
CSE P 501 – Compilers

LL and Recursive-Descent Parsing
Hal Perkins

Autumn 2019

UW CSE P 501 Autumn 2019 F-1

Agenda

• Top-Down Parsing
• Predictive Parsers
• LL(k) Grammars
• Recursive Descent
• Grammar Hacking
– Left recursion removal
– Factoring

UW CSE P 501 Autumn 2019 F-2

Basic Parsing Strategies (1)

• Bottom-up
– Build up tree from leaves
• Shift next input or reduce a handle
• Accept when all input read and reduced to start symbol

of the grammar
– LR(k) and subsets (SLR(k), LALR(k), …)

UW CSE P 501 Autumn 2019 F-3

remaining input

Basic Parsing Strategies (2)

• Top-Down
– Begin at root with start symbol of grammar
– Repeatedly pick a non-terminal and expand
– Success when expanded tree matches input
– LL(k)

UW CSE P 501 Autumn 2019 F-4

A

Top-Down Parsing

• Situation: have completed part of a left-most derivation

S =>* wAa =>* wxy

• Basic Step: Pick some production

A ::= b1 b2 … bn
that will properly expand A to

match the input

– Want this to be

deterministic (i.e.,

no backtracking)

UW CSE P 501 Autumn 2019 F-5

A

Predictive Parsing
• If we are located at some non-terminal A, and there

are two or more possible productions
A ::= a
A ::= b

we want to make the correct choice by looking at just
the next input symbol

• If we can do this, we can build a predictive parser
that can perform a top-down parse without
backtracking

UW CSE P 501 Autumn 2019 F-6

Example

• Programming language grammars are often suitable
for predictive parsing

• Typical example
stmt ::= id = exp ; | return exp ;

| if (exp) stmt | while (exp) stmt

If the next part of the input begins with the tokens
IF LPAREN ID(x) …

we should expand stmt to an if-statement

UW CSE P 501 Autumn 2019 F-7

LL(1) Property

• A grammar has the LL(1) property if, for all

non-terminals A, if productions A ::= a and

A ::= b both appear in the grammar, then it is

true that

FIRST(a) ∩ FIRST(b) = Ø

(Provided that neither a or b is ε (i.e., empty). If either one is ε then we

need to look at FOLLOW sets. …)

• If a grammar has the LL(1) property, we can

build a predictive parser for it that uses

1-symbol lookahead

UW CSE P 501 Autumn 2019 F-8

LL(k) Parsers

• An LL(k) parser
– Scans the input Left to right
– Constructs a Leftmost derivation
– Looking ahead at most k symbols

• 1-symbol lookahead is enough for many
practical programming language grammars
– LL(k) for k > 1 is rare in practice
• and even if the grammar isn’t quite LL(1), it may be

close enough that we can pretend it is LL(1) and cheat a
little when it isn’t

UW CSE P 501 Autumn 2019 F-9

Table-Driven LL(k) Parsers

• As with LR(k), a table-driven parser can be
constructed from the grammar

• Example
1. S ::= (S) S
2. S ::= [S] S
3. S ::= ε

• Table (one row per non-terminal)

UW CSE P 501 Autumn 2019 F-10

() [] $

S 1 3 2 3 3

LL vs LR (1)

• Tools can automatically generate parsers for
both LL(1) and LR(1) grammars

• LL(1) has to make a decision based on a single
non-terminal and the next input symbol

• LR(1) can base the decision on the entire left
context (i.e., contents of the stack) as well as
the next input symbol

UW CSE P 501 Autumn 2019 F-11

LL vs LR (2)

\ LR(1) is more powerful than LL(1)
– Includes a larger set of languages

\ (editorial opinion) If you’re going to use a
tool-generated parser, might as well use LR
– But there are some very good LL parser tools out there

(ANTLR, JavaCC, …) that might win for other reasons
(documentation, IDE support, integrated AST generation,
local culture/politics/economics etc.)

