
CSE P 501 – Compilers

ASTs, Modularity, and the Visitor Pattern
Hal Perkins

Autumn 2019

UW CSE P 501 Autumn 2019 H-1

Administrivia

• Scanner due Thursday night
– Push to Gitlab then tag scanner-final and push tag.

• GitLab accounts OK? Any other logistics issues?

– Should be fairly straightforward, but do need to figure out what tokens
exist in MiniJava

– Remember that the scanner doesn’t know or care if the token stream
makes any sense as a MiniJava program.

– Will do our best to sanity check over the weekend before parser/AST

• New HW3 (LR constr., LL grammars – today’s stuff) out tomorrow,
due next Monday night

• Parser due in 2 weeks, out now
– Add parser rules for MiniJava + semantics to build AST
– Add new visitor to print AST as an indented tree structure

• Not the same as the AST->source formatter in starter code
• Needed in any compiler: formatted output of key data structure(s)

UW CSE P 501 Autumn 2019 H-2

Agenda

• Representation of ASTs as Java objects
• Parser semantic actions and AST generation
• AST operations: modularity and encapsulation
• Visitor pattern: basic ideas and variations
• Some of the “why” behind the “how”

• For the project, see the MiniJava web site and
starter code for more details / ideas

UW CSE P 501 Autumn 2019 H-3

Abstract Syntax Trees (ASTs - review)

• Idea: capture the
essential structure of a
program; omit
extraneous details
– i.e, only what the rest of

the compiler needs
– omit things used only to

guide the parse (e.g.,
punctuation, chain
productions, keywords)

• Example
while (n > 0)

n = n - 1;

UW CSE P 501 Autumn 2019 H-4

Abstract Syntax Trees in Java
• Use objects as simple tree nodes (basically structs

with constructors and maybe some convenience
methods). Instance variables:
– Subtree pointers
– Source program coordinates (line numbers, …)
– Later, links to semantic info (symbol tables, types)
– …
– But not much more!

• Use Java type system and inheritance to factor
common AST node information and allow
polymorphic treatment of related nodes

UW CSE P 501 Autumn 2019 H-5

MiniJava Starter Code

• AST type hierarchy: root is ASTNode. Some subclasses:
– Exp (subclasses: And, Plus, Times, True, Call, …)

– Statement (subclasses: While, Assign, If, Print, …)

– Type (abstract rep. of types, not source code type
declarations – more about that when we get to semantics)

– Declarations, Classes, others parts of abstract grammar, …

• Additional information in all AST nodes

– Source code position info (hooks in starter JFlex and CUP
rules to capture this, use in error messages, AST printout)

– accept methods for visitors (more later this lecture)

• Not required to use this AST, but it is strongly advised

UW CSE P 501 Autumn 2019 H-6

AST Generation

• Idea: each time the parser recognizes a
complete production, it produces as its result
an AST node (with links to the subtrees that
are the components of the production)

• When we finish parsing, the result of the goal
symbol is the complete AST for the program

UW CSE P 501 Autumn 2019 H-7

UW CSE P 501 Autumn 2019 H-8

Example: AST generation for a
Recursive-Descent Parser
// parse while (exp) stmt

WhileNode whileStmt() {

// skip “while (”

skipToken(WHILE);

skipToken(LPAREN);

// parse exp

ExpNode cond = exp();

(continued next col.)

// skip “)”

skipToken(RPAREN);

// parse stmt

StmtNode body = stmt();

// return AST node for while

return new WhileNode (cond, body);

}

AST Generation in YACC/CUP

• A result type can be specified for each item in
the grammar specification

• Each parser rule can be annotated with a
semantic action, which is just a piece of Java
code that returns a value of the result type

• The semantic action is executed when the rule
is reduced

UW CSE P 501 Autumn 2019 H-9

UW CSE P 501 Autumn 2019 H-10

YACC/CUP Parser Specification

• CUP code
non terminal StmtNode stmt, whileStmt;
non terminal ExpNode exp;
…
stmt ::= …

| WHILE LPAREN exp:e RPAREN stmt:s
{: RESULT = new WhileNode(e,s); :}

;

– See the starter code for examples showing how to capture additional
things in the AST like line numbers

Operations on ASTs

• Once we have the AST, we may want to:
– Print a readable dump of the tree
– Print a parseable (source-code) version of the tree (so-

called pretty-printing)
– Do static semantic analysis:

• Type checking
• Verify that things are declared and initialized properly
• Etc. etc. etc. etc.

