CSE P 501 – Compilers

Loops

Hal Perkins

Spring 2018
Agenda

• Loop optimizations
 – Dominators – discovering loops
 – Loop invariant calculations
 – Loop transformations
• A quick look at some memory hierarchy issues
• Largely based on material in Appel ch. 18, 21; similar material in other books
Loops

Much of the execution time of programs is spent here
\[\therefore \] worth considerable effort to make loops go faster
\[\therefore \] want to figure out how to recognize loops and figure out how to “improve” them
What’s a Loop?

• In source code, a loop is the set of statements in the body of a for/while construct
• But, in a language that permits free use of GOTOs, how do we recognize a loop?
• In a control-flow-graph (node = basic-block, arc = flow-of-control), how do we recognize a loop?
Any Loops in this Code?

```
i = 0
    goto L8
L7:  i++
L8:  if (i < N) goto L9
    s = 0
    j = 0
    goto L5
L4:  j++
L5:  N--
    if(j >= N) goto L3
    if (a[j+1] >= a[j]) goto L2
    t = a[j+1]
    a[j+1] = a[j]
    a[j] = t
    s = 1
L2:  goto L4
L3:  if(s != 0) goto L1 else goto L9
L1:  goto L7
L9:  return
```

Anyone recognize or guess the algorithm?
Any Loops in this Flowgraph?
Loop in a Flowgraph: Intuition

- Cluster of nodes, such that:
 - There's one node called the "header"
 - I can reach all nodes in the cluster from the header
 - I can get back to the header from all nodes in the cluster
 - Only once entrance - via the header
 - One or more exits
What’s a Loop?

- In a control flow graph, a loop is a set of nodes S such that:
 - S includes a *header node* h
 - From any node in S there is a path of directed edges leading to h
 - There is a path from h to any node in S
 - There is no edge from any node outside S to any node in S other than h
Entries and Exits

• In a loop
 — An entry node is one with some predecessor outside the loop
 — An exit node is one that has a successor outside the loop
• Corollary: A loop may have multiple exit nodes, but only one entry node
Loop Terminology
Reducible Flow Graphs

- In a reducible flow graph, any two loops are either nested or disjoint.
- Roughly, to discover if a flow graph is reducible, repeatedly delete edges and collapse together pairs of nodes \((x,y)\) where \(x\) is the only predecessor of \(y\).
- If the graph can be reduced to a single node it is reducible.
 - Caution: this is the “powerpoint” version of the definition – see a good compiler book for the careful details.
Example: Is this Reducible?
Example: Is this Reducible?
Reducible Flow Graphs in Practice

- Common control-flow constructs yield reducible flow graphs
 - if-then[-else], while, do, for, break(!)
- A C function without goto will always be reducible
- Many dataflow analysis algorithms are very efficient on reducible graphs, but...
- We don’t need to assume reducible control-flow graphs to handle loops
Finding Loops in Flow Graphs

• We use *dominators* for this

• Recall
 — Every control flow graph has a unique start node s_0
 — Node x dominates node y if every path from s_0 to y must go through x
 — A node x dominates itself
Calculating Dominator Sets

• $D[n]$ is the set of nodes that dominate n

 – $D[s_0] = \{ s_0 \}$

 – $D[n] = \{ n \} \cup (\cap_{p \in \text{pred}[n]} D[p])$

• Set up an iterative analysis as usual to solve this

 – Except initially each $D[n]$ must be all nodes in the graph – updates make these sets smaller if changed
Example
Immediate Dominators

• Every node \(n \) has a single *immediate dominator* \(\text{idom}(n) \)
 - \(\text{idom}(n) \) dominates \(n \)
 - \(\text{idom}(n) \) differs from \(n \) – i.e., strictly dominates
 - \(\text{idom}(n) \) does not dominate any other strict dominator of \(n \)
 - i.e., strictly dominates and is nearest dominator

• Fact (er, theorem): If \(a \) dominates \(n \) and \(b \) dominates \(n \), then either \(a \) dominates \(b \) or \(b \) dominates \(a \)
 \[\therefore \text{idom}(n) \text{ is unique} \]
Dominator Tree

- A *dominator tree* is constructed from a flowgraph by drawing an edge from every node in n to $\text{idom}(n)$
 - This will be a tree. Why?
Back Edges & Loops

- A flow graph edge from a node \(n \) to a node \(h \) that dominates \(n \) is a back edge
- For every back edge there is a corresponding subgraph of the flow graph that is a loop
Natural Loops

