
CSE P 501 – Compilers

Code Shape I – Basic Constructs
Hal Perkins

Autumn 2019

UW CSE P 501 Autumn 2019 K-1

Administrivia

• Semantics/type check due next Monday
– Be sure to (re-)read the MiniJava project overview
carefully as well as the semantics/type-checking
assignment to be sure you catch all the things in
MiniJava

UW CSE P 501 Autumn 2019 K-2

Agenda

• Mapping source code to x86-64
– Mapping for other common architectures is similar

• This lecture: basic statements and expressions
– We’ll go quickly since this is review for many, fast

orientation for others, and pretty straightforward
• Next: Object representation, method calls, and

dynamic dispatch
• Later: specific details for the project

Note: These slides include more than is specifically needed for the course project

UW CSE P 501 Autumn 2019 K-3

Review: Variables

• For us, all data will be either:
– In a stack frame (method local variables)
– In an object (instance variables)

• Local variables accessed via %rbp
movq -16(%rbp),%rax

• Object instance variables accessed via an
offset from an object address in a register
– Details later

UW CSE P 501 Autumn 2019 K-4

Conventions for Examples

• Examples show code snippets in isolation
– Much the way we’ll generate code for different parts

of the AST in a compiler visitor pass
• Register %rax used here as a generic example
– Rename as needed for more complex code using

multiple registers
• 64-bit data used everywhere
• A few peephole optimizations shown for a flavor

of what’s possible
– Some might be easy to do in the compiler project

UW CSE P 501 Autumn 2019 K-5

What we’re skipping for now

• Real code generator needs to deal with many
things like:
– Which registers are busy at which point in the

program
– Which registers to spill into memory when a new

register is needed and no free ones are available
– Dealing with different sizes of data
– Exploiting the full instruction set

UW CSE P 501 Autumn 2019 K-6

Code Generation for Constants

• Source
17

• x86-64
movq $17,%rax

– Idea: realize constant value in a register

• Optimization: if constant is 0
xorq %rax,%rax

(but some processors do better with movq $0,%rax – and this
has changed over time, too)

UW CSE P 501 Autumn 2019 K-7

Assignment Statement

• Source
var = exp;

• x86-64
<code to evaluate exp into, say, %rax>
movq %rax,offsetvar(%rbp)

UW CSE P 501 Autumn 2019 K-8

Unary Minus

• Source
-exp

• x86-64
<code evaluating exp into %rax>
negq %rax

• Optimization
– Collapse -(-exp) to exp

• Unary plus is a no-op

UW CSE P 501 Autumn 2019 K-9

Binary +

• Source
exp1 + exp2

• x86-64
<code evaluating exp1 into %rax>
<code evaluating exp2 into %rdx>
addq %rdx,%rax

UW CSE P 501 Autumn 2019 K-10

Binary +
• Some optimizations
– If exp2 is a simple variable or constant, don’t need

to load it into another register first. Instead:
addq exp2,%rax

– Change exp1 + (-exp2) into exp1-exp2

– If exp2 is 1
incq %rax
• Somewhat surprising: whether this is better than

addq $1,%rax depends on processor implementation
and has changed over time

UW CSE P 501 Autumn 2019 K-11

Binary -, *

• Same as +
– Use subq for – (but not commutative!)
– Use imulq for *

• Some optimizations
– Use left shift to multiply by powers of 2
– If your multiplier is slow or you’ve got free scalar units and

multiplier is busy, you can do 10*x = (8*x)+(2*x)
• But might be slower depending on microarchitecture

– Use x+x instead of 2*x, etc. (often faster)
– Can use leaq (%rax,%rax,4),%rax to compute 5*x, then

addq %rax,%rax to get 10*x, etc. etc.
– Use decq for x-1 (but check: subq $1 might be faster)

UW CSE P 501 Autumn 2019 K-12

Signed Integer Division
• Ghastly on x86-64

– Only works on 128-bit int divided by 64-bit int
• (similar instructions for 64-bit divided by 32-bit in 32-bit x86)

– Requires use of specific registers
– Very slow

• Source
exp1 / exp2

• x86-64
<code evaluating exp1 into %rax ONLY>
<code evaluating exp2 into %ebx>
cqto # extend to %rdx:%rax, clobbers %rdx
idivq %ebx # quotient in %rax, remainder in %rdx

UW CSE P 501 Autumn 2019 K-13

Control Flow

• Basic idea: decompose higher level operation
into conditional and unconditional gotos

• In the following, jfalse is used to mean jump
when a condition is false
– No such instruction on x86-64
– Will have to realize with appropriate instruction to

set condition codes followed by conditional jump
– Normally don’t need to actually generate the

value “true” or “false” in a register
• But this can be a useful shortcut hack for the project

UW CSE P 501 Autumn 2019 K-14

While

• Source
while (cond) stmt

• x86-64
test: <code evaluating cond>

jfalse done
<code for stmt>
jmp test

done:
– Note: In generated asm code we need to have unique

labels for each loop, conditional statement, etc.

