
 CSE P 501 Exam 11/17/05

 Page 1 of 11

Name ________________________________

There are 9 questions worth a total of 84 points. Please budget your time so you get to all
the questions, particularly some of the later ones that are worth more points than some of
the earlier ones. Keep your answers brief and to the point.

You may refer to the following references:

 Course lecture slides and notes
 Your primary compiler textbook (presumably Appel)

 No other books or other materials.

Please wait to turn the page until everyone is told to begin.

 CSE P 501 Exam 11/17/05

 Page 2 of 11

Score _________________

_____ 1

_____ 2

_____ 3

_____ 4

_____ 5

_____ 6

_____ 7

_____ 8

_____ 9

 CSE P 501 Exam 11/17/05

 Page 3 of 11

1. (8 points) Write a regular expression or set of regular expressions that generate the
following sets of strings. You can use abbreviations (i.e., name = regular expression) if it
helps to make your answer clearer.

(a) (4 points) All strings of a’s, b’s, and c’s that contain an even number of a’s (if they
contain any a’s at all).

(b) (4 points) All strings of a’s, b’s, c’s, A’s, B’s, and C’s that follow the Java
capitalization convention for variable identifiers. This convention is that an identifier
must begin with a lower-case letter (abc), followed by 0 or more other letters, with the
restriction that no two capital letters (ABC) may be next to each other. So a, aA, aAaB,
aaCabcBa, and abc are all examples of properly capitalized identifiers, while A, Aa, aBC,
and aBBa are examples of identifiers that are not properly capitalized.

 CSE P 501 Exam 11/17/05

 Page 4 of 11

2. (8 points) For each of the following regular expressions, give a brief description in
English of the set of strings generated by the expression. (Remember that * has higher
precedence – binds tighter – than concatenation.)

(a) (4 points) a*ba*ba*ba*

(b) (4 points) (x*y*)* xx (x | y)*

3. (5 points) The C family of languages includes prefix and binary + and – operators, as
well as the increment and decrement operators ++ and --, which can appear either before
or after an expression. Recalling that a scanner uses a principle of longest match when
it’s reading the input and parsing it into tokens, what are the tokens in the following
statement?

 a++=++thing+++other--;

(Notes: Don’t worry if this statement is not legal C – after all, the scanner doesn’t care,
does it? Be sure that your tokens are easy to understand: PLUS, PLUSPLUS and
ID(xyzzy) are easy to understand; FOO, CAT, and THING are not.)

 CSE P 501 Exam 11/17/05

 Page 5 of 11

4. (8 points) The follow regular expression is alleged to generate all strings of 0’s and
1’s that contain exactly one pair of adjacent 1’s:

 (0 | 10)* 11 (0 | 01)*

Draw a DFA that accepts strings generated by this regular expression. Be sure that your
diagram distinguishes between final and non-final states (use a double circle for final
states and a single circle for non-final states). You don’t need to use a formal NFA to
DFA construction, just draw a DFA that accepts this set of strings.

5. (3 points) The suggested strategy for checking types and other static semantics in
MiniJava is to make at least two passes over the AST – the first to collect global
information about the types (classes) defined in the program, and later passes to process
the information (including methods) in each class.

Give one technical reason why we need multiple passes over the AST. Why can’t we do
all of the type checking in a single traversal of the AST?

 CSE P 501 Exam 11/17/05

 Page 6 of 11

6. (8 points) Consider the following C (or Java, C++, etc.) program fragment.

 if (c[i] != 0)
 x = 2 / c[i];
 else
 x = 0;

Draw an abstract syntax tree (AST) for this program fragment. The AST should reflect
the semantics of the source program, for example, the abstract syntax for c[i] should be
shown as an array subscripting operation, rather than breaking it down into a sequence of
address arithmetic expressions, or, at the other extreme, just leaving it as a single node
containing the label c[i].

