
CSE P 501 – Compilers

Instruction Selection
Hal Perkins

Autumn 2019

UW CSE P 501 Autumn 2019 N-1

Agenda

• Compiler back-end organization
• Instruction selection – tree pattern matching

• Credits: Slides by Keith Cooper (Rice); Appel ch. 9; burg/iburg slides (extras
at end) by Preston Briggs, CSE 501 Sp09

• Burg/iburg paper: “Engineering a Simple, Efficient Code Generator”,
Fraser, Hanson, & Proebsting, ACM LOPLAS v1, n3 (Sept. 1992)

UW CSE P 501 Autumn 2019 N-2

Compiler Organization

UW CSE P 501 Autumn 2019 N-3

pa
rs

e

sc
an

se
m

an
tic

s

front end
op

t2

op
t1

op
tn

middle

isn
tr.

 s
ch

ed

in
st

r.
se

le
ct

re
g.

 a
llo

c

back end

infrastructure – symbol tables, trees, graphs, etc

Big Picture

• Compiler consists of lots of fast stuff followed
by hard problems
– Scanner: O(n)
– Parser: O(n)
– Analysis & Optimization: ~ O(n log n)
– Instruction selection: fast or NP-Complete
– Instruction scheduling: NP-Complete
– Register allocation: NP-Complete

UW CSE P 501 Autumn 2019 N-4

IR for Code Generation

• Assume a (very) low-level IR
– 3 address, register-register instructions +

load/store
r1 <- r2 op r3

– Could be tree structure or linear
– Expose as much detail as possible

• Assume “enough” (i.e., ¥) registers
– Invent new temporaries for intermediate results
– Map to actual registers later

UW CSE P 501 Autumn 2019 N-5

Overview: Instruction Selection

• Map IR into assembly code
• Assume known storage layout and code shape
– i.e., the optimization phases have already done

their thing

• Combine low-level IR operations into machine
instructions (take advantage of addressing
modes, etc.)

UW CSE P 501 Autumn 2019 N-6

Overview: Instruction Scheduling

• Reorder instructions to minimize execution time
– hide latencies – processor function units,

memory/cache stalls
– Originally invented for supercomputers (60s)
– Required to get reasonable (or correct!) code on

classic RISC architectures (basically 3-address code)
– Still important on most machines

• Even non-RISC machines, e.g., x86 family
• Even if processor reorders on the fly
Good schedules help processor do a better job

• Assume fixed program at this point

UW CSE P 501 Autumn 2019 N-7

Overview: Register Allocation

• Map values to actual registers
– Previous phases change need for registers

• Add code to spill values to temporaries as
needed, etc.

• Usually worth doing another instruction
scheduling pass afterwards if spill code
inserted

UW CSE P 501 Autumn 2019 N-8

How Hard?

• Instruction selection
– Can make locally optimal choices
– Global is undoubtedly NP-Complete

• Instruction scheduling
– Single basic block – quick heuristics
– General problem – NP Complete

• Register allocation
– Single basic block, no spilling, interchangeable

registers – linear
– General – NP Complete

UW CSE P 501 Autumn 2019 N-9

Conventional Wisdom
• We typically lose little by solving these independently

– But not always, of course (iterating phases on x86[-64] can help
because of limited registers, memory operands)

• Instruction selection
– Use some form of pattern matching
– ¥ virtual registers – create as needed

• Instruction scheduling
– Within a block, list scheduling is close to optimal
– Across blocks: extended basic blocks or trace scheduling if list

scheduling not good enough
• Register allocation

– Start with unlimited virtual registers and map to some subset of
K real registers

UW CSE P 501 Autumn 2019 N-10

An Simple Low-Level IR (1)

• Details not important for our purposes; point is to
get a feeling for the level of detail involved
– This example is from Appel

• Expressions
– CONST(i) – integer constant i
– TEMP(t) – temporary t (i.e., register)
– BINOP(op,e1,e2) – application of op to e1,e2
– MEM(e) – contents of memory at address e

• Means value when used in an expression
• Means address when used on left side of assignment

– CALL(f,args) – apply function f to argument list args

UW CSE P 501 Autumn 2019 N-11

Simple Low-Level IR (2)

