CSE P 501 – Compilers

LR Parsing
Hal Perkins
Autumn 2019

Agenda

- LR Parsing
- Table-driven Parsers
- Parser States
- Shift-Reduce and Reduce-Reduce conflicts

Bottom-Up Parsing

- Idea: Read the input left to right
- Whenever we've matched the right hand side of a production, reduce it to the appropriate non-terminal and add that non-terminal to the parse tree
- The upper edge of this partial parse tree is known as the *frontier*

Example

• Grammar

$$S ::= aAB e$$

$$B := d$$

Bottom-up Parse

a b b c d e

LR(1) Parsing

- We'll look at LR(1) parsers
 - Left to right scan, Rightmost derivation, 1 symbol lookahead
 - Almost all practical programming languages have a LR(1) grammar
 - LALR(1), SLR(1), etc. subsets of LR(1)
 - LALR(1) can parse most real languages, tables are more compact, and is used by YACC/Bison/CUP/etc.

LR Parsing in Greek

- The bottom-up parser reconstructs a reverse rightmost derivation
- Given the rightmost derivation

$$S = > \beta_1 = > \beta_2 = > \dots = > \beta_{n-2} = > \beta_{n-1} = > \beta_n = w$$

the parser will first discover $\beta_{n-1} = > \beta_n$, then $\beta_{n-2} = > \beta_{n-1}$, etc.

- Parsing terminates when
 - $-\beta_1$ reduced to S (start symbol, success), or
 - No match can be found (syntax error)

How Do We Parse with This?

- Key: given what we've already seen and the next input symbol (the lookahead), decide what to do.
- Choices:
 - Perform a reduction
 - Look ahead further
- Can reduce $A => \beta$ if both of these hold:
 - $-A=>\beta$ is a valid production, and
 - $-A=>\beta$ is a step in *this* rightmost derivation
- This is known as a shift-reduce parser

Sentential Forms

- If $S = >^* \alpha$, the string α is called a *sentential form* of the grammar
- In the derivation $S => \beta_1 => \beta_2 => \dots => \beta_{n-2} => \beta_{n-1} => \beta_n = w$ each of the β_i are sentential forms
- A sentential form in a rightmost derivation is called a right-sentential form (similarly for leftmost and leftsentential)

Handles

- Informally, a production whose right hand side matches a substring of the tree frontier that is part of the rightmost derivation of the current input string (i.e., the "correct" production)
 - Even if A := β is a production, it is a handle only if β matches the frontier at a point where A := β was used in *this specific* derivation
 - $-\beta$ may appear in many other places in the frontier without being a part of a handle for that particular production
- Bottom-up parsing is all about finding handles

Handle Examples

In the derivation

```
S => aABe => aAde => aAbcde => abbcde
```

- abbcde is a right sentential form whose handle isA::=b at position 2
- aAbcde is a right sentential form whose handle is
 A::=Abc at position 4
 - Note: some books take the left end of the match as the position

Handles – The Dragon Book Defn.

• Formally, a *handle* of a right-sentential form γ is a production $A := \beta$ and a position in γ where β may be replaced by A to produce the previous right-sentential form in the rightmost derivation of γ

Implementing Shift-Reduce Parsers

- Key Data structures
 - A stack holding the frontier of the tree
 - A string with the remaining input (tokens)
- We also need something to encode the rules that tell us what action to take next, given the state of the stack and the lookahead symbol
 - Typically a table that encodes a finite automata

Shift-Reduce Parser Operations

- Reduce if the top of the stack is the right side of a handle $A::=\beta$, pop the right side β and push the left side A
- Shift push the next input symbol onto the stack
- Accept announce success
- Error syntax error discovered

