
CSE P 501 – Compilers

SSA
Hal Perkins
Spring 2018

UW CSE P 501 Spring 2018 V-1

Agenda

• Overview of SSA IR
– Constructing SSA graphs

– Sample of SSA-based optimizations

– Converting back from SSA form

• Sources: Appel ch. 19, also an extended discussion in Cooper-Torczon
sec. 9.3, Mike Ringenburg’s CSE 401 slides (13wi)

UW CSE P 501 Spring 2018 V-2

Def-Use (DU) Chains

• Common dataflow analysis problem: Find all sites
where a variable is used, or find the definition
site of a variable used in an expression

• Traditional solution: def-use chains – additional
data structure on top of the dataflow graph
– Link each statement defining a variable to all

statements that use it
– Link each use of a variable to its definition

UW CSE P 501 Spring 2018 V-3

Def-Use (DU) Chains

UW CSE P 501 Spring 2018 V-4

z>1

x=1
z>2

x=2

z=x-3
x=4

z=x+7

y=x+1

exit

entry

In this example, two DU
chains intersect

DU-Chain Drawbacks

• Expensive: if a typical variable has N uses and
M definitions, the total cost per-variable is
O(N * M), i.e., O(n2)
– Would be nice if cost were proportional to the size

of the program
• Unrelated uses of the same variable are mixed

together
– Complicates analysis – variable looks live across

all uses even if unrelated

UW CSE P 501 Spring 2018 V-5

SSA: Static Single Assignment

• IR where each variable has only one definition in
the program text
– This is a single static definition, but that definition can

be in a loop that is executed dynamically many times
• Makes many analyses (and associated

optimizations) more efficient
• Separates values from memory storage locations
• Complementary to CFG/DFG – better for some

things, but cannot do everything

UW CSE P 501 Spring 2018 V-6

SSA in Basic Blocks

• Original
– a := x + y
– b := a – 1
– a := y + b
– b := x * 4
– a := a + b

• SSA
– a1 := x + y
– b1 := a1 – 1
– a2 := y + b1

– b2 := x * 4
– a3 := a2 + b2

UW CSE P 501 Spring 2018 V-7

Idea: for each original variable x, create a new variable
xn at the nth definition of the original x. Subsequent
uses of x use xn until the next definition point.

Merge Points

• The issue is how to handle merge points

UW CSE P 501 Spring 2018 V-8

if (…)
a = x;

else
a = y;

b = a;

if (…)
a1 = x;

else
a2 = y;

b1 = ??;

Merge Points
• The issue is how to handle merge points

• Solution: introduce a Φ-function
a3 := Φ(a1, a2)

• Meaning: a3 is assigned either a1or a2 depending on
which control path is used to reach the Φ-function

UW CSE P 501 Spring 2018 V-9

if (…)
a = x;

else
a = y;

b = a;

if (…)
a1 = x;

else
a2 = y;

a3 =Φ(a1, a2);
b1 = a3;

Another Example

UW CSE P 501 Spring 2018 V-10

b := M[x]
a := 0

if b < 4

a := b

c := a + b

Original

b1 := M[x]
a1 := 0

if b1 < 4

a2 := b1

a3 := Φ(a1, a2)
c1 := a3 + b1

SSA

How Does Φ “Know” What to Pick?

• It doesn’t
• Φ-functions don’t actually exist at runtime
– When we’re done using the SSA IR, we translate

back out of SSA form, removing all Φ-functions
• Basically by adding code to copy all SSA xi values to the

single, non-SSA, actual x
– For analysis, all we typically need to know is the

connection of uses to definitions – no need to
“execute” anything

UW CSE P 501 Spring 2018 V-11

Example With a Loop

UW CSE P 501 Spring 2018 V-12

a := 0

b := a + 1
c := c + b
a := b * 2
if a < N

return c

Original SSA
a1 := 0

a3 := Φ(a1, a2)
b1 := Φ(b0, b2)
c2 := Φ(c0, c1)
b2 := a3 + 1
c1 := c2 + b2
a2 := b2 * 2
if a2 < N

return c1

Notes:
•Loop back edges are
also merge points, so
require Φ-functions
•a0, b0, c0 are initial
values of a, b, c on
block entry
•b1 is dead – can
delete later
•c is live on entry –
either input parameter
or uninitialized

What does SSA “buy” us?

