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Agenda

• Overview of SSA IR
– Constructing SSA graphs

– Sample of SSA-based optimizations

– Converting back from SSA form

• Sources: Appel ch. 19, also an extended discussion in Cooper-Torczon
sec. 9.3, Mike Ringenburg’s CSE 401 slides (13wi)

UW CSE P 501 Spring 2018 V-2



Def-Use (DU) Chains

• Common dataflow analysis problem: Find all sites 
where a variable is used, or find the definition 
site of a variable used in an expression

• Traditional solution: def-use chains – additional 
data structure on top of the dataflow graph
– Link each statement defining a variable to all 

statements that use it
– Link each use of a variable to its definition
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Def-Use (DU) Chains
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z>1

x=1
z>2

x=2

z=x-3
x=4

z=x+7

y=x+1

exit

entry

In this example, two DU 
chains intersect



DU-Chain Drawbacks

• Expensive: if a typical variable has N uses and 
M definitions, the total cost per-variable is 
O(N * M), i.e., O(n2)
– Would be nice if cost were proportional to the size 

of the program
• Unrelated uses of the same variable are mixed 

together
– Complicates analysis – variable looks live across 

all uses even if unrelated
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SSA: Static Single Assignment

• IR where each variable has only one definition in 
the program text
– This is a single static definition, but that definition can 

be in a loop that is executed dynamically many times
• Makes many analyses (and associated 

optimizations) more efficient
• Separates values from memory storage locations
• Complementary to CFG/DFG – better for some 

things, but cannot do everything
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SSA in Basic Blocks

• Original
– a := x + y
– b := a – 1
– a := y + b
– b := x * 4
– a := a + b

• SSA
– a1 := x + y
– b1 := a1 – 1
– a2 := y + b1

– b2 := x * 4
– a3 := a2 + b2
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Idea: for each original variable x, create a new variable 
xn at the nth definition of the original x.  Subsequent 
uses of x use xn until the next definition point.



Merge Points

• The issue is how to handle merge points
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if (…)
a = x;

else
a = y;

b = a;

if (…)
a1 = x;

else
a2 = y;

b1 = ??;



Merge Points
• The issue is how to handle merge points

• Solution: introduce a Φ-function
a3 := Φ(a1, a2)

• Meaning: a3 is assigned either a1or a2 depending on 
which control path is used to reach the Φ-function
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if (…)
a = x;

else
a = y;

b = a;

if (…)
a1 = x;

else
a2 = y;

a3 =Φ(a1, a2);
b1 = a3;



Another Example
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b := M[x]
a := 0

if b < 4

a := b

c := a + b

Original

b1 := M[x]
a1 := 0

if b1 < 4

a2 := b1

a3 := Φ(a1, a2)
c1 := a3 + b1

SSA



How Does Φ “Know” What to Pick?

• It doesn’t
• Φ-functions don’t actually exist at runtime
– When we’re done using the SSA IR, we translate 

back out of SSA form, removing all Φ-functions
• Basically by adding code to copy all SSA xi values to the 

single, non-SSA, actual x 
– For analysis, all we typically need to know is the 

connection of uses to definitions – no need to 
“execute” anything
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Example With a Loop
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a := 0

b := a + 1
c := c + b
a := b * 2
if a < N

return c

Original SSA
a1 := 0

a3 := Φ(a1, a2)
b1 := Φ(b0, b2)
c2 := Φ(c0, c1)
b2 := a3 + 1
c1 := c2 + b2
a2 := b2 * 2
if a2 < N

return c1

Notes:
•Loop back edges are
also merge points, so
require Φ-functions
•a0, b0, c0 are initial
values of a, b, c on
block entry
•b1 is dead – can
delete later
•c is live on entry –
either input parameter
or uninitialized



What does SSA “buy” us?

• No need for DU or UD chains – implicit in SSA

• Compact representation

• SSA is “recent” (i.e., 80s)

• Prevalent in real compilers for { } languages
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Converting To SSA Form

• Basic idea
– First, add Φ-functions
– Then, rename all definitions and uses of variables 

by adding subscripts
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Inserting Φ-Functions

• Could simply add Φ-functions for every 
variable at every join point(!)

• Called “maximal SSA”
• But
– Wastes way too much space and time
– Not needed in many cases
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Path-convergence criterion

• Insert a Φ-function for variable a at point z 
when:
– There are blocks x and y, both containing 

definitions of a, and x ¹ y
– There are nonempty paths from x to z and from y 

to z
– These paths have no common nodes other than z

UW CSE P 501 Spring 2018 V-16



Details

• The start node of the flow graph is considered 
to define every variable (even if “undefined”)

• Each Φ-function itself defines a variable, 
which may create the need for a new Φ-
function
– So we need to keep adding Φ-functions until 

things converge
• How can we do this efficiently?  