– Perform optimizing transformations on the tree
– Generate code from the tree, or
– Generate another IR from the tree for further

processing

UW CSE P 501 Autumn 2019 H-11

Modularity

• Classic slogans:
– Do one thing well
–Minimize coupling, maximize cohesion
– Isolate operations/abstractions in modules
– Hide implementation details

• Okay, so where in the MiniJava compiler does
the typechecker module belong?

UW CSE P 501 Autumn 2019 H-12

Where do the Operations Go?

• Pure “object-oriented” style
– Really, really, really smart AST nodes
– Each node knows how to perform every operation on itself

public class WhileNode extends StmtNode {
public WhileNode(…);
public typeCheck(…);
public StrengthReductionOptimize(…);
public DeadCodeEliminationOptimize(…);
public generateCode(…);
public prettyPrint(…);
…

}

UW CSE P 501 Autumn 2019 H-13

Critique

• This is nicely encapsulated – all details about a
WhileNode are hidden in that class

• But it is poor modularity
• What happens if we want to add a new

optimization (or any other) operation?
– Have to modify every node class L

• Worse: the details of any particular operation
(optimization, type checking) are scattered
across the node classes

UW CSE P 501 Autumn 2019 H-14

Modularity Issues

• Smart nodes make sense if the set of operations
is relatively fixed, but we expect to need flexibility
to add new kinds of nodes

• Example: graphics system
– Operations: draw, move, iconify, highlight
– Objects: textbox, scrollbar, canvas, menu, dialog box,

window, plus new objects defined as the system
evolves

• Another example: objects in a game or simulation

UW CSE P 501 Autumn 2019 H-15

Modularity in a Compiler
• Abstract syntax does not change frequently over

time – language changes are usually incremental
\ Kinds of nodes are relatively fixed

• As a compiler evolves, it is common to modify or
add operations on the AST nodes
– Want to modularize each operation (type check,

optimize, code gen) so its parts are together in the
source code

– Want to avoid having to change node classes when we
modify or add an operation on the tree

UW CSE P 501 Autumn 2019 H-16

Two Views of Modularity

UW CSE P 501 Autumn 2019 H-17

T
y
p
e
 c

h
e
c
k

O
p
tim

iz
e

G
e
n
e
ra

te
 x

8
6

F
la

tte
n

P
rin

t

IDENT X X X X X

exp X X X X X

while X X X X X

if X X X X X

Binop X X X X X

…

d
ra

w

m
o
v
e

ic
o
n
ify

h
ig

h
lig

h
t

tra
n
s
m

o
g
rify

circle X X X X X

text X X X X X

canvas X X X X X

scroll X X X X X

dialog X X X X X

…

Visitor Pattern
• Idea: Package each operation (optimization, print,

code gen, …) in a separate visitor class (module)
• Create exactly one instance of each visitor class (a

singleton)
– Sometimes called a “function object”
– Contains all of the methods for that particular

operation, one for each kind of AST node
• Include a generic “accept visitor” method in

every node class
• To perform an operation, pass the appropriate

“visitor object” around the AST during a traversal

UW CSE P 501 Autumn 2019 H-18

Avoiding instanceof

• We’d like to avoid huge if-elseif nests in the
visitor to discover the node types

void checkTypes(ASTNode p) {
if (p instanceof WhileNode) { … }
else if (p instanceof IfNode) { … }
else if (p instanceof BinExp) { … }

…
}

UW CSE P 501 Autumn 2019 H-19

Visitor “Double Dispatch”

• Include a “visit” method for every AST node type
in each Visitor

void visit(WhileNode);
void visit(ExpNode);
etc.

• Include an accept(Visitor v) method in each AST
node class

• When Visitor v is passed to an AST node, the
node’s accept method calls v.visit(this)
– Selects correct Visitor method for this node
– Often called “double dispatch”, but really single

dispatch + overloading

UW CSE P 501 Autumn 2019 H-20

Visitor Interface

interface Visitor {

// overload visit for each AST node type

public void visit(WhileNode s);

public void visit(IfNode s);

public void visit(BinExp e);

…

}

– Every separate Visitor class implements this interface

– Aside: The result type can be whatever is convenient,

doesn’t have to be void, although that is common

– Note: could also give methods unique names e.g.,

visitWhile, visitIf, visitBinExp, etc. instead of overloading

visit(…). Best to follow existing code if either convention
already adopted, otherwise individual preference.