• No need for DU or UD chains – implicit in SSA

• Compact representation

• SSA is “recent” (i.e., 80s)

• Prevalent in real compilers for { } languages

UW CSE P 501 Spring 2018 V-13

Converting To SSA Form

• Basic idea
– First, add Φ-functions
– Then, rename all definitions and uses of variables

by adding subscripts

UW CSE P 501 Spring 2018 V-14

Inserting Φ-Functions

• Could simply add Φ-functions for every
variable at every join point(!)

• Called “maximal SSA”
• But
– Wastes way too much space and time
– Not needed in many cases

UW CSE P 501 Spring 2018 V-15

Path-convergence criterion

• Insert a Φ-function for variable a at point z
when:
– There are blocks x and y, both containing

definitions of a, and x ¹ y
– There are nonempty paths from x to z and from y

to z
– These paths have no common nodes other than z

UW CSE P 501 Spring 2018 V-16

Details

• The start node of the flow graph is considered
to define every variable (even if “undefined”)

• Each Φ-function itself defines a variable,
which may create the need for a new Φ-
function
– So we need to keep adding Φ-functions until

things converge
• How can we do this efficiently?

Use a new concept: dominance frontiers

UW CSE P 501 Spring 2018 V-17

Dominators (review)
• Definition: a block x dominates a block y iff every

path from the entry of the control-flow graph to y
includes x

• So, by definition, x dominates x
• We can associate a Dom(inator) set with each

CFG node x – set of all blocks dominated by x
| Dom(x) | ≥ 1

• Properties:
– Transitive: if a dom b and b dom c, then a dom c
– There are no cycles, thus can represent the dominator

relationship as a tree

UW CSE P 501 Spring 2018 V-18

Example

UW CSE P 501 Spring 2018 V-19

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

Dominators and SSA

• One property of SSA is that definitions
dominate uses; more specifically:
– If x := Φ(…,xi,…) is in block B, then the definition of

xi dominates the ith predecessor of B
– If x is used in a non-Φ statement in block B, then

the definition of x dominates block B

UW CSE P 501 Spring 2018 V-20

Dominance Frontier (1)

• To get a practical algorithm for placing Φ-
functions, we need to avoid looking at all
combinations of nodes leading from x to y

• Instead, use the dominator tree in the flow
graph

UW CSE P 501 Spring 2018 V-21

Dominance Frontier (2)

• Definitions
– x strictly dominates y if x dominates y and x ¹ y
– The dominance frontier of a node x is the set of all

nodes w such that x dominates a predecessor of w,
but x does not strictly dominate w
• This means that x can be in it’s own dominance frontier!

That can happen if there is a back edge to x (i.e., x is the
head of a loop)

• Essentially, the dominance frontier is the border
between dominated and undominated nodes

UW CSE P 501 Spring 2018 V-22

Example

UW CSE P 501 Spring 2018 V-23

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE P 501 Spring 2018 V-24

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE P 501 Spring 2018 V-25

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE P 501 Spring 2018 V-26

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE P 501 Spring 2018 V-27

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE P 501 Spring 2018 V-28

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE P 501 Spring 2018 V-29

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE P 501 Spring 2018 V-30

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE P 501 Spring 2018 V-31

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE P 501 Spring 2018 V-32

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE P 501 Spring 2018 V-33

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Dominance Frontier Criterion for
Placing Φ-Functions
• If a node x contains the definition of variable a, then

every node in the dominance frontier of x needs a Φ-
function for a
– Idea: Everything dominated by x will see x’s definition of a.