• Statements
– MOVE(TEMP t, e) – evaluate e and store in temporary t
– MOVE(MEM(e1), e2) – evaluate e1 to yield address a;

evaluate e2 and store at a
– EXP(e) – evaluate expressions e and discard result
– SEQ(s1,s2) – execute s1 followed by s2
– NAME(n) – assembly language label n
– JUMP(e) – jump to e, which can be a NAME label, or more

complex (e.g., switch)
– CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to

label t, otherwise jump to f
– LABEL(n) – defines location of label n in the code

UW CSE P 501 Autumn 2019 N-12

Low-Level IR Example (1)

• Access a local variable at a known offset k
from the frame pointer fp
– Linear

MEM(BINOP(PLUS, TEMP fp, CONST k))

– Tree

UW CSE P 501 Autumn 2019 N-13

MEM

+

TEMP fp CONST k

Low-Level IR Example (2)

• Access an array element e[k], where each
element takes up w storage locations

UW CSE P 501 Autumn 2019 N-14

MEM

+

MEM *

e k CONST

w

Generating Low-Level IR
• Assuming initial IR is an AST, a simple treewalk can be

used to generate the low-level IR
– Can be done before, during, or after optimizations in the

middle part of the compiler
• Typically AST is lowered to some lower-level IR, but maybe not

final lowest-level one used in instruction selection
• Create registers (temporaries) for values and

intermediate results
– Value can be safely allocated to a register when only 1

name can reference it
• Trouble: pointers, arrays, reference parameters

– Assign a virtual register to anything that can go into one
– Generate loads/stores for other values

UW CSE P 501 Autumn 2019 N-15

Instruction Selection Issues

• Given the low-level IR, there are many
possible code sequences that implement it
correctly
– e.g. to set %rax to 0 on x86, among others…

movq $0,%rax xorq %rax,%rax
subq %rax,%rax imulq %rax,0

– Many machine instructions do several things at
once – e.g., register arithmetic and effective
address calculation

leaq offset(%rbase,%rindex,scale),%rdst

UW CSE P 501 Autumn 2019 N-16

Instruction Selection Criteria

• Several possibilities
– Fastest
– Smallest
– Minimize power consumption (ex: don’t use a

function unit if leaving it powered-down is a win)
• Sometimes not obvious
– e.g., if one of the function units in the processor is idle

and we can select an instruction that uses that unit, it
effectively executes for free, even if that instruction
wouldn’t be chosen normally
• (Some interaction with scheduling here…)
• (and it might consume extra power, so bad if that

matters)
UW CSE P 501 Autumn 2019 N-17

Implementation

• Problem: We need some representation of the
target machine instruction set that facilitates
code generation

• Idea: Describe machine instructions using same
low-level IR used for program

• Use pattern matching techniques to pick machine
instructions that match fragments of the program
IR tree
– Want this to run quickly
– Would like to automate as much as possible

UW CSE P 501 Autumn 2019 N-18

Matching: How?
• Tree IR – pattern match on trees

– Tree patterns as input
– Each pattern maps to target machine instruction (or sequence)

• and at least one simple target match for each kind of tree node so we
can always generate something

– Various algorithms – max. munch, dynamic programming, …
• Linear IR – some sort of string matching

– Strings as input
– Each string maps to target machine instruction sequence
– Use text matching or peephole matching (parsing!, but with a

way, way ambiguous grammar for target machine)
• Both work well in practice; algorithms are quite different

UW CSE P 501 Autumn 2019 N-19

An Example Target Machine (1)

• Arithmetic Instructions – result in reg.
(unnamed) ri TEMP
ADD ri <- rj + rk

MUL ri <- rj * rk

SUB and DIV are similar

For some examples, we’ll assume there is at least one register
(R0) hardwired to be 0 always

UW CSE P 501 Autumn 2019 N-20

+

*

An Example Target Machine (2)

• Immediate Instructions
ADDI ri <- rj + c

SUBI ri <- rj - c

UW CSE P 501 Autumn 2019 N-21

+

CONST

+

CONST

CONST

-

CONST

An Example Target Machine (3)

• Load
LOAD ri <- M[rj + c]

UW CSE P 501 Autumn 2019 N-22

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

An Example Target Machine (4)

