
CSE P 501 – Compilers

Overview and Administrivia
Hal Perkins

Autumn 2019

UW CSE P 501 Autumn 2019 A-1

Agenda

• Introductions
• What’s a compiler?
• Administrivia

UW CSE P 501 Autumn 2019 A-2

Agenda

• Introductions
• What’s a compiler?
• Administrivia

UW CSE P 501 Autumn 2019 A-3

Who: Course staff
• Instructor:
– Hal Perkins: UW faculty for quite a while now; veteran

of many compiler courses (among other things)

• Teaching Assistant:
– Fatemeh Ghezloo, CSE grad student

• Office hours: Fatemeh, Tue. before class, 5:30-
6:20, CSE2 152; can adjust if needed
Hal, after class – lecture room or CSE 548 office

• Get to know us – we’re here to help you succeed!

UW CSE P 501 Autumn 2019 A-4

Credits

• Some direct ancestors of this course:
– UW CSE 401 (Chambers, Snyder, Notkin, Perkins,

Ringenburg, Henry, …)

– UW CSE PMP 582/501 (Perkins, Hogg)

– Rice CS 412 (Cooper, Kennedy, Torczon)

– Cornell CS 412-3 (Teitelbaum, Perkins)

– Other compiler courses, papers, …

– Many books (Appel; Cooper/Torczon; Aho, [[Lam,]
Sethi,] Ullman [Dragon Book], Fischer, [Cytron ,]
LeBlanc; Muchnick, …)

• Won’t attempt to attribute everything – and
some of the details are lost in the haze of time

UW CSE P 501 Autumn 2019 A-5

Agenda

• Introductions
• What’s a compiler?
• Administrivia

UW CSE P 501 Autumn 2019 A-6

And the point is…

• How do we execute something like this?
int nPos = 0;
int k = 0;
while (k < length) {

if (a[k] > 0) {
nPos++;

}
}

• The computer only knows 1’s & 0’s - i.e.,
encodings of instructions and data

UW CSE P 501 Autumn 2019 A-7

Interpreters & Compilers

• Programs can be compiled or interpreted (or
sometimes both)

• Compiler
– A program that translates a program from one

language (the source) to another (the target)
• Languages are sometimes even the same(!)

• Interpreter
– A program that reads a source program and produces

the results of executing that program on some input

UW CSE P 501 Autumn 2019 A-8

Common Issues

• Compilers and interpreters both must read the
input – a stream of characters – and
“understand” it: front-end analysis phase

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k] > 0
) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

UW CSE P 501 Autumn 2019 A-9

Compiler

• Read and analyze entire program
• Translate to semantically equivalent program

in another language
– Presumably easier or more efficient to execute

• Offline process
• Tradeoff: compile-time overhead

(preprocessing) vs execution performance

UW CSE P 501 Autumn 2019 A-10

Typically implemented with Compilers

• FORTRAN, C, C++, COBOL, many other
programming languages, (La)TeX, SQL
(databases), VHDL, many others

• Particularly appropriate if significant
optimization wanted/needed

UW CSE P 501 Autumn 2019 A-11

Interpreter
• Interpreter
– Typically implemented as an “execution engine”
– Program analysis interleaved with execution:

running = true;
while (running) {

analyze next statement;
execute that statement;

}
– Usually requires repeated analysis of individual statements

(particularly in loops, functions)
• Hybrid approaches can avoid some of this overhead

– But: immediate execution, good debugging, interactive,
etc.

UW CSE P 501 Autumn 2019 A-12

Often implemented with interpreters

• Javascript, PERL, Python, Ruby, awk, sed,
shells (bash), Scheme/Lisp/ML/OCaml,
postscript/pdf, machine simulators

• Particularly efficient if interpreter overhead is
low relative to execution cost of individual
statements
– But even if not (machine simulators), flexibility,

immediacy, or portability may be worth it

UW CSE P 501 Autumn 2019 A-13

Hybrid approaches

• Compiler generates intermediate language, e.g.
compile Java source to Java Virtual Machine .class
files (byte codes), then:
– Interpret byte codes directly, or
– Compile some or all byte codes to native code

• Variation: Just-In-Time compiler (JIT) – detect hot spots &
compile on the fly to native code

• Widely use for Javascript, many functional and
other languages (Haskell, ML, Ruby), Java, C# and
Microsoft CLR, others

UW CSE P 501 Autumn 2019 A-14

Structure of a Compiler

• At a high level, a compiler has two pieces:
– Front end: analysis
• Read source program and discover its structure and

meaning
– Back end: synthesis
• Generate equivalent target language program

UW CSE P 501 Autumn 2019 A-15

Source TargetFront End Back End

Compiler must…

• Recognize legal programs (& complain about illegal
ones)