 CSE P 501 Exam 11/17/05

 Page 7 of 11

7. (8 points) Consider the following grammar:

 exprs ::= exprs + expr | exprs * expr | expr
 expr ::= x

(a) (4 points) Is this grammar ambiguous or unambiguous? If it’s ambiguous, show that
by giving two different parse trees for some string generated by the grammar. If it’s not
ambiguous, give an informal argument why it is not.

(b) (4 points) Does this grammar properly capture the normal precedence of arithmetic
operators * and +? (i.e., * should have higher precedence than +) If so, give a brief
argument as to why it does, if not, give an example that shows where it fails to capture
the correct precedence relationship.

 CSE P 501 Exam 11/17/05

 Page 8 of 11

8. (20 points) (the inevitable LR parsing question) One of the first, and longest-lasting
applications on the Unix©®™ operating system is text processing, particularly for
documents containing mathematics. Unix includes a preprocessor eqn that translated
equations written in a small language into appropriate typesetting codes. The eqn source
language can be described by a context-free grammar, and lex and yacc can be used to
implement the eqn translator.

A fragment of that grammar is the syntax for expressions involving superscripts:

 0. eqns' ::= eqns $ ($ is the end-of-file marker)
 1. eqns ::= eq sup eqns
 2. eqns ::= eq
 3. eq ::= x

For example, x sup x sup x describes the equation x^(x^x). (Note that, as in mathematics,
multiple superscripts group to the right.) The symbols sup and x are terminals
representing themselves

(a) (8 points) Construct a LR(0) state machine for this grammar. Be sure to show the set
of items in each state.

(continued next page)

 CSE P 501 Exam 11/17/05

 Page 9 of 11

8 (cont.) Grammar repeated below for convenience

 0. eqns' ::= eqns $ ($ is the end-of-file marker)
 1. eqns ::= eq sup eqns
 2. eqns ::= eq
 3. eq ::= x

(b) (2 points) Is this grammar LR(0)? Why or why not?

 (c) (4 points) Compute First, Follow, and Nullable for each of the non-terminals in the
grammar.

(d) (4 points) Write down the SLR(1) action and goto table for this grammar, using the
information in the LR(0) diagram from part (a) and the First, Follow, and Nullable
information from part (c) of the question.

(e) (2 points) Is this grammar SLR(1)? Why or why not?

 CSE P 501 Exam 11/17/05

 Page 10 of 11

9. (16 points) Consider the following integer valued C function:

 int fun(int a, int b, int c) {
 int ans;
 ans = max(a, c);
 ans = max(ans, b);
 if (ans < 0) {
 ans = - ans;
 }
 return ans;
 }

(a) (4 points) Draw a picture showing the layout of the stack frame after the function
prologue has executed but before the first statement in the function body is executed. Be
sure to show

• the locations and numeric offsets of all of the local variables and parameters, as
well as any other information in this function’s stack frame.

• where the esp and ebp registers point in the stack frame.

(b) (12 points) On the next page, write an x86 assembly-language version of this
function.

• Your answer doesn’t need to strictly imitate the code shape discussed in class –
straightforward x86 code that reflects the source code is all that’s needed, but…

• You need to use the proper C language calling conventions.
• Your assembly language code must include all of the statements shown, i.e., your

code must show all the stores and loads implied by the various statements, even
though this might not be strictly needed to achieve the same effect.

• Your code should address variables and parameters using the proper base register
and offset in the stack frame.

• Assume that max is an integer-valued external function that you can call without
requiring any further declarations.

• You do not need to include things like.386, .model, or other assembly language
directives.

 CSE P 501 Exam 11/17/05

 Page 11 of 11

9. (cont). Function repeated for reference. Write your x86 assembly language version
below. You just need to translate this function – don’t worry about the code that calls it.

 int fun(int a, int b, int c) {
 int ans;
 ans = max(a, c);
 ans = max(ans, b);
 if (ans < 0) {
 ans = - ans;
 }
 return ans;
 }