• Store – not an expression; no result
STORE M[rj + c] <- ri

UW CSE P 501 Autumn 2019 N-23

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

MOVE MOVE MOVE MOVE

An Example Target Machine (5)

• mem->mem copy – also not an expression
MOVEM M[rj] <- M[ri]

UW CSE P 501 Autumn 2019 N-24

MEM

MOVE

MEM

Tree Pattern Matching (1)

• Goal: Tile the low-level tree with operation
(instruction) trees

• A tiling is a collection of <node,op> pairs
– node is a node in the tree
– op is an operation tree
– <node,op> means that op could implement the

subtree at node

UW CSE P 501 Autumn 2019 N-25

Tree Pattern Matching (2)

• A tiling “implements” a tree if it covers every
node in the tree and the overlap between any
two tiles (trees) is limited to a single node
– If <node,op> is in the tiling, then node is also

covered by a leaf in another operation tree in the
tiling – unless it is the root

– Where two operation trees meet, they must be
compatible (i.e., expect the same value in the
same location)

UW CSE P 501 Autumn 2019 N-26

Example – Tree for a[i]:=x

UW CSE P 501 Autumn 2019 N-27

MEM

MOVE

MEM

+

CONST xFP

+

MEM

+

CONST aFP

*

CONST 4TEMP i

Generating Code

• Given a tiled tree, to generate code
– Do a postorder treewalk with node-dependant

order for children
– Each tile corresponds to a code sequence; emit

code sequences in order
– Connect tiles by using same register name to tie

boundaries together

UW CSE P 501 Autumn 2019 N-28

Tiling Algorithms (1)

• Maximal Munch
– Start at root of tree, find largest tile that fits. Cover

the root node and possibly other nearby nodes. Then
repeat for each subtree

– Generate instruction as each tile is placed
• Generates instructions in reverse order

– Generates an optimum tiling – tiles sum to lowest
possible cost
• But not optimal – there may be another tiling where two

adjacent tiles can be combined into one of lower cost

UW CSE P 501 Autumn 2019 N-29

Tiling Algorithms (2)

• Dynamic Programming
– There may be many tiles that could match at a

particular node
– Idea: Walk the tree and accumulate the set of all

possible tiles that could match at that point –
Tiles(n)

– Then: Select minimal cost for subtrees (bottom
up), and go top-down to select and emit lowest-
cost instructions

UW CSE P 501 Autumn 2019 N-30

Tile(Node n)
Tiles(n) <- empty;
if n has two children then

Tile(left child of n)
Tile(right child of n)
for each rule r that implements n

if (left(r) is in Tiles(left(n)) and right(r) is in Tiles(right(n)))
Tiles(n) <- Tiles(n) + r

else if n has one child then
Tile(child of n)
for each rule r that implements n

if(left(r) is in Tiles(child(n)))
Tiles(n) <- Tiles(n) + r

else /* n is a leaf */
Tiles(n) <- { all rules that implement n }

UW CSE P 501 Autumn 2019 N-31

Tools

• iburg and burg and others use a combination
of dynamic programming and tree pattern
matching to find optimal translations

• Product of years of research going back to
peephole optimizers

• Not really a research area now (just like
parsing), but still room for newer/better tools

UW CSE P 501 Autumn 2019 N-32

Addendum

• Following slides skipped 19au but retained for
anyone who is interested in exploring further
(see burg/iburg papers)

UW CSE P 501 Autumn 2019 N-33

Peephole Optimization

• Idea: Find pairs of instructions (not necessarily
adjacent) and replace them with something
better

• Instead of
t2 = &c
t3 = *t2

use
t3 = c

UW CSE P 501 Autumn 2019 N-34

Which Pairs?

