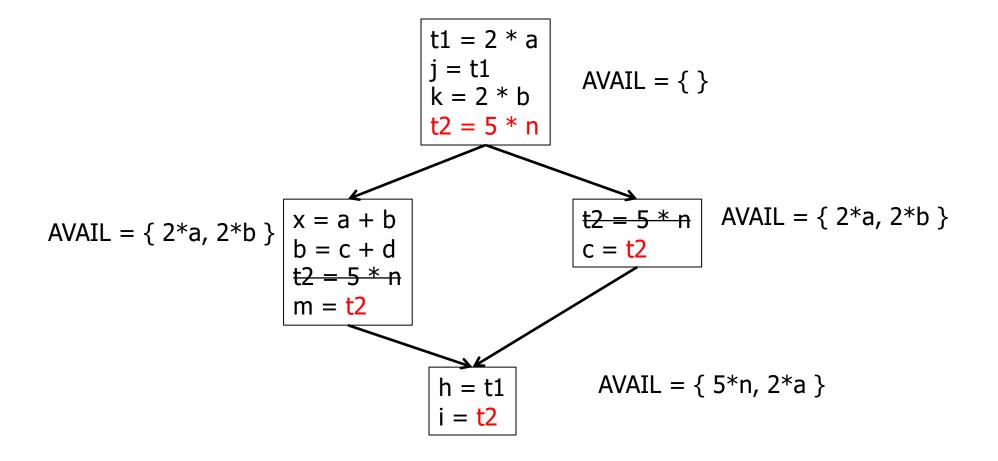
Revisiting Example (w/small change)



Revisiting Example (w/small change)



Then Apply Very Busy...



Constant Propagation

- Suppose we have
 - Statement d: t := c, where c is constant
 - Statement n that uses t
- If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t

Copy Propagation

- Similar to constant propagation
- Setup:
 - Statement d: t := z
 - Statement n uses t
- If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
 - Recall that this can help remove dead assignments

Copy Propagation Tradeoffs

- Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic
- But it can expose other optimizations, e.g.,

 After copy propagation we can recognize the common subexpression

Dead Code Elimination

• If we have an instruction

s: a := b op c

and a is not live-out after s, then s can be eliminated

- Provided it has no implicit side effects that are visible (output, exceptions, etc.)
 - If b or c are function calls, they have to be assumed to have unknown side effects unless the compiler can prove otherwise

Aliases

- A variable or memory location may have multiple names or *aliases*
 - Call-by-reference parameters
 - Variables whose address is taken (&x)
 - Expressions that dereference pointers
 (p.x, *p)
 - Expressions involving subscripts (a[i])
 - Variables in nested scopes

Aliases vs Optimizations

• Example:

p.x := 5; q.x := 7; a := p.x;

- Does reaching definition analysis show that the definition of p.x reaches a?
- (Or: do p and q refer to the same variable/object?)
- (Or: *can* p and q refer to the same thing?)

Aliases vs Optimizations

• Example

```
int f(int *p, int *q) {
 *p = 1; *q = 2;
 return *p;
}
```

- How do we account for the possibility that p and q might refer to the same thing?
- Safe approximation: since it's possible, assume it is true (but rules out a lot)
 - C programmers can use "restrict" to indicate no other pointer is an alias for this one

Types and Aliases (1)

- In Java, ML, MiniJava, and others, if two variables have incompatible types they cannot be names for the same location
 - Also helps that programmer cannot create arbitrary pointers to storage in these languages

Types and Aliases (2)

- Strategy: Divide memory locations into alias classes based on type information (every type, array, record field is a class)
- Implication: need to propagate type information from the semantics pass to optimizer

Not normally true of a minimally typed IR

 Items in different alias classes cannot refer to each other

Aliases and Flow Analysis

- Idea: Base alias classes on points where a value is created
 - Every new/malloc and each local or global variable whose address is taken is an alias class
 - Pointers can refer to values in multiple alias classes (so each memory reference is to a set of alias classes)
 - Use to calculate "may alias" information (e.g., p
 "may alias" q at program point s)

Using "may-alias" information

- Treat each alias class as a "variable" in dataflow analysis problems
- Example: framework for available expressions

```
- Given statement s: M[a]:=b,
gen[s] = { }
kill[s] = { M[x] | a may alias x at s }
```

May-Alias Analysis

- Without alias analysis, #2 kills M[t] since x and t might be related
- If analysis determines that "x may-alias t" is false, M[t] is still available at #3; can eliminate the common subexpression and use copy propagation

- Code
 - 1: u := M[t]
 - 2: M[x] := r
 - 3: w := M[t]
 - 4: b := u+w

Where are we now?

- Dataflow analysis is the core of classical optimizations
 - Although not the only possible story
- Still to explore:
 - Discovering and optimizing loops
 - SSA Static Single Assignment form