CSE P 501 - Compilers

Dataflow Analysis Hal Perkins
Autumn 2019

Agenda

- Dataflow analysis: a framework and algorithm for many common compiler analyses
- Initial example: dataflow analysis for common subexpression elimination
- Other analysis problems that work in the same framework
- Some of these are optimizations we've seen, but now more formally and with details

The Story So Far...

- Redundant expression elimination
- Local Value Numbering
- Superlocal Value Numbering
- Extends VN to EBBs
- SSA-like namespace
- Dominator VN Technique (DVNT)
- All of these propagate along forward edges
- None are global
- In particular, can't handle back edges (loops)

Dominator Value Numbering

- Most sophisticated algorithm so far
- Still misses some opportunities
- Can't handle loops

Available Expressions

- Goal: use dataflow analysis to find common subexpressions whose range spans basic blocks
- Idea: calculate available expressions at beginning of each basic block
- Avoid re-evaluation of an available expression
- use a copy operation

"Available" and Other Terms

- An expression e is defined at point p in the CFG if its value is computed at p
- Sometimes called definition site
- An expression e is killed at point p if one of its operands is defined at p
- Sometimes called kill site
- An expression e is available at point p if every path leading to p contains a prior definition of e and e is not
 killed between that definition and p

Available Expression Sets

- To compute available expressions, for each block b, define
- AVAIL(b) - the set of expressions available on entry to b
- NKILL(b) - the set of expressions not killed in b
- i.e., all expressions in the program except for those killed in b
- DEF(b) - the set of expressions defined in b and not subsequently killed in b

Computing Available Expressions

- $\operatorname{AVAIL}(b)$ is the set
$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$
- preds(b) is the set of b's predecessors in the CFG
- The set of expressions available on entry to b is the set of expressions that were available at the end of every predecessor basic block x
- The expressions available on exit from block b are those defined in b or available on entry to b and not killed in b
- This gives a system of simultaneous equations - a dataflow problem

Name Space Issues

- In previous value-numbering algorithms, we used a SSA-like renaming to keep track of versions
- In global dataflow problems, we use the original namespace
- we require a+b have the same value along all paths to its use
- If a or b is updated along any path to its use, then $a+b$ has the "wrong" value
- so original names are exactly what we want
- The KILL information captures when a value is no longer available

Computing Available Expressions

- Big Picture
- Build control-flow graph
- Calculate initial local data - DEF(b) and NKILL(b)
- This only needs to be done once for each block b and depends only on the statements in b
- Iteratively calculate AVAIL(b) by repeatedly evaluating equations until nothing changes
- Another fixed-point algorithm

Computing DEF and NKILL (1)

- For each block b with operations $\mathrm{o}_{1}, \mathrm{o}_{2}, \ldots, \mathrm{o}_{\mathrm{k}}$ KILLED $=\varnothing \quad / /$ killed variables, not expressions $\operatorname{DEF}(\mathrm{b})=\varnothing$
for $i=k$ to $1 / /$ note: working back to front
assume o_{i} is " $x=y+z$ "
add x to KILLED
if ($\mathrm{y} \notin$ KILLED and $\mathrm{z} \notin$ KILLED)

// i.e., neither y nor z killed // after this point in b

Computing DEF and NKILL (2)

- After computing DEF and KILLED for a block b, compute set of all expressions in the program not killed in b

NKILL(b) $=$ \{ all expressions \}
for each expression e
for each variable $v \in \mathrm{e}$ if $v \in$ KILLED then
$\operatorname{NKILL}(b)=\operatorname{NKILL}(b)-e$

Example: Compute DEF and NKILL

Computing Available Expressions

Once $\operatorname{DEF}(b)$ and NKILL(b) are computed for all blocks b

Worklist $=\left\{\right.$ all blocks $\left.b_{i}\right\}$
while (Worklist $\neq \varnothing$)
remove a block b from Worklist
recompute AVAIL(b)
if AVAIL(b) changed
Worklist $=$ Worklist \cup successors (b)

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

\square = in worklist

Example: Find Available Expressions

$\operatorname{AVAIL}(\mathrm{b})=\cap_{\mathrm{x} \in \operatorname{preds}(\mathrm{b})}(\operatorname{DEF}(\mathrm{x}) \cup(\operatorname{AVAIL}(\mathrm{x}) \cap \operatorname{NKILL}(\mathrm{x})))$

\square = in worklist

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

And the common subexpression is???

