
 CSE P 501 Exam 8/5/04 Sample Solution

 Page 1 of 6

1. (10 points) Write a regular expression or regular expressions that generate the
following sets of strings.

(a) (5 points) All strings containing a’s, b’s, and c’s with at least one a and at least one b.

 [abc]*a[abc]*b[abc]* | [abc]*b[abc]*a[abc]*

(b) (5 points) All strings of 0’s and 1’s with at most one pair of consecutive 1’s.

 Here are two possible solutions

 (0|10)*1?1?(0|01)* 1 | (0|10)*11(0|01)*

2. (8 points) Pascal defined real (floating-point) numeric constants as follows:

 digit ::= [0-9]
 digits ::= digit+
 real ::= digits . digits | digits . digits E scalefactor | digits E scalefactor
 scalefactor ::= digits | (+ | -) digits

Draw a DFA that accepts real constants as defined above. (You don’t need to construct
an NFA and use algorithms to convert it to a DFA – just draw a suitable DFA diagram.)

digit

digit •

digit

digit E

E

digit

digit

digit
+, -

 CSE P 501 Exam 8/5/04 Sample Solution

 Page 2 of 6

3. (12 points) (LR parsing) In languages like Scheme, arithmetic expressions are written
as parenthesized lists beginning with an operator followed by the operands. Here is a
simple grammar for expressions involving addition and subtraction and the single integer
constant 1.

 exp ::= int | (op exp exp)
 op ::= + | -
 int ::= 1

(a) (10 points) Construct the LR(0) state machine for this grammar.

(b) (2 points) Is this grammar LR(0)? Why or why not?

Yes. There are no shift-reduce or reduce-reduce conflicts.

exp ::= . int
exp ::= . (op exp exp)
int ::= . 1

exp ::= int .

int ::= 1 .

exp ::= (. op exp exp)
op :: = . +
op :: = . -

op :: = + .

op :: = - .

exp ::= (op . exp exp)
exp ::= . int
exp ::= . (op exp exp)
int ::= . 1

exp ::= (op exp . exp)
exp ::= . int
exp ::= . (op exp exp)
int ::= . 1

exp ::= (op exp exp .) exp ::= (op exp exp) .

int

1

+

-

(

op

exp

exp
)

(
int

(

int

1

1

 CSE P 501 Exam 8/5/04 Sample Solution

 Page 3 of 6

4. (6 points) Some experimental programming languages include an n+1/2 loop with the
following syntax:

 repeat
 statement1
 while (exp)
 statement2
 end

The semantics of this loop is that statement1 is executed then the conditional expression
exp is evaluated. If exp is false, the loop terminates, otherwise, if it is true, statement2 is
executed and the loop repeats starting with statement1.

Give the x86 code shape for this loop using a style similar to that used in lecture for other
statements and conditional expressions.

Here’s a straightforward solution that leaves the parts of the loop in the same order
they appear in the source code.

 loop:
 statement1
 exp
 jmpfalse done
 statement2
 jmp loop
 done:

It’s also possible to rearrange the order to get rid of the unconditional jump that’s
executed each iteration in the above code.

 jmp start
 continue:
 statement2
 start:
 statement1
 exp
 jmptrue continue

 CSE P 501 Exam 8/5/04 Sample Solution

 Page 4 of 6

5. (12 points) Suppose we want to add the following conditional statement to MiniJava:

 ifequal (exp1, exp2)
 statement1
 smaller
 statement2
 larger
 statement3

The meaning of this is that statement1 is executed if the integer expressions exp1 and
exp2 are equal; statement2 is executed if exp1 < exp2, and statement3 is executed if exp1
> exp2.

(a) (5 points) Give context-free grammar production(s) for the ifequal statement that
allows either or both of the “smaller” and “larger” parts of the statement to be
omitted. If both the “smaller” and “larger” parts of the statement appear, they should
appear in that order.

Here are two solutions. The first one uses ε-productions

 stmt ::= ifequal (exp , exp) stmt optsmaller optlarger
 optsmaller ::= smaller stmt | ε
 optlarger ::= larger stmt | ε

The other one is more brute-force but doesn’t include any ε-productions.

 stmt ::= ifequal (exp , exp) stmt
 | ifequal (exp , exp) stmt smaller stmt
 | ifequal (exp , exp) stmt larger stmt
 | ifequal (exp , exp) stmt smaller stmt larger stmt

(b) (5 points) Is the grammar with your production(s) from part (a) ambiguous? If not,
argue informally why not; if it is ambiguous, give an example that shows that it is.

Yes. This grammar has the same sort of problem as the “dangling else” in the usual
grammar for conditional statements. There are two possible ways to derive, for
example,

 ifequal (exp , exp) ifequal (exp , exp) stmt smaller stmt

A derivation can be given where the “smaller” part is associated with the second
“ifequal”, and another can be given that associates it with the first “ifequal”.

(c) (2 points) When compiling this statement, what rule(s) or condition(s) should the type
checker verify?
We need to check that the two expressions both have type integer.

 CSE P 501 Exam 8/5/04 Sample Solution

 Page 5 of 6

6. (5 points) Suppose we have two classes B and D, where D is a subclass (derived class)
of B, and these classes contain the methods shown below.

 class B {
 void f() { … }
 void g() { … }
 void h() { … }
 }

 class D extends B {
 void k() { … }
 void g() { … }
 }

Recall that our convention is that in generated x86 assembly code, the label for a method
m in class C is C$m.

Show what the generated virtual method dispatch tables for classes B and D would look
like in x86 assembly language. (Hint: this is supposed to be an easy question – don’t
over-analyze it.)

 B$$ dd 0 ; no superclass
 dd B$f
 dd B$g
 dd B$h

 D$$ dd B$$
 dd B$f
 dd D$g
 dd B$h
 dd D$k

A key point here is that the subclass method table must have pointers to the first
three methods (f, g, and h) in the same order that they appear in the superclass
table.

 CSE P 501 Exam 8/5/04 Sample Solution

 Page 6 of 6

7. (12 points) Write an x86 assembly-language version of the following C function.
Your answer doesn’t need to use exactly the same code shape presented in class for the
various statements and expressions (i.e., it only needs to be legal x86 code that works
properly), but you do need to use the C function-calling conventions properly, i.e., push
arguments onto the stack, set up a new stack frame, etc., and you must include assembly
language code for all statements given here (i.e., don’t omit the assignment to the local
variable a, for example).

 int factorial(int n) {
 int a;
 a = n;
 if (a <= 1) {
 return 1;
 } else {
 return a * factorial(a-1);
 }
 }

 factorial: push ebp ; function prologue
 mov ebp,esp
 sub esp,4
 mov eax,[ebp+8] ; a = n;
 mov [ebp-4],eax
 cmp eax,1 ; a ? 1 (a still in eax)
 jg else
 mov eax,1 ; a<=1 here, return 1
 mov esp,ebp
 pop ebp
 ret ; (no jmp needed)
 else: sub eax,1 ; a-1 (a still in eax here)
 push eax ; factorial(a-1)
 call factorial
 add esp,4 ; pop argument
 imul eax,[ebp-4] ; factorial(a-1) * a in eax
 mov esp,ebp ; return
 pop ebp
 ret

