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Agenda

• Compiler back-end organization
• Instruction selection – tree pattern matching

• Credits: Slides by Keith Cooper (Rice); Appel ch. 9; burg/iburg slides (extras 
at end) by Preston Briggs, CSE 501 Sp09

• Burg/iburg paper: “Engineering a Simple, Efficient Code Generator”, 
Fraser, Hanson, & Proebsting, ACM LOPLAS v1, n3 (Sept. 1992)
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Compiler Organization
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Big Picture

• Compiler consists of lots of fast stuff followed 
by hard problems
– Scanner: O(n)
– Parser: O(n)
– Analysis & Optimization:  ~ O(n log n)
– Instruction selection: fast or NP-Complete
– Instruction scheduling: NP-Complete
– Register allocation: NP-Complete
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IR for Code Generation

• Assume a (very) low-level IR
– 3 address, register-register instructions + 

load/store
r1 <- r2 op r3

– Could be tree structure or linear
– Expose as much detail as possible

• Assume “enough” (i.e., ¥) registers
– Invent new temporaries for intermediate results
– Map to actual registers later
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Overview: Instruction Selection

• Map IR into assembly code
• Assume known storage layout and code shape
– i.e., the optimization phases have already done 

their thing

• Combine low-level IR operations into machine 
instructions (take advantage of addressing 
modes, etc.)
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Overview: Instruction Scheduling 

• Reorder instructions to minimize execution time
– hide latencies – processor function units, 

memory/cache stalls
– Originally invented for supercomputers (60s)
– Required to get reasonable (or correct!) code on 

classic RISC architectures (basically 3-address code)
– Still important on most machines

• Even non-RISC machines, e.g., x86 family
• Even if processor reorders on the fly
Good schedules help processor do a better job

• Assume fixed program at this point
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Overview: Register Allocation

• Map values to actual registers
– Previous phases change need for registers

• Add code to spill values to temporaries as 
needed, etc.

• Usually worth doing another instruction 
scheduling pass afterwards if spill code 
inserted
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How Hard?

• Instruction selection
– Can make locally optimal choices
– Global is undoubtedly NP-Complete

• Instruction scheduling
– Single basic block – quick heuristics
– General problem – NP Complete

• Register allocation
– Single basic block, no spilling, interchangeable 

registers – linear
– General – NP Complete
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Conventional Wisdom
• We typically lose little by solving these independently

– But not always, of course (iterating phases on x86[-64] can help 
because of limited registers, memory operands)

• Instruction selection
– Use some form of pattern matching
– ¥ virtual registers – create as needed

• Instruction scheduling
– Within a block, list scheduling is close to optimal
– Across blocks: extended basic blocks or trace scheduling if list 

scheduling not good enough
• Register allocation

– Start with unlimited virtual registers and map to some subset of 
K real registers
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An Simple Low-Level IR (1)

• Details not important for our purposes; point is to 
get a feeling for the level of detail involved
– This example is from Appel

• Expressions
– CONST(i) – integer constant i
– TEMP(t) – temporary t (i.e., register)
– BINOP(op,e1,e2) – application of op to e1,e2
– MEM(e) – contents of memory at address e

• Means value when used in an expression
• Means address when used on left side of assignment

– CALL(f,args) – apply function f to argument list args
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Simple Low-Level IR (2)

• Statements
– MOVE(TEMP t, e) – evaluate e and store in temporary t
– MOVE(MEM(e1), e2) – evaluate e1 to yield address a; 

evaluate e2 and store at a
– EXP(e) – evaluate expressions e and discard result
– SEQ(s1,s2) – execute s1 followed by s2
– NAME(n) – assembly language label n
– JUMP(e) – jump to e, which can be a NAME label, or more 

complex (e.g., switch)
– CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to 

label t, otherwise jump to f
– LABEL(n) – defines location of label n in the code
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Low-Level IR Example (1)

• Access a local variable at a known offset k 
from the frame pointer fp
– Linear

MEM(BINOP(PLUS, TEMP fp, CONST k))

– Tree
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Low-Level IR Example (2)

• Access an array element e[k], where each 
element takes up w storage locations
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Generating Low-Level IR
• Assuming initial IR is an AST, a simple treewalk can be 

used to generate the low-level IR
– Can be done before, during, or after optimizations in the 

middle part of the compiler
• Typically AST is lowered to some lower-level IR, but maybe not 

final lowest-level one used in instruction selection
• Create registers (temporaries) for values and 

intermediate results
– Value can be safely allocated to a register when only 1 

name can reference it
• Trouble: pointers, arrays, reference parameters

– Assign a virtual register to anything that can go into one
– Generate loads/stores for other values
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Instruction Selection Issues