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

Comparing Algorithms

- LVN - Local Value Numbering
- SVN - Superlocal Value Numbering
- DVN - Dominator-based Value Numbering
- GRE - Global Redundancy Elimination

Comparing Algorithms (2)

- LVN => SVN => DVN form a strict hierarchy - later algorithms find a superset of previous information
- Global RE finds a somewhat different set
- Discovers e+f in F (computed in both D and E)
- Misses identical values if they have different names (e.g., $a+b$ and $c+d$ when $a=c$ and $b=d$)
- Value Numbering catches this

Scope of Analysis

- Larger context (EBBs, regions, global, interprocedural) sometimes helps
- More opportunities for optimizations
- But not always
- Introduces uncertainties about flow of control
- Usually only allows weaker analysis
- Sometimes has unwanted side effects
- Can create additional pressure on registers, for example

Dataflow analysis

- Available expressions are an example of a dataflow analysis problem
- Many similar problems can be expressed in a similar framework
- Only the first part of the story - once we've discovered facts, we then need to use them to improve code

Characterizing Dataflow Analysis

- All of these algorithms involve sets of facts about each basic block b

IN(b) - facts true on entry to b
OUT(b) - facts true on exit from b
GEN(b) - facts created and not killed in b
KILL(b) - facts killed in b

- These are related by the equation

OUT(b) $=\operatorname{GEN}(\mathrm{b}) \cup(\operatorname{IN}(\mathrm{b})-\operatorname{KILL}(\mathrm{b}))$

- Solve this iteratively for all blocks
- Sometimes information propagates forward; sometimes backward

Dataflow Analysis (1)

- A collection of techniques for compile-time reasoning about run-time values
- Almost always involves building a graph
- Trivial for basic blocks
- Control-flow graph or derivative for global problems
- Call graph or derivative for whole-program problems

Dataflow Analysis (2)

- Usually formulated as a set of simultaneous equations (dataflow problem)
- Sets attached to nodes and edges
- Need a lattice (or semilattice) to describe values
- In particular, has an appropriate operator to combine values and an appropriate "bottom" or minimal value

Dataflow Analysis (3)

- Desired solution is usually a meet over all paths (MOP) solution
- "What is true on every path from entry"
- "What can happen on any path from entry"
- Usually relates to safety of optimization

Dataflow Analysis (4)

- Limitations
- Precision - "up to symbolic execution"
- Assumes all paths taken
- Sometimes cannot afford to compute full solution
- Arrays - classic analysis treats each array as a single fact
- Pointers - difficult, expensive to analyze
- Imprecision rapidly adds up
- But gotta do it to effectively optimize things like C/C++
- For scalar values we can quickly solve simple problems

Example:Live Variable Analysis

- A variable v is live at point p iff there is any path from p to a use of v along which v is not redefined
- Some uses:
- Register allocation - only live variables need a register
- Eliminating useless stores - if variable not live at store, then stored variable will never be used
- Detecting uses of uninitialized variables - if live at declaration (before initialization) then it might be used uninitialized
- Improve SSA construction - only need Φ-function for variables that are live in a block (later)

Liveness Analysis Sets

- For each block b, define
- use[b] = variable used in b before any def
$-\operatorname{def}[b]=$ variable defined in b \& not killed
$-\operatorname{in}[b]=$ variables live on entry to b
- out $[b]=$ variables live on exit from b