UW CSE P 501 Autumn 2019 H-21

Accept Method in Each AST Node Class
• Every AST class overrides accept(Visitor)

• Example
public class WhileNode extends StmtNode {

…

// accept a visit from a Visitor object v

@Override

public void accept(Visitor v) {

v.visit(this); // dynamic dispatch on “this” (WhileNode)

}

…

}

• Key points

– Visitor object passed as a parameter to WhileNode

– WhileNode calls visit, which calls visit(WhileNode) automatically
because of overloading – i.e., the correct method for this kind of node

• Note: if visitor methods have unique names instead of overloading
visit(…) then WhileNode would call something like v.visitWhile(this).

UW CSE P 501 Autumn 2019 H-22

Composite Objects (1)

• How do we handle composite objects?

• One possibility: the accept method passes the visitor

down to subtrees before (or after) visiting itself

public class WhileNode extends StmtNode {

Expr exp; Stmt stmt; // children

…

// accept a visit from visitor v

public void accept (Visitor v) {

this.exp.accept(v);

this.stmt.accept(v);

v.visit(this);

}

UW CSE P 501 Autumn 2019 H-23

Composite Objects (2)

• Another possibility: the visitor can control the
traversal inside the visit method for that
particular kind of node

public void visit(WhileNode p) {
p.expr.accept(this);
p.stmt.accept(this);

}

UW CSE P 501 Autumn 2019 H-24

Encapsulation

• A visitor object often needs to be able to
access state in the AST nodes
\May need to expose more node state than we

might have done otherwise
• i.e., lots of public fields in AST node objects

– Overall a good tradeoff – better modularity
(plus, the nodes should be relatively simple data objects
anyway – not hiding much of anything)

UW CSE P 501 Autumn 2019 H-25

Visitor Actions and State
• A visitor function has a reference to the node it is

visiting (the parameter)
\can access and manipulate subtrees directly

• Visitor object can also include local data (state)
shared by methods in the visitor
– This data is effectively “global” to the methods in the

visitor object, and can be used to store and pass around
information accumulated by the visit methods

public class TypeCheckVisitor extends NodeVisitor {
public void visit(WhileNode s) { … }
public void visit(IfNode s) { … }
…
private <local state>; // all typecheck visitor methods can read/write this

}

UW CSE P 501 Autumn 2019 H-26

So which to choose?
• Possibilities:
– Node objects drive the traversal and pass the visitors

around the tree in standard ways
– Visitor object drives the traversal (the visitor has access to

the node, including references to child subtrees)
• In a compiler:
– First choice handles many common cases
– Big compilers often have multiple visitor schemes (e.g.,

several different traversals defined in Node interface plus
custom traversals in some visitors)

– For MiniJava: keep it simple and start with supplied
examples, but if you really need to do something different,
you can
• (i.e., keep an open mind, but not so open that you create needless

complexity)

UW CSE P 501 Autumn 2019 H-27

Why is it so complicated?

• What we’re really trying to do: 2-argument
dynamic dispatch
– Pick correct method to execute based on dynamic

types of both the node and the visitor
• But Java and most O-O languages only support

single dispatch
– So we use single dispatch plus overloading to get

the effect we want

UW CSE P 501 Autumn 2019 H-28

References

• For Visitor pattern (and many others)
– Design Patterns: Elements of Reusable Object-

Oriented Software, Gamma, Helm, Johnson, and
Vlissides, Addison-Wesley, 1995 (the classic;
examples are in old C++ and Smalltalk)

– Object-Oriented Design & Patterns, Horstmann,
A-W, 2nd ed, 2006 (uses Java)

• Specific information for MiniJava AST and
visitors in Appel textbook & online

UW CSE P 501 Autumn 2019 H-29

Coming Attractions

• Static Analysis
– Type checking & representation of types
– Non-context-free rules (variables and types must

be declared, etc.)
• Symbol Tables
• & more

• Later, more about compiler IRs when we get
to optimizations

UW CSE P 501 Autumn 2019 H-30