UW CSE P 501 Autumn 2019 F-12

Recursive-Descent Parsers

• One big advantage of top-down parsing is that
it is easy to implement by hand
– And even if you use automatic tools, the code may

be easier to follow and debug
• Key idea: write one function (method,

procedure) corresponding to each major non-
terminal in the grammar
– Each of these functions is responsible for matching

its non-terminal with the next part of the input

UW CSE P 501 Autumn 2019 F-13

Example: Statements

Grammar
stmt ::= id = exp ;

| return exp ;
| if (exp) stmt
| while (exp) stmt

Method for this grammar rule
// parse stmt ::= id=exp; | …
void stmt() {

switch(nextToken) {
RETURN: returnStmt(); break;
IF: ifStmt(); break;
WHILE: whileStmt(); break;
ID: assignStmt(); break;

}
}

UW CSE P 501 Autumn 2019 F-14

Example (more statements)
// parse while (exp) stmt
void whileStmt() {

// skip “while” “(”
skipToken(WHILE);
skipToken(LPAREN);

// parse condition
exp();

// skip “)”
skipToken(RPAREN);

// parse stmt
stmt();

}

// parse return exp ;
void returnStmt() {

// skip “return”
skipToken(RETURN);

// parse expression
exp();

// skip “;”
skipToken(SCOLON);

}

// aux method: advance past expected token
void skipToken(Token expected) {

if (nextToken == expected)
getNextToken();

else error(“token” + expected + “expected”);
}

UW CSE P 501 Autumn 2019 F-15

Recursive-Descent Recognizer

• Easy!
• Pattern of method calls traces leftmost derivation

in parse tree
• Examples here only handle valid programs and

choke on errors. Real parsers need:
– Better error recovery (don’t get stuck on bad token)

• Often: skip input until something in the FOLLOW set of the
nonterminal being expanded is reached

– Semantic checks (declarations, type checking, …)
– Some sort of processing after recognizing (build AST,

1-pass code generation, …)

UW CSE P 501 Autumn 2019 F-16

Invariant for Parser Functions

• The parser functions need to agree on where they
are in the input

• Useful invariant: When a parser function is called,
the current token (next unprocessed piece of the
input) is the token that begins the expanded non-
terminal being parsed
– Corollary: when a parser function is done, it must have

completely consumed the input correspond to that non-
terminal

UW CSE P 501 Autumn 2019 F-17

Possible Problems

• Two common problems for recursive-descent
(and LL(1)) parsers
– Left recursion (e.g., E ::= E + T | …)
– Common prefixes on the right side of productions

UW CSE P 501 Autumn 2019 F-18

Left Recursion Problem
Grammar rule
expr ::= expr + term

| term

And the bug is????

Code
// parse expr ::= …
void expr() {

expr();
if (current token is PLUS) {
skipToken(PLUS);
term();

}
}

UW CSE P 501 Autumn 2019 F-19

Left Recursion Problem

• If we code up a left-recursive rule as-is, we get
an infinite recursion

• Non-solution: replace with a right-recursive
rule

expr ::= term + expr | term

–Why isn’t this the right thing to do?

UW CSE P 501 Autumn 2019 F-20

Formal Left Recursion Solution
• Rewrite using right recursion and a new non-terminal
• Original: expr ::= expr + term | term
• New

expr ::= term exprtail
exprtail ::= + term exprtail | ε

• Properties
– No infinite recursion if coded up directly
– Maintains required left associatively (if you handle things

correctly in the semantic actions)

UW CSE P 501 Autumn 2019 F-21

Another Way to Look at This

• Observe that
expr ::= expr + term | term

generates the sequence
(…((term + term) + term) + …) + term

• We can sugar the original rule to reflect this
expr ::= term { + term }*

• This leads directly to parser code
– Just be sure to do the correct thing to handle

associativity as the terms are parsed

UW CSE P 501 Autumn 2019 F-22

Code for Expressions (1)

// parse
// expr ::= term { + term }*
void expr() {

term();
while (next symbol is PLUS) {

skipToken(PLUS);
term();