• Generate correct code
– Compiler can attempt to improve (“optimize”) code, but

must not change behavior
• Manage runtime storage of all variables/data
• Agree with OS & linker on target format

UW CSE P 501 Autumn 2019 A-16

Source TargetFront End Back End

Implications

• Phases communicate using some sort of
Intermediate Representation(s) (IR)
– Front end maps source into IR
– Back end maps IR to target machine code
– Often multiple IRs – higher level at first, lower level in later

phases

UW CSE P 501 Autumn 2019 A-17

Source TargetFront End Back End

Front End

• Usually split into two parts
– Scanner: Convert character stream to token stream:

keywords, operators, variables, constants, …
• Also: strip out white space, comments

– Parser: Read token stream; generates IR (AST or other)
• Scanner & parser can be generated automatically
– Use a formal grammar to specify the source language
– Tools read the grammar and generate scanner & parser

(lex/yacc or flex/bison for C/C++, JFlex/CUP for Java)

UW CSE P 501 Autumn 2019 A-18

Scanner Parsersource tokens IR

Scanner Example
• Input text

// this statement does very little
if (x >= y) y = 42;

• Token Stream

– Notes: tokens are atomic items, not character strings;
comments & whitespace are not tokens (in most languages –
counterexamples: Python indenting, Ruby and JavaScript newlines)
• Tokens can carry associated data (e.g., int value, variable name)

UW CSE P 501 Autumn 2019 A-19

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

Parser Output (IR)
• Given token stream from scanner, the parser

must produce output that captures the meaning
of the program

• Most common parser output is an abstract syntax
tree (AST)
– Essential meaning of program without syntactic noise
– Nodes are operations, children are operands

• Many different forms
– Engineering tradeoffs have changed over time
– Tradeoffs (and IRs) can often vary between different

phases of a single compiler

UW CSE P 501 Autumn 2019 A-20

Scannner/Parser Example

• Token Stream • Abstract Syntax Tree

UW CSE P 501 Autumn 2019 A-21

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Original source program:
// this statement does very little
if (x >= y) y = 42;

Static Semantic Analysis

• During or (usually) after parsing, check that the
program is legal and collect info for the back end

• Context-dependent checks that cannot be captured in a
context-free grammar
– Type checking (e.g., int x = 42 + true, number and types of

arguments in method call)
– Check language requirements like proper declarations, etc.
– Preliminary resource allocation
– Collect other information needed for back end analysis

and code generation
• Key data structure: Symbol Table(s)
– Maps names -> meanings/types/details

UW CSE P 501 Autumn 2019 A-22

Back End

• Responsibilities
– Translate IR into target machine code
– Should produce “good” code
• “good” = fast, compact, low power (pick some)
• Optimization phase translates correct code into

semantically equivalent “better” code
– Should use machine resources effectively
• Registers
• Instructions
• Memory hierarchy

UW CSE P 501 Autumn 2019 A-23

Back End Structure

• Typically two major parts

– “Optimization” – code improvement – change correct

code into semantically equivalent “better” code

• Examples: common subexpression elimination, constant

folding, code motion (move invariant computations outside

of loops), function inlining (replace call with function body)

• Optimization phases often interleaved with analysis

– Target Code Generation (machine specific)

• Instruction selection & scheduling, register allocation

• Machine-specific optimizations (peephole opt., …)

– Optimization usually done on lower-level linear code

produced by walking AST

UW CSE P 501 Autumn 2019 A-24

The Result

• Input
if (x >= y)

y = 42;

• Output

movl 16(%rbp),%edx
movl -8(%rbp),%eax
cmpl %eax, %edx
jl L17
movl $42, -8(%rbp)

L17:

UW CSE P 501 Autumn 2019 A-25

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Why Study Compilers? (1)

• Become a better programmer(!)
– Insight into interaction between languages,

compilers, and hardware
– Understanding of implementation techniques,

how code maps to hardware
– Better intuition about what your code does
– Understanding how compilers optimize code helps

you write code that is easier to optimize
• Avoid wasting time on source “optimizations” that the

compiler will do better; avoid “clever” code that
confuses the compiler and makes things worse

UW CSE P 501 Autumn 2019 A-26

Why Study Compilers? (2)

• Compiler techniques are everywhere
– Parsing (“little” languages, interpreters, XML)
– Software tools (verifiers, checkers, …)
– Database engines, query languages
– Domain-specific languages
– Text processing
• Tex/LaTex -> dvi -> Postscript -> pdf

– Hardware: VHDL; model-checking tools
–Mathematics (Mathematica, Matlab, SAGE)