UW CSE P 501 Autumn 2019 K-15

Aside – Instruction execution

• Actual execution of an instruction has multiple
steps/phases inside a processor. Fairly typical
steps for a simple processor:
– IF: instruction fetch. Load instruction from

memory/cache into internal processor register(s)
– ID: instruction decode / read operand registers
– EX: execute or calculate memory addresses
– MEM: access memory (not all instructions)
– WB: write back – store result

• (x86-64 is waaaaay more complex, but basic ideas are the same)
• See 351 textbook, sec. 4.4, 4.5, etc. for more details

UW CSE P 501 Autumn 2019 K-16

Pipelining (on 1 slide, oversimplified)

• If instructions are independent, we can execute
them on an assembly line – start processing the
next one while previous one is in some later
stage. Ideally we could overlap like this:
1. IF ID EX MEM WB
2. IF ID EX MEM WB
3. IF ID EX MEM WB
4. IF ID EX MEM WB
5. IF ID …

• Modern processors have multiple function units
and buffers to support this

UW CSE P 501 Autumn 2019 K-17

Pipelining bottlenecks

• This strategy works great – if the instructions are
independent. Things that cause problems:
– Output of one instruction needed for next one: next one

can’t proceed until data is available from earlier one
– Jumps: If there’s a conditional jump, the processor has to

either stall the pipeline until we decide whether to jump, or
make a guess and be prepared to “undo” if it guesses wrong

• Processors have lots of hardware to try to “guess right”
and avoid delays caused by these dependencies, but …

• Compilers can help the processor by generating code to
minimize these issues

UW CSE P 501 Autumn 2019 K-18

Optimization for While
• Put the test at the end:

jmp test
loop: <code for stmt>
test: <code evaluating cond>

jtrue loop

• Why bother?
– Pulls one jmp instruction out of the loop
– May avoid a pipeline stall on jmp on each iteration

• Although modern processors will often predict control flow and
avoid the stall – x86-64 does this particularly well

• Easy to do from AST or other IR; not so easy if generating code
on the fly (e.g., recursive descent 1-pass compiler)

UW CSE P 501 Autumn 2019 K-19

Do-While

• Source
do stmt while(cond)

• x86-64
loop: <code for stmt>

<code evaluating cond>
jtrue loop

UW CSE P 501 Autumn 2019 K-20

If

• Source
if (cond) stmt

• x86-64
<code evaluating cond>
jfalse skip
<code for stmt>

skip:

UW CSE P 501 Autumn 2019 K-21

If-Else

• Source
if (cond) stmt1 else stmt2

• x86-64
<code evaluating cond>
jfalse else
<code for stmt1>
jmp done

else: <code for stmt2>
done:

UW CSE P 501 Autumn 2019 K-22

Jump Chaining

• Observation: naïve implementation can
produce jumps to jumps (if … elseif … else; or
nested loops or conditionals, …)

• Optimization: if a jump has as its target an
unconditional jump, change the target of the
first jump to the target of the second
– Repeat until no further changes
– Often done in peephole optimization pass after

initial code generation

UW CSE P 501 Autumn 2019 K-23

Boolean Expressions

• What do we do with this?
x > y

• Expression that evaluates to true or false
– Could generate the value (0/1 or whatever the

local convention is)
– But normally we don’t want/need the value –

we’re only trying to decide whether to jump
• (Although for our project we might simplify and always

produce the value)

UW CSE P 501 Autumn 2019 K-24

Code for exp1 > exp2

• Basic idea: Generated code depends on context:
– What is the jump target?
– Jump if the condition is true or if false?

• Example: evaluate exp1 > exp2, jump on false,
target if jump taken is L123

<evaluate exp1 into %rax>
<evaluate exp2 into %rdx>
cmpq %rdx,%rax
jng L123

UW CSE P 501 Autumn 2019 K-25

Boolean Operators: !