Shift-Reduce Example

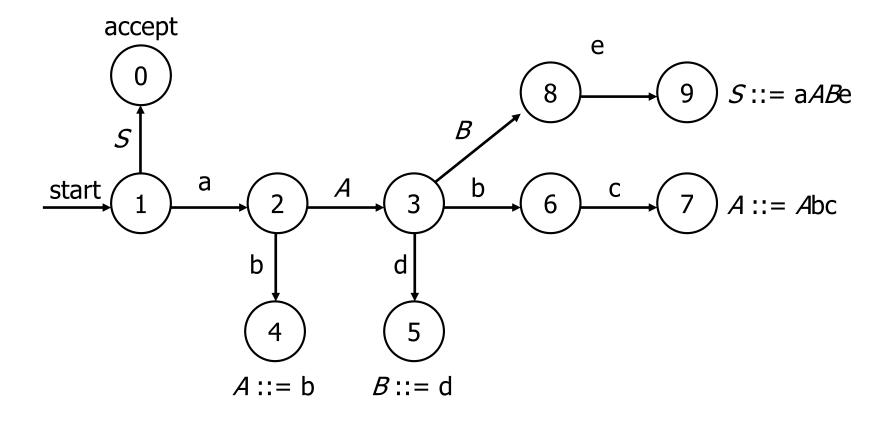
S ::= a*AB*e

A ::= *A*bc | b

B := d

<u>Stack</u>	Input	Action
\$	abbcde\$	shift

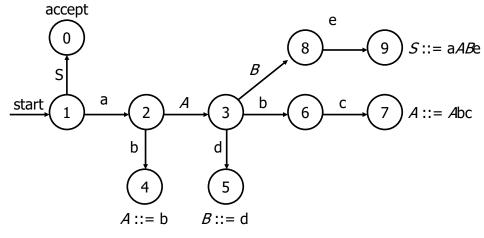
How Do We Automate This?


- Cannot use clairvoyance in a real parser (alas...)
- Defn. Viable prefix a prefix of a right-sentential form that can appear on the stack of the shift-reduce parser
 - Equivalent: a prefix of a right-sentential form that does not continue past the rightmost handle of that sentential form
 - In Greek: γ is a *viable prefix* of *G* if there is some derivation $S = \sum_{rm}^* \alpha A w = \sum_{rm} \alpha \beta w$ and γ is a prefix of $\alpha \beta$.
 - The occurrence of β in $\alpha\beta w$ is the right side of a \emph{handle} of $\alpha\beta w$

How Do We Automate This?

 Fact: the set of viable prefixes of a CFG is a regular language(!)

- Idea: Construct a DFA to recognize viable prefixes given the stack and remaining input
 - Perform reductions when we recognize them


DFA for prefixes of

Trace

S::= aABe A::= Abc | b B::= d

Stack Input shocks

Observations

- Way too much backtracking
 - We want the parser to run in time proportional to the length of the input
- Where the heck did this DFA come from anyway?
 - From the underlying grammar
 - Defer construction details for now

Avoiding DFA Rescanning

- Observation: no need to restart DFA after a shift.
 Stay in the same state and process next token.
- Observation: after a reduction, the contents of the stack are the same as before except for the new nonterminal on top
 - Scanning the stack will take us through the same transitions as before until the last one
 - If we record state numbers on the stack, we can go directly to the appropriate state when we pop the right hand side of a production from the stack

Stack

 Change the stack to contain pairs of states and symbols from the grammar

$$\$s_0 X_1 s_1 X_2 s_2 ... X_n s_n$$

- State s₀ is the start state
- When we push a symbol on the stack, push the symbol plus the FA state
- When we reduce, popping the handle will reveal the state of the FA just prior to reading the handle
- Observation: in an actual parser, only the state numbers are needed since they implicitly contain the symbol information. But for explanations / examples it can help to show both.