• Given the low-level IR, there are many 
possible code sequences that implement it 
correctly
– e.g. to set %rax to 0 on x86, among others…

movq $0,%rax xorq %rax,%rax
subq %rax,%rax imulq %rax,0

– Many machine instructions do several things at 
once – e.g., register arithmetic and effective 
address calculation

leaq offset(%rbase,%rindex,scale),%rdst
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Instruction Selection Criteria

• Several possibilities
– Fastest
– Smallest
– Minimize power consumption (ex: don’t use a 

function unit if leaving it powered-down is a win)
• Sometimes not obvious
– e.g., if one of the function units in the processor is idle 

and we can select an instruction that uses that unit, it 
effectively executes for free, even if that instruction 
wouldn’t be chosen normally
• (Some interaction with scheduling here…)
• (and it might consume extra power, so bad if that 

matters)
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Implementation

• Problem: We need some representation of the 
target machine instruction set that facilitates 
code generation

• Idea: Describe machine instructions using same 
low-level IR used for program

• Use pattern matching techniques to pick machine 
instructions that match fragments of the program 
IR tree
– Want this to run quickly
– Would like to automate as much as possible
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Matching: How?
• Tree IR – pattern match on trees

– Tree patterns as input
– Each pattern maps to target machine instruction (or sequence) 

• and  at least one simple target match for each kind of tree node so we 
can always generate something

– Various algorithms – max. munch, dynamic programming, …
• Linear IR – some sort of string matching

– Strings as input
– Each string maps to target machine instruction sequence
– Use text matching or peephole matching (parsing!, but with a 

way, way ambiguous grammar for target machine)
• Both work well in practice; algorithms are quite different

UW CSE P 501 Autumn 2019 N-19



An Example Target Machine (1)

• Arithmetic Instructions – result in reg.
(unnamed)  ri TEMP
ADD ri <- rj + rk

MUL ri <- rj * rk

SUB and DIV are similar

For some examples, we’ll assume there is at least one register 
(R0) hardwired to be 0 always
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An Example Target Machine (2)

• Immediate Instructions
ADDI ri <- rj + c

SUBI ri <- rj - c
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An Example Target Machine (3)

• Load
LOAD  ri <- M[rj + c]
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An Example Target Machine (4)

• Store – not an expression; no result
STORE  M[rj + c] <- ri
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An Example Target Machine (5)

• mem->mem copy – also not an expression
MOVEM  M[rj] <- M[ri]
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Tree Pattern Matching (1)

• Goal: Tile the low-level tree with operation 
(instruction) trees

• A tiling is a collection of <node,op> pairs
– node is a node in the tree
– op is an operation tree
– <node,op> means that op could implement the 

subtree at node
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Tree Pattern Matching  (2)

• A tiling “implements” a tree if it covers every 
node in the tree and the overlap between any 
two tiles (trees) is limited to a single node
– If <node,op> is in the tiling, then node is also 

covered by a leaf in another operation tree in the 
tiling – unless it is the root

– Where two operation trees meet, they must be 
compatible (i.e., expect the same value in the 
same location)
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Example – Tree for a[i]:=x
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Generating Code

• Given a tiled tree, to generate code
– Do a postorder treewalk with node-dependant

order for children
– Each tile corresponds to a code sequence; emit 

code sequences in order
– Connect tiles by using same register name to tie 

boundaries together
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Tiling Algorithms (1)

• Maximal Munch
– Start at root of tree, find largest tile that fits.  Cover 

the root node and possibly other nearby nodes.  Then 
repeat for each subtree

– Generate instruction as each tile is placed
• Generates instructions in reverse order

– Generates an optimum tiling – tiles sum to lowest 
possible cost
• But not optimal – there may be another tiling where two 

adjacent tiles can be combined into one of lower cost
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Tiling Algorithms (2)

• Dynamic Programming
– There may be many tiles that could match at a 

particular node
– Idea: Walk the tree and accumulate the set of all 

possible tiles that could match at that point –
Tiles(n)

– Then: Select minimal cost for subtrees (bottom 
up), and go top-down to select and emit lowest-
cost instructions
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Tile(Node n)
Tiles(n) <- empty;
if n has two children then

Tile(left child of n)
Tile(right child of n)
for each rule r that implements n

if (left(r) is in Tiles(left(n)) and right(r) is in Tiles(right(n)))
Tiles(n) <- Tiles(n) + r

else if n has one child then
Tile(child of n)
for each rule r that implements n

if(left(r) is in Tiles(child(n)))
Tiles(n) <- Tiles(n) + r

else /* n is a leaf */
Tiles(n) <- { all rules that implement n }
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Tools

• iburg and burg and others use a combination 
of dynamic programming and tree pattern 
matching to find optimal translations

• Product of years of research going back to 
peephole optimizers

• Not really a research area now (just like 
parsing), but still room for newer/better tools
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Addendum

• Following slides skipped 19au but retained for 
anyone who is interested in exploring further 
(see burg/iburg papers)
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Peephole Optimization 

• Idea: Find pairs of instructions (not necessarily 
adjacent) and replace them with something 
better

• Instead of
t2 = &c
t3 = *t2

use
t3 = c
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Which Pairs?