UW CSE P 501 Autumn 2019 A-27

Why Study Compilers? (3)

• Fascinating blend of theory and engineering
– Lots of beautiful theory around compilers

• Parsing, scanning, static analysis
– Interesting engineering challenges and tradeoffs,

particularly in optimization (code improvement)
• Ordering of optimization phases
• What works for some programs can be bad for others

– Plus some very difficult problems (NP-hard or worse)
• E.g., register allocation is equivalent to graph coloring
• Need to come up with “good enough” approximations /

heuristics

UW CSE P 501 Autumn 2019 A-28

Why Study Compilers? (4)
• Draws ideas from many parts of CSE
– AI: Greedy algorithms, heuristic search
– Algorithms: graph, dynamic programming, approximation
– Theory: Grammars, DFAs and PDAs, pattern matching,

fixed-point algorithms
– Systems: Allocation & naming, synchronization, locality
– Architecture: pipelines, instruction set use, memory

hierarchy management, locality

UW CSE P 501 Autumn 2019 A-29

Why Study Compilers? (5)

• You might even write a compiler some day!

• You will write parsers and interpreters for little

languages, if not bigger things

– Command languages, configuration files, XML,

JSON, network protocols, …

• And if you like working with compilers and are

good at it there are many jobs available…

UW CSE P 501 Autumn 2019 A-30

Some History (1)

• 1950’s. Existence proof

– FORTRAN I (1954) – competitive with hand-

optimized code

• 1960’s

– New languages: ALGOL, LISP, COBOL, SIMULA

– Formal notations for syntax, esp. BNF

– Fundamental implementation techniques

• Stack frames, recursive procedures, etc.

UW CSE P 501 Autumn 2019 A-31

Some History (2)

• 1970’s
– Syntax: formal methods for producing compiler

front-ends; many, many theorems
• Late 1970’s, 1980’s
– New languages (functional; object-oriented,

especially Smalltalk)
– New architectures (RISC machines, parallel

machines, memory hierarchy issues)
–More attention to back-end issues

UW CSE P 501 Autumn 2019 A-32

Some History (3)

• 1990s
– Techniques for compiling objects and classes,

efficiency in the presence of dynamic dispatch and
small methods (Self – precursor of JavaScript,
Smalltalk; techniques now common in JVMs, etc.)

– Just-in-time compilers (JITs)
– Compiler technology critical to effective use of

new hardware (RISC, parallel machines, complex
memory hierarchies)

UW CSE P 501 Autumn 2019 A-33

Some History (4)

• 21st Century:
– Compilation techniques in many new places
• Software analysis, verification, security

– Phased compilation – blurring the lines between
“compile time” and “runtime”

– Dynamic languages – e.g., JavaScript, …
– Domain-specific languages (DSL)
– Etc. …

UW CSE P 501 Autumn 2019 A-34

Some History (5)

• 21st Century (more):

– Optimization techniques for power, approximate

computing, …

– Memory models, concurrency, multicore, …

– Full stack proofs/verification; secure OS/compilers

– Language implementations for novel, heterogenous

hardware architectures (dealing with the end of

Moore’s law, etc.)

• How do we program these things? Need software tools –

languages, compilers, …

– Etc. etc.

UW CSE P 501 Autumn 2019 A-35

Compiler (and related) Turing Awards

• 1966 Alan Perlis
• 1972 Edsger Dijkstra
• 1974 Donald Knuth
• 1976 Michael Rabin and

Dana Scott
• 1977 John Backus
• 1978 Bob Floyd
• 1979 Ken Iverson
• 1980 Tony Hoare
• 1984 Niklaus Wirth
• 1987 John Cocke

• 1991 Robin Milner
• 2001 Ole-Johan Dahl and

Kristen Nygaard
• 2003 Alan Kay
• 2005 Peter Naur
• 2006 Fran Allen
• 2008 Barbara Liskov
• 2013 Leslie Lamport
• 2018 John Hennessy &

David Patterson

UW CSE P 501 Autumn 2019 36

Agenda

• Introductions
• What’s a compiler?
• Administrivia

UW CSE P 501 Autumn 2019 A-37

What’s in CSE P 501?

• In past years most P501 students either have
never taken a compiler course or what was
covered was a mixed bag, so…

• We will cover the basics, but fairly quickly…
• Then coverage of more advanced topics
• If you have some background, some of this

will be review, but most everyone will pick up
new things

UW CSE P 501 Autumn 2019 A-38

Expected background

• Assume undergraduate courses or equiv. in:
– Data structures and algorithms

• Linked lists, trees, hash tables, dictionaries, graphs
– Machine organization

• Assembly-level programming of some architecture (not
necessarily x86-64)

– Formal languages & automata
• Regular expressions, NFAs/DFAs, context-free grammars,

maybe a little parsing

• We will review basics and gaps can be filled in but
might take some extra time/work

UW CSE P 501 Autumn 2019 A-39

CSE P 501 Course Project

• Best way to learn about compilers is to build one
• Course project
– MiniJava compiler: classes, objects, etc.