Encoding the DFA in a Table

- A shift-reduce parser's DFA can be encoded in two tables
 - One row for each state
 - action table encodes what to do given the current state and the next input symbol
 - goto table encodes the transitions to take after a reduction

Actions (1)

- Given the current state and input symbol, the main possible actions are
 - si shift the input symbol and state i onto the stack (i.e., shift and move to state i)
 - rj reduce using grammar production j
 - The production number tells us how many <symbol, state> pairs to pop off the stack (= number of symbols on rhs of production)
 - Each production needs a unique number, i.e., $A := \alpha \mid \beta$ needs to be split into $A := \alpha$ and $A := \beta$

Actions (2)

- Other possible action table entries
 - accept
 - blank no transition syntax error
 - A LR parser will detect an error as soon as possible on a left-to-right scan
 - A real compiler needs to produce an error message, recover, and continue parsing when this happens


Goto

- When a reduction is performed using A ::= β , we pop $|\beta|$ <symbol, state> pairs from the stack revealing a state $uncovered_s$ on the top of the stack
- goto[$uncovered_s$, A] is the new state to push on the stack when reducing production $A ::= \beta$ (after popping handle β and pushing A)

Aside: Extra Initial Production

- When we construct the DFA we'll need to add a new production to handle end-of-file (i.e., end-of-input) correctly
- If S is the start state of the original grammar,
 add an initial production S' ::= S \$
 - \$ represents end-of-file (input)
 - Accept when we've reduced the input to S and there is no more input (i.e., lookahead is \$)

Reminder: DFA for

LR Parse Table for

2.
$$A := Abc$$

3.
$$A := b$$

4.
$$B := d$$

State			aci	tion				goto	
State	а	b	С	d	е	\$	Α	В	S
0						acc			
1	s2								g0
2		s4					g3		
3		s6		s5				g8	
4	r3	r3	r3	r3	r3	r3			
5	r4	r4	r4	r4	r4	r4			
6			s7						
7	r2	r2	r2	r2	r2	r2			
8					s9				
9	r1	r1	r1	r1	r1	r1			

LR Parsing Algorithm

```
tok = scanner.getToken();
while (true) {
    s = top of stack;
    if (action[s, tok] = si) {
      push tok; push i (state);
      tok = scanner.getToken();
    } else if (action[s, tok] = rj ) {
      pop 2 * length of right side of
      production j (2*|\beta|);
      uncovered s = top of stack;
      push left side A of production j;
      push state goto[uncovered s, A];
```

```
} else if (action[s, tok] = accept ) {
    return;
} else {
    // no entry in action table
    report syntax error;
    halt or attempt recovery;
}
```

Example

Stack Input \$ abbcde\$ 1. *S* ::= a*AB*e

2. A := Abc

3. A := b

4. B := d

C			act	tion				goto	
S	а	b	С	d	е	\$	Α	В	S
0						ac			
1	s2								g0
2		s4					g3		
3		s6		s5				g8	
4	r3	r3	r3	r3	r3	r3			
5	r4	r4	r4	r4	r4	r4			
6			s7						
7	r2	r2	r2	r2	r2	r2			
8					s9				
9	r1	r1	r1	r1	r1	r1			

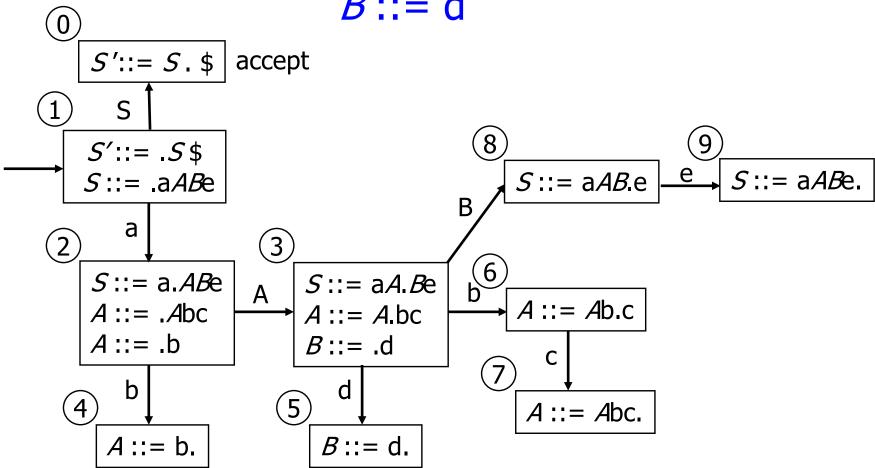
LR States

- Idea is that each state encodes
 - The set of all possible productions that we could be looking at, given the current state of the parse, and
 - Where we are in the right hand side of each of those productions