• Chris Fraser noticed that useful pairs were
connected by DU chains, so

• Plan: consider each instruction together with
instructions that feed it

• DU chains reach across blocks, so instruction
selector can work globally
– Works great with SSA too

UW CSE P 501 Autumn 2019 N-35

Patterns

• Reduce pairs of instructions to schematics
t5 = 4
t6 = t4 + t5

becomes
%reg1 = %con
%reg3 = %reg2 + %reg1

• Find in hash table; if found, replace
%reg3 = %reg2 + %con

UW CSE P 501 Autumn 2019 N-36

Tree-Based Representation

• The tree makes the DU chains explicit
• Each definition in the tree is used once
• Typically a basic block would have a sequence

of expression trees

UW CSE P 501 Autumn 2019 N-37

Example

Code for i = c + 4
[c a char; i an int]
t1 = &i
t2 = &c
t3 = *t2
t4 = cvci(t3)
t5 = 4
t6 = t4+t5
*t1 = t6

UW CSE P 501 Autumn 2019 N-38

=

&i +

4c2i

ld

&c

Tree Patterns

• An iburg spec is a set of rules. BNF:
rule = nonterm : tree = integer (cost)
tree = term (tree , tree)

| term (tree)
| term
| nonterm

• Terminals are IL operations
• Nonterminals name sets of rules

UW CSE P 501 Autumn 2019 N-39

Rules

• Rules are numbered to the right of the = sign
• The cost of a rule is its cost (often 0) plus the

cost of any subtrees
• A rule may be nested to define a pattern that

matches more than one level in a tree

UW CSE P 501 Autumn 2019 N-40

Example
stmt : ASSIGN(addr, reg) = 1 (1)
stmt : reg = 2 (0)
reg : ADD(reg, rc) = 3 (1)
reg : ADD(rc, reg) = 4 (1)
reg : LD(addr) = 5 (1)
reg : C2I(LD(addr)) = 6 (1)
reg : addr = 7 (1)
reg : con = 8 (1)
addr : ADD(reg, con) = 9 (0)
addr : ADD(con, reg) = 10 (0)
addr : ADDRLP = 11 (0) // addr of local var
rc : con = 12 (0)
rc : reg = 13 (0)
con : CNST = 14 (0)

UW CSE P 501 Autumn 2019 N-41

Algorithm

• Pass I: bottom up
– Label each node with lowest cost rule to produce

result from available operands
(cost = cost of rule + cost of subtrees)

– Label is: (r, c) = best is rule r, cost is c
• Pass II: top down
– Find cheapest node that generates result needed

by parent tree
– Emit instructions in reverse order as choices are

made

UW CSE P 501 Autumn 2019 N-42

Bottom-up (Labeling)

stmt : ASSIGN(addr, reg) = 1 (1)
stmt : reg = 2 (0)
reg : ADD(reg, rc) = 3 (1)
reg : ADD(rc, reg) = 4 (1)
reg : LD(addr) = 5 (1)
reg : C2I(LD(addr)) = 6 (1)
reg : addr = 7 (1)
reg : con = 8 (1)
addr : ADD(reg, con) = 9 (0)
addr : ADD(con, reg) = 10 (0)
addr : ADDRLP = 11 (0)
rc : con = 12 (0)
rc : reg = 13 (0)
con : CNST = 14 (0)

UW CSE P 501 Autumn 2019 N-43

=

&i +

4c2i

ld

&c

a

b c

ed

f

g

op stmt reg addr rc con

a

b

c

d

e

f

g

Top-Down (Reduction)

stmt : ASSIGN(addr, reg) = 1 (1)
stmt : reg = 2 (0)
reg : ADD(reg, rc) = 3 (1)
reg : ADD(rc, reg) = 4 (1)
reg : LD(addr) = 5 (1)
reg : C2I(LD(addr)) = 6 (1)
reg : addr = 7 (1)
reg : con = 8 (1)
addr : ADD(reg, con) = 9 (0)
addr : ADD(con, reg) = 10 (0)
addr : ADDRLP = 11 (0)
rc : con = 12 (0)
rc : reg = 13 (0)
con : CNST = 14 (0)

UW CSE P 501 Autumn 2019 N-44

=

&i +

4c2i

ld

&c

a

b c

ed

f

g

op stmt reg addr rc con

a (1,3)

b (2,1) (7,1) (11,0) (13,1)

c (2,2) (3,2) (9,1) (13,2)

d (2,1) (6,1) (13,1)

e (2,1) (8,1) (12,0) (14,0)

f (2,1) (5,1) (13,1)

g (2,1) (7,1) (11,0) (13,1)

Coming Attractions

• Instruction Scheduling
• Register Allocation
• And more….

UW CSE P 501 Autumn 2019 N-45