• If h dominates n and n→h is a back edge, then the *natural loop* of that back edge is the set of nodes x such that
 • h dominates x
 • There is a path from x to n not containing h
• h is the *header* of this loop
• Standard loop optimizations can cope with loops whether they are natural or not
Inner Loops

- Inner loops are more important for optimization because most execution time is expected to be spent there.
- If two loops share a header, it is hard to tell which one is “inner”
 - Common way to handle this is to merge natural loops with the same header.
Inner (nested) loops

• Suppose
 – A and B are loops with headers a and b
 – \(a \neq b \)
 – b is in A

• Then
 – The nodes of B are a proper subset of A
 – B is nested in A, or B is the *inner loop*
Loop-Nest Tree

- Given a flow graph G
 1. Compute the dominators of G
 2. Construct the dominator tree
 3. Find the natural loops (thus all loop-header nodes)
 4. For each loop header h, merge all natural loops of h into a single loop: $\text{loop}[h]$
 5. Construct a tree of loop headers s.t. h_1 is above h_2 if h_2 is in $\text{loop}[h_1]$
Loop-Nest Tree details

- Leaves of this tree are the innermost loops
- Need to put all non-loop nodes somewhere
 - Convention: lump these into the root of the loop-nest tree
Loop Preheader

• Often we need a place to park code right before the beginning of a loop
• Easy if there is a single node preceding the loop header h
 — But this isn’t the case in general
• So insert a preheader node p
 — Include an edge p->h
 — Change all edges x->h to be x->p
Loop-Invariant Computations

- Idea: If $x := a_1 \text{ op } a_2$ always does the same thing each time around the loop, we’d like to hoist it and do it once outside the loop.
- But can’t always tell if a_1 and a_2 will have the same value.
 - Need a conservative (safe) approximation.
Loop-Invariant Computations

• d: x := a1 op a2 is loop-invariant if for each ai
 – ai is a constant, or
 – All the definitions of ai that reach d are outside the loop, or
 – Only one definition of ai reaches d, and that definition is loop invariant

• Use this to build an iterative algorithm
 – Base cases: constants and operands defined outside the loop
 – Then: repeatedly find definitions with loop-invariant operands
Hoisting

• Assume that $d: x := a1 \text{ op } a2$ is loop invariant. We can hoist it to the loop preheader if
 — d dominates all loop exits where x is live-out, and
 — There is only one definition of x in the loop, and
 — x is not live-out of the loop preheader

• Need to modify this if $a1 \text{ op } a2$ could have side effects or raise an exception
Hoisting: Possible?

- **Example 1**
 - L0: \(t := 0 \)
 - L1: \(i := i + 1 \)
 - d: \(t := a \text{ op } b \)
 - M[i] := t
 - if \(i < n \) goto L1
 - L2: \(x := t \)

- **Example 2**
 - L0: \(t := 0 \)
 - L1: if \(i \geq n \) goto L2
 - i := i + 1
 - d: \(t := a \text{ op } b \)
 - M[i] := t
 - goto L1
 - L2: \(x := t \)
Hoisting: Possible?

- **Example 3**

 L0: t := 0
 L1: i := i + 1
 d: t := a op b
 M[i] := t
 t := 0
 M[i] := t
 if i < n goto L1
 L2: x := t

- **Example 4**

 L0: t := 0
 L1: M[j] := t
 i := i + 1
 d: t := a op b
 M[i] := t
 if i < n goto L1
 L2: x := t
Induction Variables

- Suppose inside a loop
 - Variable i is incremented or decremented
 - Variable j is set to $i \times c + d$ where c and d are loop-invariant
- Then we can calculate j’s value without using i
 - Whenever i is incremented by a,
 increment j by $a \times c$
Example

- Original

 s := 0
 i := 0
 L1: if i ≥ n goto L2
 j := i*4
 k := j + a
 x := M[k]
 s := s + x
 i := i + 1
 goto L1
 L2:

- To optimize, do...