• Chris Fraser noticed that useful pairs were 
connected by DU chains, so

• Plan: consider each instruction together with 
instructions that feed it

• DU chains reach across blocks, so instruction 
selector can work globally
– Works great with SSA too
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Patterns

• Reduce pairs of instructions to schematics
t5 = 4
t6 = t4 + t5

becomes
%reg1 = %con
%reg3 = %reg2 + %reg1

• Find in hash table; if found, replace
%reg3 = %reg2 + %con
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Tree-Based Representation

• The tree makes the DU chains explicit
• Each definition in the tree is used once
• Typically a basic block would have a sequence 

of expression trees
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Example

Code for i = c + 4 
[c a char; i an int]
t1 = &i
t2 = &c
t3 = *t2
t4 = cvci(t3)
t5 = 4
t6 = t4+t5
*t1 = t6
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Tree Patterns

• An iburg spec is a set of rules.  BNF:
rule = nonterm : tree = integer (cost)
tree = term (tree , tree)

| term (tree)
| term
| nonterm

• Terminals are IL operations
• Nonterminals name sets of rules
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Rules

• Rules are numbered to the right of the = sign
• The cost of a rule is its cost (often 0) plus the 

cost of any subtrees
• A rule may be nested to define a pattern that 

matches more than one level in a tree
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Example
stmt : ASSIGN(addr, reg) = 1 (1)
stmt : reg = 2 (0)
reg : ADD(reg, rc) = 3 (1)
reg : ADD(rc, reg) = 4 (1)
reg : LD(addr) = 5 (1)
reg : C2I(LD(addr)) = 6 (1)
reg : addr = 7 (1)
reg : con = 8 (1)
addr : ADD(reg, con) = 9 (0)
addr : ADD(con, reg) = 10 (0)
addr : ADDRLP = 11 (0)   // addr of local var
rc : con = 12 (0)
rc : reg = 13 (0)
con : CNST = 14 (0)
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Algorithm

• Pass I: bottom up
– Label each node with lowest cost rule to produce 

result from available operands 
(cost = cost of rule + cost of subtrees)

– Label is: (r, c) = best is rule r, cost is c
• Pass II: top down
– Find cheapest node that generates result needed 

by parent tree
– Emit instructions in reverse order as choices are 

made
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Bottom-up (Labeling)

stmt : ASSIGN(addr, reg) = 1 (1)
stmt : reg = 2 (0)
reg : ADD(reg, rc) = 3 (1)
reg : ADD(rc, reg) = 4 (1)
reg : LD(addr) = 5 (1)
reg : C2I(LD(addr)) = 6 (1)
reg : addr = 7 (1)
reg : con = 8 (1)
addr : ADD(reg, con) = 9 (0)
addr : ADD(con, reg) = 10 (0)
addr : ADDRLP = 11 (0)
rc : con = 12 (0)
rc : reg = 13 (0)
con : CNST = 14 (0)

UW CSE P 501 Autumn 2019 N-43

=

&i +

4c2i

ld

&c

a

b c

ed

f

g

op stmt reg addr rc con

a

b

c

d

e

f

g



Top-Down (Reduction)

stmt : ASSIGN(addr, reg) = 1 (1)
stmt : reg = 2 (0)
reg : ADD(reg, rc) = 3 (1)
reg : ADD(rc, reg) = 4 (1)
reg : LD(addr) = 5 (1)
reg : C2I(LD(addr)) = 6 (1)
reg : addr = 7 (1)
reg : con = 8 (1)
addr : ADD(reg, con) = 9 (0)
addr : ADD(con, reg) = 10 (0)
addr : ADDRLP = 11 (0)
rc : con = 12 (0)
rc : reg = 13 (0)
con : CNST = 14 (0)
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op stmt reg addr rc con

a (1,3)

b (2,1) (7,1) (11,0) (13,1)

c (2,2) (3,2) (9,1) (13,2)

d (2,1) (6,1) (13,1)

e (2,1) (8,1) (12,0) (14,0)

f (2,1) (5,1) (13,1)

g (2,1) (7,1) (11,0) (13,1)



Coming Attractions

• Instruction Scheduling
• Register Allocation
• And more….

UW CSE P 501 Autumn 2019 N-45