• Source
! exp

• Context: evaluate exp and jump to L123 if
false (or true)

• To compile !, just reverse the sense of the test:
evaluate exp and jump to L123 if true (or
false)

UW CSE P 501 Autumn 2019 K-26

Boolean Operators: && and ||

• In C/C++/Java/C#/many others, these are
short-circuit operators
– Right operand is evaluated only if needed

• Basically, generate the if statements that jump
appropriately and only evaluate operands
when needed

UW CSE P 501 Autumn 2019 K-27

Example: Code for &&

• Source
if (exp1 && exp2) stmt

• x86-64
<code for exp1>
jfalse skip
<code for exp2>
jfalse skip
<code for stmt>

skip:

UW CSE P 501 Autumn 2019 K-28

Example: Code for ||

• Source
if (exp1 || exp2) stmt

• x86-64
<code for exp1>
jtrue doit
<code for exp2>
jfalse skip

doit: <code for stmt>
skip:

UW CSE P 501 Autumn 2019 K-29

Realizing Boolean Values

• If a boolean value needs to be stored in a
variable or method call parameter, generate
code needed to actually produce it

• Typical representations: 0 for false, +1 or -1 for
true
– C specifies 0 and 1 if stored; we’ll use that
– Best choice can depend on machine instructions &

language; normally some convention is picked
during the primeval history of the architecture

UW CSE P 501 Autumn 2019 K-30

Boolean Values: Example
• Source

var = bexp;
• x86-64

<code for bexp>
jfalse genFalse
movq $1,%rax
jmp storeIt

genFalse:
movq $0,%rax # or xorq

storeIt:
movq %rax,offsetvar(%rbp) # generated by asg stmt

UW CSE P 501 Autumn 2019 K-31

Better, If Enough Registers
• Source

var = bexp;
• x86-64

xorq %rax,%rax # or movq $0,%rax
<code for bexp>
jfalse store
incq %rax # or movq $1,%rax

store:
movq %rax,offsetvar(%rbp) # generated by asg

• Better: use movecc instruction to avoid conditional jump
• Can also use conditional move instruction for sequences like

x = y<z ? y : z
UW CSE P 501 Autumn 2019 K-32

Better yet: setcc

• Source
var = x < y;

• x86-64
movq offsetx(%rbp),%rax # load x
cmpq offsety(%rbp),%rax # compare to y
setl %al # set low byte %rax to 0/1
movzbq %al,%rax # zero-extend to 64 bits
movq %rax,offsetvar(%rbp) # gen. by asg stmt

UW CSE P 501 Autumn 2019 K-33

Other Control Flow: switch

• Naïve: generate a chain of nested if-else if
statements

• Better: switch statement is intended to allow O(1)
selection, provided the set of switch values is
reasonably compact

• Idea: create a 1-D array of jumps or labels and
use the switch expression to select the right one
– Need to generate the equivalent of an if statement to

ensure that expression value is within bounds

UW CSE P 501 Autumn 2019 K-34

Switch

• Source
switch (exp) {

case 0: stmts0;
case 1: stmts1;
case 2: stmts2;

}

“break” is an unconditional
jump to the end of switch

• x86-64:
<put exp in %rax>
“if (%rax < 0 || %rax > 2)

jmp defaultLabel”
movq swtab(,%rax,8),%rax
jmp *%rax

.data
swtab:

.quad L0

.quad L1

.quad L2

.text
L0: <stmts0>
L1: <stmts1>
L2: <stmts2>

UW CSE P 501 Autumn 2019 K-35

Arrays

• Several variations
• C/C++/Java
– 0-origin: an array with n elements contains

variables a[0]…a[n-1]
– 1 dimension (Java); 1 or more dimensions using

row major order (C/C++)
• Key step is evaluate subscript expression, then

calculate the location of the corresponding
array element

UW CSE P 501 Autumn 2019 K-36

0-Origin 1-D Integer Arrays

• Source
exp1[exp2]

• x86-64
<evaluate exp1 (array address) into %rax>
<evaluate exp2 into %rdx>
address is (%rax,%rdx,8) # if 8 byte elements

UW CSE P 501 Autumn 2019 K-37

2-D Arrays

• Subscripts start with 0
• C/C++, etc. specify row-major order
– E.g., an array with 3 rows and 2 columns is stored in

sequence: a(0,0), a(0,1), a(1,0), a(1,1), a(2,0), a(2,1)
• Fortran specifies column-major order
– Exercises: What is the layout? How do you calculate

location of a[i][j]? What happens when you pass array
references between Fortran and C/C++ code?

• Java does not have “real” 2-D arrays. A Java 2-D
array is a pointer to a list of pointers to the rows
– And rows may have different lengths (ragged arrays)

UW CSE P 501 Autumn 2019 K-38

a[i][j] in C/C++/etc.

• If a is a “real” 0-origin, 2-D array, to find a[i][j], we
need to know:
– Values of i and j
– How many columns (but not rows!) the array has

• Location of a[i][j] is:
– Location of a + (i*(#of columns) + j) * sizeof(elt)

• Can factor to pull out allocation-time constant
part and evaluate that once – no recalculating at
runtime; only calculate part depending on i, j
– Details in most compiler books

UW CSE P 501 Autumn 2019 K-39

Coming Attractions

• Code Generation for Objects
– Representation
– Method calls
– Inheritance and overriding

• Strategies for implementing code generators
• Code improvement – optimization

UW CSE P 501 Autumn 2019 K-40