The dominance frontier represents the first nodes we
could have reached via an alternative path, which will have
an alternate reaching definition (recall that the entry node
defines everything)
• Why is this right for loops? Hint: strict dominance…

– Since the Φ-function itself is a definition, this placement
rule needs to be iterated until it reaches a fixed-point

• Theorem: this algorithm places exactly the same set of
Φ-functions as the path criterion given previously

UW CSE P 501 Spring 2018 V-34

Placing Φ-Functions: Details

• See the book for the full construction, but the
basic steps are:
1. Compute the dominance frontiers for each node

in the flowgraph
2. Insert just enough Φ-functions to satisfy the

criterion. Use a worklist algorithm to avoid
reexamining nodes unnecessarily

3. Walk the dominator tree and rename the
different definitions of each variable a to be a1,
a2, a3, …

UW CSE P 501 Spring 2018 V-35

Efficient Dominator Tree Computation

• Goal: SSA makes optimizing compilers faster
since we can find definitions/uses without
expensive bit-vector algorithms

• So, need to be able to compute SSA form
quickly

• Computation of SSA from dominator trees are
efficient, but…

UW CSE P 501 Spring 2018 V-36

Lengauer-Tarjan Algorithm

• Iterative set-based algorithm for finding
dominator trees is slow in worst case

• Lengauer-Tarjan is near linear time
– Uses depth-first spanning tree from start node of

control flow graph
– See books for details

UW CSE P 501 Spring 2018 V-37

SSA Optimizations

• Why go to the trouble of translating to SSA?
• The advantage of SSA is that it makes many

optimizations and analyses simpler and more
efficient
– We’ll give a couple of examples

• But first, what do we know? (i.e., what
information is kept in the SSA graph?)

UW CSE P 501 Spring 2018 V-38

SSA Data Structures

• Statement: links to containing block, next and
previous statements, variables defined,
variables used.

• Variable: link to its (single) definition and
(possibly multiple) use sites

• Block: List of contained statements, ordered
list of predecessors, successor(s)

UW CSE P 501 Spring 2018 V-39

Dead-Code Elimination

• A variable is live ó its list of uses is not
empty(!)
– That’s it! Nothing further to compute

• Algorithm to delete dead code:
while there is some variable v with no uses

if the statement that defines v has no
other side effects, then delete it

– Need to remove this statement from the list of
uses for its operand variables – which may cause
those variables to become dead

UW CSE P 501 Spring 2018 V-40

Simple Constant Propagation

• If c is a constant in v := c, any use of v can be
replaced by c
– Then update every use of v to use constant c

• If the ci’s in v := Φ(c1, c2, …, cn) are all the same
constant c, we can replace this with v := c

• Incorporate copy propagation, constant
folding, and others in the same worklist
algorithm

UW CSE P 501 Spring 2018 V-41

Simple Constant Propagation
W := list of all statements in SSA program
while W is not empty

remove some statement S from W
if S is v:=Φ(c, c, …, c), replace S with v:=c
if S is v:=c

delete S from the program
for each statement T that uses v

substitute c for v in T
add T to W

UW CSE P 501 Spring 2018 V-42

Converting Back from SSA

• Unfortunately, real machines do not include a
Φ instruction

• So after analysis, optimization, and
transformation, need to convert back to a
“Φ-less” form for execution

UW CSE P 501 Spring 2018 V-43

Translating Φ-functions

• The meaning of x := Φ(x1, x2, …, xn) is “set x:=x1
if arriving on edge 1, set x:=x2 if arriving on
edge 2, etc.”

• So, for each i, insert x := xi at the end of
predecessor block i

• Rely on copy propagation and coalescing in
register allocation to eliminate redundant
copy instructions

UW CSE P 501 Spring 2018 V-44

SSA Wrapup
• More details needed to fully and efficiently

implement SSA, but these are the main ideas
– See recent compiler books (but not the Dragon book!)

• Allows efficient implementation of many
optimizations

• SSA is used in most modern optimizing compilers
(llvm is based on it) and has been retrofitted into
many older ones (gcc is a well-known example)

• Not a silver bullet – some optimizations still need
non-SSA forms, but very effective for many

UW CSE P 501 Spring 2018 V-45