Use a new concept: dominance frontiers
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Dominators (review)
• Definition: a block x dominates a block y iff every 

path from the entry of the control-flow graph to y 
includes x

• So, by definition, x dominates x
• We can associate a Dom(inator) set with each 

CFG node x – set of all blocks dominated by x
| Dom(x) | ≥ 1

• Properties:
– Transitive: if a dom b and b dom c, then a dom c
– There are no cycles, thus can represent the dominator 

relationship as a tree
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Example
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Dominators and SSA

• One property of SSA is that definitions 
dominate uses; more specifically:
– If x := Φ(…,xi,…) is in block B, then the definition of 

xi dominates the ith predecessor of B
– If x is used in a non-Φ statement in block B, then 

the definition of x dominates block B
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Dominance Frontier (1)

• To get a practical algorithm for placing Φ-
functions, we need to avoid looking at all 
combinations of nodes leading from x to y

• Instead, use the dominator tree in the flow 
graph
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Dominance Frontier (2)

• Definitions
– x strictly dominates y if x dominates y and x ¹ y
– The dominance frontier of a node x is the set of all 

nodes w such that x dominates a predecessor of w, 
but x does not strictly dominate w
• This means that x can be in it’s own dominance frontier!  

That can happen if there is a back edge to x (i.e., x is the 
head of a loop)

• Essentially, the dominance frontier is the border 
between dominated and undominated nodes
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Example
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Dominance Frontier Criterion for 
Placing Φ-Functions
• If a node x contains the definition of variable a, then 

every node in the dominance frontier of x needs a Φ-
function for a
– Idea: Everything dominated by x will see x’s definition of a.  

The dominance frontier represents the first nodes we 
could have reached via an alternative path, which will have 
an alternate reaching definition (recall that the entry node 
defines everything)
• Why is this right for loops?  Hint: strict dominance…

– Since the Φ-function itself is a definition, this placement 
rule needs to be iterated until it reaches a fixed-point

• Theorem: this algorithm places exactly the same set of 
Φ-functions as the path criterion given previously
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Placing Φ-Functions: Details

• See the book for the full construction, but the 
basic steps are:
1. Compute the dominance frontiers for each node 

in the flowgraph
2. Insert just enough Φ-functions to satisfy the 

criterion.  Use a worklist algorithm to avoid 
reexamining nodes unnecessarily

3. Walk the dominator tree and rename the 
different definitions of each variable a to be a1, 
a2, a3, …

UW CSE P 501 Spring 2018 V-35



Efficient Dominator Tree Computation

• Goal: SSA makes optimizing compilers faster 
since we can find definitions/uses without 
expensive bit-vector algorithms

• So, need to be able to compute SSA form 
quickly

• Computation of SSA from dominator trees are 
efficient, but…
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Lengauer-Tarjan Algorithm

• Iterative set-based algorithm for finding 
dominator trees is slow in worst case

• Lengauer-Tarjan is near linear time
– Uses depth-first spanning tree from start node of 

control flow graph
– See books for details
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SSA Optimizations

• Why go to the trouble of translating to SSA?  
• The advantage of SSA is that it makes many 

optimizations and analyses simpler and more 
efficient
– We’ll give a couple of examples

• But first, what do we know?  (i.e., what 
information is kept in the SSA graph?)
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SSA Data Structures

• Statement: links to containing block, next and 
previous statements, variables defined, 
variables used.  

• Variable: link to its (single) definition and 
(possibly multiple) use sites

• Block: List of contained statements, ordered 
list of predecessors, successor(s)
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Dead-Code Elimination

• A variable is live ó its list of uses is not 
empty(!)
– That’s it!  Nothing further to compute

• Algorithm to delete dead code:
while there is some variable v with no uses

if the statement that defines v has no
other side effects, then delete it

– Need to remove this statement from the list of 
uses for its operand variables – which may cause 
those variables to become dead
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Simple Constant Propagation

• If c is a constant in v := c, any use of v can be 
replaced by c
– Then update every use of v to use constant c

• If the ci’s in v := Φ(c1, c2, …, cn) are all the same 
constant c, we can replace this with v := c

• Incorporate copy propagation, constant 
folding, and others in the same worklist
algorithm
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Simple Constant Propagation
W := list of all statements in SSA program
while W is not empty

remove some statement S from W
if S is v:=Φ(c, c, …, c), replace S with v:=c
if S is v:=c

delete S from the program
for each statement T that uses v

substitute c for v in T
add T to W
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Converting Back from SSA

• Unfortunately, real machines do not include a 
Φ instruction

• So after analysis, optimization, and 
transformation, need to convert back to a 
“Φ-less” form for execution
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Translating Φ-functions

• The meaning of x := Φ(x1, x2, …, xn) is “set x:=x1
if arriving on edge 1, set x:=x2 if arriving on 
edge 2, etc.”

• So, for each i, insert x := xi at the end of 
predecessor block i

• Rely on copy propagation and coalescing in 
register allocation to eliminate redundant 
copy instructions
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SSA Wrapup
• More details needed to fully and efficiently 

implement SSA, but these are the main ideas
– See recent compiler books (but not the Dragon book!)

• Allows efficient implementation of many 
optimizations

• SSA is used in most modern optimizing compilers 
(llvm is based on it) and has been retrofitted into 
many older ones (gcc is a well-known example)

• Not a silver bullet – some optimizations still need 
non-SSA forms, but very effective for many
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