 - Induction-variable analysis to discover i and j are related induction variables
 - Strength reduction to replace *4 with an addition
 - Induction-variable elimination to replace i ≥ n
 - Assorted copy propagation
Result

- **Original**

s := 0

i := 0

 L1: if $i \geq n$ goto L2

j := $i \times 4$

k := j + a

x := M[k]

s := s + x

i := i + 1

goto L1

- **Transformed**

s := 0

k' := a

b := n \times 4

c := a + b

 L1: if $k' \geq c$ goto L2

x := M[k']

s := s + x

k' := k' + 4

goto L1

Details are somewhat messy – see your favorite compiler book
Basic and Derived Induction Variables

- Variable \(i \) is a *basic induction variable* in loop \(L \) with header \(h \) if the only definitions of \(i \) in \(L \) have the form \(i := i \pm c \) where \(c \) is loop invariant.
- Variable \(k \) is a *derived induction variable* in \(L \) if:
 - There is only one definition of \(k \) in \(L \) of the form \(k := j \cdot c \) or \(k := j + d \) where \(j \) is an induction variable and \(c, d \) are loop-invariant, *and*
 - if \(j \) is a derived variable in the family of \(i \), then:
 - The only definition of \(j \) that reaches \(k \) is the one in the loop, *and*
 - there is no definition of \(i \) on any path between the definition of \(j \) and the definition of \(k \)
Optimizing Induction Variables

- Strength reduction: if a derived induction variable is defined with \(j := i \times c \), try to replace it with an addition inside the loop
- Elimination: after strength reduction some induction variables are not used or are only compared to loop-invariant variables; delete them
- Rewrite comparisons: If a variable is used only in comparisons against loop-invariant variables and in its own definition, modify the comparison to use a related induction variable
Loop Unrolling

- If the body of a loop is small, much of the time is spent in the “increment and test” code
- Idea: reduce overhead by *unrolling* – put two or more copies of the loop body inside the loop
Loop Unrolling

- Basic idea: Given loop L with header node h and back edges $s_i \rightarrow h$
 1. Copy the nodes to make loop L' with header h' and back edges $s_i' \rightarrow h'$
 2. Change all back edges in L from $s_i \rightarrow h$ to $s_i \rightarrow h'$
 3. Change all back edges in L' from $s_i' \rightarrow h'$ to $s_i' \rightarrow h$
Unrolling Algorithm Results

• Before
 L1: x := M[i]
 s := s + x
 i := i + 4
 if i < n goto L1 else L2
L2:

• After
 L1: x := M[i]
 s := s + x
 i := i + 4
 if i < n goto L1' else L2
L1': x := M[i]
 s := s + x
 i := i + 4
 if i < n goto L1 else L2
L2:
Hmmm....

- Not so great – just code bloat
- But: use induction variables and various loop transformations to clean up
After Some Optimizations

- Before

 L1: \(x := M[i] \)

 \(s := s + x \)

 \(i := i + 4 \)

 if \(i < n \) goto L1’ else L2

 L1’: \(x := M[i] \)

 \(s := s + x \)

 \(i := i + 4 \)

 if \(i < n \) goto L1 else L2

- After

 L1: \(x := M[i] \)

 \(s := s + x \)

 \(x := M[i+4] \)

 \(s := s + x \)

 \(i := i + 8 \)

 if \(i < n \) goto L1 else L2

 L2:
Still Broken...

- But in a different, better(?) way
- Good code, but only correct if original number of loop iterations was even
- Fix: add an epilogue to handle the “odd” leftover iteration
Fixed

- Before
 L1: x := M[i]
 s := s + x
 x := M[i+4]
 s := s + x
 i := i + 8
 if i<n goto L1 else L2
 L2:

- After
 if i<n-8 goto L1 else L2
 L1: x := M[i]
 s := s + x
 x := M[i+4]
 s := s + x
 i := i + 8
 if i<n-8 goto L1 else L2
 L2: x := M[i]
 s := s + x
 i := i+4
 if i < n goto L2 else L3
 L3:
Postscript

- This example only unrolls the loop by a factor of 2
- More typically, unroll by a factor of K
 - Then need an epilogue that is a loop like the original that iterates up to $K-1$ times
Memory Heirarchies

- One of the great triumphs of computer design
- Effect is a large, fast memory
- Reality is a series of progressively larger, slower, cheaper stores, with frequently accessed data automatically staged to faster storage (cache, main storage, disk)
- Programmer/compiler typically treats it as one large store. (but not always the best idea)
- Hardware maintains cache coherency – most of the time
Intel Haswell Caches

L1 = 64 KB per core
L2 = 256 KB per core
L3 = 2-8 MB shared

Main Memory
Just How Slow is Operand Access?