Equations for Live Variables

- Given the preceding definitions, we have

$$
\begin{aligned}
& \operatorname{in}[b]=\operatorname{use}[b] \cup(\operatorname{out}[b]-\operatorname{def}[b]) \\
& \operatorname{out}[b]=\cup_{s \in \operatorname{suc}[b]} \text { in }[s]
\end{aligned}
$$

- Algorithm
- Set in $[b]=$ out $[b]=\varnothing$
- Update in, out until no change

Example (1 stmt per block)

- Code

a := 0
L: b:=a+1
$c:=c+b$
a := b*2
if $a<N$ goto L
return c


```
in[b] \(=\) use[b] \(\cup\) (out[b] - def[b])
out[b] \(=\cup_{s \in \operatorname{suc}[b]}\) in[s]
```


Calculation

$$
\begin{aligned}
& \operatorname{in}[\mathrm{b}]=\text { use }[\mathrm{b}] \cup(\mathrm{out}[\mathrm{~b}]-\operatorname{def}[\mathrm{b}]) \\
& \text { out }[\mathrm{b}]=\cup_{\mathrm{s} \in \text { succ }[\mathrm{b}]} \text { in }[\mathrm{s}]
\end{aligned}
$$

Calculation

$$
\begin{aligned}
& \text { in }[\mathrm{b}]=\text { use[b] } \cup(\text { out }[\mathrm{b}]-\operatorname{def}[\mathrm{b}]) \\
& \text { out }[\mathrm{b}]=\cup_{\mathrm{s} \in \operatorname{succ}[\mathrm{~b}} \text { in }[\mathrm{s}]
\end{aligned}
$$

Equations for Live Variables v2

- Many problems have more than one formulation. For example, Live Variables...
- Sets
- USED(b) - variables used in b before being defined in b
$-\operatorname{NOTDEF}(\mathrm{b})$ - variables not defined in b
- LIVE(b) - variables live on exit from b
- Equation

$$
\operatorname{LIVE}(b)=\cup_{s \in \operatorname{succ}(b)} U S E D(s) \cup(\operatorname{LIVE}(s) \cap \operatorname{NOTDEF}(s))
$$

Efficiency of Dataflow Analysis

- The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG
- Forward problems - reverse postorder
- Backward problems - postorder

Example: Reaching Definitions

- A definition d of some variable v reaches operation i iff i reads the value of v and there is a path from d to i that does not define v
- Uses
- Find all of the possible definition points for a variable in an expression

Equations for Reaching Definitions

- Sets
- DEFOUT(b) - set of definitions in b that reach the end of b (i.e., not subsequently redefined in b)
- SURVIVED(b) - set of all definitions not obscured by a definition in b
- REACHES(b) - set of definitions that reach b
- Equation
$\operatorname{REACHES}(b)=\cup_{p \in \operatorname{preds}(b)} \operatorname{DEFOUT}(p) \cup$
(REACHES(p) $\cap \operatorname{SURVIVED(p))~}$

Example: Very Busy Expressions

- An expression e is considered very busy at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations
- Uses
- Code hoisting - move e to p (reduces code size; no effect on execution time)

Equations for Very Busy Expressions

- Sets
- USED(b) - expressions used in b before they are killed
- KILLED(b) - expressions redefined in b before they are used
- VERYBUSY(b) - expressions very busy on exit from b
- Equation
$\operatorname{VERYBUSY}(\mathrm{b})=\cap_{\mathrm{sesucc}(\mathrm{b})} \operatorname{USED}(\mathrm{s}) \cup$
(VERYBUSY(s) - KILLED(s))

Using Dataflow Information

- A few examples of possible transformations...

Classic Common-Subexpression Elimination (CSE)

- In a statement $\mathrm{s}: \mathrm{t}:=\mathrm{x}$ op y , if x op y is available at s then it need not be recomputed
- Analysis: compute reaching expressions i.e., statements n : $\mathrm{v}:=\mathrm{x}$ op y such that the path from n to s does not compute x op y or define x or y

Classic CSE Transformation

- If x op y is defined at n and reaches s
- Create new temporary w
- Rewrite n: v := x op y as
n : w := x op y
$n^{\prime}: v:=w$
- Modify statement s to be

$$
\mathrm{s}: \mathrm{t}:=\mathrm{w}
$$

- (Rely on copy propagation to remove extra assignments that are not really needed)

Revisiting Example (w/small change)

Revisiting Example (w/small change)

Then Apply Very Busy...