Items

- An *item* is a production with a dot in the right hand side
- Example: Items for production A ::= X Y

$$A := XY$$


$$A := X \cdot Y$$

$$A := X Y$$
.

Idea: The dot represents a position in the production

DFA for

$$S ::= aABe$$

 $A ::= Abc | b$
 $B ::= d$

Problems with Grammars

- Grammars can cause problems when constructing a LR parser
 - Shift-reduce conflicts
 - Reduce-reduce conflicts

Shift-Reduce Conflicts

- Situation: both a shift and a reduce are possible at a given point in the parse (equivalently: in a particular state of the DFA)
- Classic example: if-else statement

```
S ::= ifthen S | ifthen S else S
```

Parser States for

```
1 S::= . ifthen S S::= . ifthen S else S ifthen S S::= ifthen . S S::= ifthen . S else S S::= ifthen S . else S else S S::= ifthen S . else S S::= ifthen S . else S S::= ifthen S else S
```

```
    S::= ifthen S
    S::= ifthen S else S
```

- State 3 has a shiftreduce conflict
 - Can shift past else into state 4 (s4)
 - Can reduce (r1)
 S ::= ifthen S

(Note: other *S* ::= . ifthen items not included in states 2-4 to save space)

Solving Shift-Reduce Conflicts

- Fix the grammar
 - Done in Java reference grammar, others
- Use a parse tool with a "longest match" rule –
 i.e., if there is a conflict, choose to shift
 instead of reduce
 - Does exactly what we want for if-else case
 - Guideline: a few shift-reduce conflicts are fine, but be sure they do what you want (and that this behavior is guaranteed by the tool specification)

Reduce-Reduce Conflicts

- Situation: two different reductions are possible in a given state
- Contrived example

$$S := A$$

$$S ::= B$$

$$A ::= x$$

$$B := x$$

Parser States for

1.
$$S := A$$

2.
$$S := B$$

3.
$$A := x$$

4.
$$B := x$$

$$\begin{array}{c|c}
\hline
1 & S ::= .A \\
S ::= .B \\
A ::= .x \\
B ::= .x
\end{array}$$

$$\begin{array}{c|c}
X & \\
A ::= x \\
B ::= x.
\end{array}$$

 State 2 has a reducereduce conflict (r3, r4)

Handling Reduce-Reduce Conflicts

- These normally indicate a serious problem with the grammar.
- Fixes
 - Use a different kind of parser generator that takes lookahead information into account when constructing the states
 - Most practical tools use this information
 - Fix the grammar

Another Reduce-Reduce Conflict

 Suppose the grammar tries to separate arithmetic and boolean expressions

```
expr ::= aexp | bexp
aexp ::= aexp * aident | aident
bexp ::= bexp && bident | bident
aident ::= id
bident ::= id
```

This will create a reduce-reduce conflict after recognizing id

Covering Grammars

- A solution is to merge aident and bident into a single non-terminal like ident (or just use id in place of aident and bident everywhere they appear)
- This is a covering grammar
 - Will generate some programs (sentences) that are not generated by the original grammar
 - Use the type checker or other static semantic analysis to weed out illegal programs later

Coming Attractions

- Constructing LR tables
 - We'll present a simple version (SLR(0)) in lecture, then talk about adding lookahead and then a little bit about how this relates to LALR(1) used in most parser generators
- LL parsers and recursive descent
- Continue reading ch. 3