}
}

// parse

// term ::= factor { * factor }*
void term() {

factor();
while (next symbol is TIMES) {

skipToken(TIMES);
factor()

}
}

UW CSE P 501 Autumn 2019 F-23

Code for Expressions (2)

// parse
// factor ::= int | id | (expr)
void factor() {

switch(nextToken) {

case INT:
process int constant;
getNextToken();
break;

…

case ID:
process identifier;
getNextToken();
break;

case LPAREN:
skipToken(LPAREN);
expr();
skipToken(RPAREN);

}
}

UW CSE P 501 Autumn 2019 F-24

What About Indirect Left Recursion?

• A grammar might have a derivation that leads to
a left recursion

A => b1 =>* bn => A g
• Solution: transform the grammar to one where all

productions are either
A ::= aα – i.e., starts with a terminal symbol, or
A ::= Aα – i.e., direct left recursion

then use formal left-recursion removal to
eliminate all direct left recursions

UW CSE P 501 Autumn 2019 F-25

Eliminating Indirect Left Recursion

• Basic idea: Rewrite all productions A ::= B… where
A and B are different non-terminals by using all
B ::= … productions to replace the original rhs B

• Example: Suppose we have A ::= Bδ, B ::= α, and
B ::= β. Replace A ::= Bδ with A ::= αδ and A ::= βδ.

• Need to pick an order to process the non-
terminals to avoid re-introducing indirect left
recursions. Not complicated, just be systematic.
– Details in any compiler or formal-language textbook

UW CSE P 501 Autumn 2019 F-26

Second Problem: Left Factoring

• If two rules for a non-terminal have right hand
sides that begin with the same symbol, we
can’t predict which one to use

• Formal solution: Factor the common prefix
into a separate production

UW CSE P 501 Autumn 2019 F-27

Left Factoring Example

• Original grammar
ifStmt ::= if (expr) stmt

| if (expr) stmt else stmt

• Factored grammar
ifStmt ::= if (expr) stmt ifTail
ifTail ::= else stmt | ε

UW CSE P 501 Autumn 2019 F-28

Parsing if Statements

• But it’s easiest to just
directly code up “else
matches closest if” rule

• (If you squint properly
this is really just left
factoring where the two
productions are parsed
by a single routine)

// parse
// if (expr) stmt [else stmt]
void ifStmt() {

skipToken(IF);
skipToken(LPAREN);
expr();
skipToken(RPAREN);
stmt();
if (next symbol is ELSE) {

skipToken(ELSE);
stmt();

}
}

UW CSE P 501 Autumn 2019 F-29

Another Lookahead Problem

• In languages like FORTRAN and Basic, parentheses
are used for array subscripts

• A FORTRAN grammar includes something like
factor ::= id (subscripts) | id (arguments) | …

• When the parser sees “id (”, how can it decide
whether this begins an array element reference or a
function call?

UW CSE P 501 Autumn 2019 F-30

Two Ways to Handle id(x, x, x)

• Use the type of id to decide

– Requires declare-before-use restriction if we want

to parse in 1 pass; also means parser needs

semantic information, not just grammar

• Use a covering grammar

factor ::= id (commaSeparatedList) | …

and fix/check later when more information is

available (e.g., types)

UW CSE P 501 Autumn 2019 F-31

Top-Down Parsing Concluded
• Works with a smaller set of grammars than

bottom-up, but can be done for most sensible
programming language constructs
– Possibly with some grammar refactoring

• And maybe a little cheating (occasional extra lookahead, …)

• If you need to write a quick-n-dirty parser,
recursive descent is often the method of choice
– And some sophisticated hand-written parsers for real

languages (e.g., C++) are “based on” LL parsing, but
with lots of customizations

UW CSE P 501 Autumn 2019 F-32

Parsing Concluded

• That’s it!
• On to the rest of the compiler
• Coming attractions
– Intermediate representations (ASTs etc.)
– Semantic analysis (including type checking)
– Symbol tables
– & more…

UW CSE P 501 Autumn 2019 F-33