Constant Propagation

- Suppose we have
- Statement $\mathrm{d}: \mathrm{t}:=\mathrm{c}$, where c is constant
- Statement n that uses t
- If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t

Copy Propagation

- Similar to constant propagation
- Setup:
- Statement $\mathrm{d}: \mathrm{t}:=\mathrm{z}$
- Statement n uses t
- If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
- Recall that this can help remove dead assignments

Copy Propagation Tradeoffs

- Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic
- But it can expose other optimizations, e.g.,

$$
\begin{aligned}
& a:=y+z \\
& u:=y \\
& c:=u+z \quad / / \text { copy propagation makes this } y+z
\end{aligned}
$$

- After copy propagation we can recognize the common subexpression

Dead Code Elimination

- If we have an instruction
s : $\mathrm{a}:=\mathrm{b}$ op c
and a is not live-out after s, then s can be eliminated
- Provided it has no implicit side effects that are visible (output, exceptions, etc.)
- If b or c are function calls, they have to be assumed to have unknown side effects unless the compiler can prove otherwise

Aliases

- A variable or memory location may have multiple names or aliases
- Call-by-reference parameters
- Variables whose address is taken (\&x)
- Expressions that dereference pointers (p.x, *p)
- Expressions involving subscripts (a[i])
- Variables in nested scopes

Aliases vs Optimizations

- Example:
p.x := 5; q.x := 7; a := p.x;
- Does reaching definition analysis show that the definition of p.x reaches a?
- (Or: do p and q refer to the same variable/object?)
- (Or: can p and q refer to the same thing?)

Aliases vs Optimizations

- Example

```
int f(int *p, int *q) {
    *p = 1; *q=2;
    return *p;
}
```

- How do we account for the possibility that p and q might refer to the same thing?
- Safe approximation: since it's possible, assume it is true (but rules out a lot)
- C programmers can use "restrict" to indicate no other pointer is an alias for this one

Types and Aliases (1)

- In Java, ML, MiniJava, and others, if two variables have incompatible types they cannot be names for the same location
- Also helps that programmer cannot create arbitrary pointers to storage in these languages

Types and Aliases (2)

- Strategy: Divide memory locations into alias classes based on type information (every type, array, record field is a class)
- Implication: need to propagate type information from the semantics pass to optimizer
- Not normally true of a minimally typed IR
- Items in different alias classes cannot refer to each other

Aliases and Flow Analysis

- Idea: Base alias classes on points where a value is created
- Every new/malloc and each local or global variable whose address is taken is an alias class
- Pointers can refer to values in multiple alias classes (so each memory reference is to a set of alias classes)
- Use to calculate "may alias" information (e.g., p "may alias" q at program point s)

Using "may-alias" information

- Treat each alias class as a "variable" in dataflow analysis problems
- Example: framework for available expressions
- Given statement s: M[a]:=b,

$$
\begin{aligned}
& \operatorname{gen}[s]=\{ \} \\
& \operatorname{kill}[s]=\{M[x] \mid \text { a may alias } x \text { at } s\}
\end{aligned}
$$

May-Alias Analysis

- Without alias analysis, \#2 kills M[t] since x and t might be related
- If analysis determines that "x may-alias t " is false, $M[t]$ is still available at \#3; can eliminate the common subexpression and use copy propagation
- Code

1: $\mathrm{u}:=\mathrm{M}[\mathrm{t}]$
2: $M[x]:=r$
3: $w:=M[t]$
4: b:=u+w

Where are we now?

- Dataflow analysis is the core of classical optimizations
- Although not the only possible story
- Still to explore:
- Discovering and optimizing loops
- SSA - Static Single Assignment form