<table>
<thead>
<tr>
<th>Access Type</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction</td>
<td>~5 per cycle</td>
</tr>
<tr>
<td>Register</td>
<td>1 cycle</td>
</tr>
<tr>
<td>L1 CACHE</td>
<td>~4 cycles</td>
</tr>
<tr>
<td>L2 CACHE</td>
<td>~10 cycles</td>
</tr>
<tr>
<td>L3 CACHE (unshared line)</td>
<td>~40 cycles</td>
</tr>
<tr>
<td>DRAM</td>
<td>~100 ns</td>
</tr>
</tbody>
</table>
Implications

- CPU speed increases have out-paced increases in memory access times
- Memory access now often determines overall execution speed
- “Instruction count” is not the only performance metric for optimization
Memory Issues

- Byte load/store is often slower than whole (physical) word load/store
 - Unaligned access is often extremely slow
- Temporal locality: accesses to recently accessed data will usually find it in the (fast) cache
- Spatial locality: accesses to data near recently used data will usually be fast
 - “near” = in the same cache block
- But – alternating accesses to blocks that map to the same cache block will cause thrashing
Data Alignment

• Data objects (structs) often are similar in size to a cache block (≈ 64 bytes)
 \therefore Better if objects don’t span blocks
• Some strategies
 – Allocate objects sequentially; bump to next block boundary if useful
 – Allocate objects of same common size in separate pools (all size-2, size-4, etc.)
• Tradeoff: speed for some wasted space
Instruction Alignment

• Align frequently executed basic blocks on cache boundaries (or avoid spanning cache blocks)
• Branch targets (particularly loops) may be faster if they start on a cache line boundary
 – Often see multi-byte nops in optimized code as padding to align loop headers
 – How much depends on architecture (typical 16 or 32 bytes)
• Try to move infrequent code (startup, exceptions) away from hot code
• Optimizing compiler can perform basic-block ordering
Loop Interchange

- Watch for bad cache patterns in inner loops; rearrange if possible
- Example

  ```
  for (i = 0; i < m; i++)
    for (j = 0; j < n; j++)
      for (k = 0; k < p; k++)
        a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]
  
  - b[i,j+1,k] is reused in the next two iterations, but will have been flushed from the cache by the k loop
  ```
Loop Interchange

- Solution for this example: interchange j and k loops

 for (i = 0; i < m; i++)
 for (k = 0; k < p; k++)
 for (j = 0; j < n; j++)
 a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]
 - Now b[i,j+1,k] will be used three times on each cache load
 - Safe here because loop iterations are independent
Loop Interchange

• Need to construct a data-dependency graph showing information flow between loop iterations

• For example, iteration \((j,k)\) depends on iteration \((j',k')\) if \((j',k')\) computes values used in \((j,k)\) or stores values overwritten by \((j,k)\)

 — If there is a dependency and loops are interchanged, we could get different results — so can’t do it
Blocking

- Consider matrix multiply

  ```
  for (i = 0; i < n; i++)
      for (j = 0; j < n; j++) {
          c[i,j] = 0.0;
          for (k = 0; k < n; k++)
              c[i,j] = c[i,j] + a[i,k]*b[k,j]
      }
  ```

- If a, b fit in the cache together, great!
- If they don’t, then every b[k,j] reference will be a cache miss
- Loop interchange (i<->j) won’t help; then every a[i,k] reference would be a miss
Blocking

• Solution: reuse rows of A and columns of B while they are still in the cache
• Assume the cache can hold $2^c n$ matrix elements ($1 < c < n$)
• Calculate $c \times c$ blocks of C using c rows of A and c columns of B
Blocking

• Calculating $c \times c$ blocks of C

 for (i = i0; i < i0+c; i++)
 for (j = j0; j < j0+c; j++) {
 c[i,j] = 0.0;
 for (k = 0; k < n; k++)
 c[i,j] = c[i,j] + a[i,k]*b[k,j]
 }
Blocking

- Then nest this inside loops that calculate successive $c \times c$ blocks

  ```c
  for (i0 = 0; i0 < n; i0+=c)
    for (j0 = 0; j0 < n; j0+=c)
      for (i = i0; i < i0+c; i++)
        for (j = j0; j < j0+c; j++) {
          c[i,j] = 0.0;
          for (k = 0; k < n; k++)
            c[i,j] = c[i,j] + a[i,k]*b[k,j]
        }
  ```
Parallelizing Code

- There is a large literature about how to rearrange loops for better locality and to detect parallelism
- Some starting points
 - Latest edition of Dragon book, ch. 11
 - Allen & Kennedy Optimizing Compilers for Modern Architectures
 - Wolfe, High-Performance Compilers for Parallel Computing