• Core parts of Java – essentials only
• Originally from Appel textbook (but you won’t need that)

– Generate executable x86-64 code & run it
– Every legal MiniJava program is also legal regular Java

– compare results from your project with javac/java

UW CSE P 501 Autumn 2019 A-40

Project Scope
• Goal: large enough to be interesting and capture

key concepts; small enough to do in 10 weeks
• Completed in steps through the quarter
– Where you wind up at the end is the most important
– Intermediate milestone deadlines to keep you on

schedule and provide feedback at important points
– Evaluation is weighted towards final results but

milestone results count
• Core requirements, then open-ended if you have

time for extensions

UW CSE P 501 Autumn 2019 A-41

Project Implementation

• Default is Java 11 with JFlex, CUP scanner/parser tools
– Choice of editors/environments up to you

• Somewhat open to alternatives – check with course
staff – but you assume risk of the unknown
– Have had successful past projects using C#, F#, Haskell, ML,

others (even Python & Ruby!)
– You need to be sure there are Lex/Yacc, Flex/Bison work-

alike compiler tools available
– Your compiler has to “work” the same as the regular ones

(startup, command options, etc.)
– Course staff will help as best we can but no guarantees

UW CSE P 501 Autumn 2019 A-42

Project Groups & Repositories

• You should work in groups of two
– Pick a partner now to work with throughout quarter

• How? Mingle during breaks, discussion board, …
– Have had some people do the project solo, but easy to

underestimate effort needed. Very helpful to have partner
to talk to about details. Pairs strongly recommended.

• All groups must use course repositories on CSE GitLab
server to store their projects. We’ll access files from
there for evaluation (& to help with project)

• By early next week, fill out partner info form linked on
course web so we can set up groups and repositories

UW CSE P 501 Autumn 2019 A-43

Requirements & Grading
• Roughly
– 50% project
– 20% individual written homework
– 25% exam (extra class session late in quarter – need to

figure this out shortly)
• i.e., let’s look at the calendar! !!!

– 5% other/discretionary
We reserve the right to adjust as needed

• Deadlines – would like to be able to hand out sample solutions in
class right after assignment is due. How best to manage this?

UW CSE P 501 Autumn 2019 A-44

Lectures

• Tuesdays, 6:30-9:20
• Lecture slides posted on course calendar by mid-

afternoon before each class

• Strongly recommend no laptops / devices in class
unless you are actually using a tablet to take
notes
– Something confusing? Don’t search; ask a question!

• Your colleagues will be grateful! !

UW CSE P 501 Autumn 2019 A-45

Staying in touch

• Course web site

• Discussion board – new this quarter: ed!
– Login credentials sent to your UW email before class

– For anything related to the course

– Join in! Help each other out. Staff will contribute.

• Mailing list
– You are automatically subscribed if you are registered

– Will keep this fairly low-volume; limited to things that
everyone needs to read

UW CSE P 501 Autumn 2019 A-46

Books
• Four good books – use at least one; all on

reserve in the engineering library
– Cooper & Torczon, Engineering a Compiler.

“Official text”, 1st edition should be ok too.
– Appel, Modern Compiler Implementation in

Java, 2nd ed. MiniJava is from here.
– Aho, Lam, Sethi, Ullman, “Dragon Book”
– Fischer, Cytron, LeBlanc, Crafting a Compiler

UW CSE P 501 Autumn 2019 A-47

Academic Integrity
• We want a collegial group helping each other succeed!
• But: you must never misrepresent work done by

someone else as your own or assist others to do the
same (for compiler project, your group’s work should
be done collaboratively by you and your partner)

• Read the course policy carefully (on the web)
• We trust you to behave ethically
– I have little sympathy for violations of that trust
– Honest work is the most important feature of a university

(or engineering or business). Anything less disrespects
your instructor, your colleagues, and yourself

UW CSE P 501 Autumn 2019 A-48

Any questions?

• Your job is to ask questions to be sure you
understand what’s happening and to slow me
down
– Otherwise, we’ll barrel on ahead J

UW CSE P 501 Autumn 2019 A-49

Coming Attractions

• Quick review of formal grammars

• Lexical analysis – scanning

– Background for first part of the project

• Followed by parsing …

• Start reading: ch. 1, 2.1-2.4 in EAC or

corresponding chapters in other books

UW CSE P 501 Autumn 2019 A-50

