CSE P 501 – Compilers

Dataflow Analysis
Hal Perkins
Spring 2018
Agenda

- Dataflow analysis: a framework and algorithm for many common compiler analyses
- Initial example: dataflow analysis for common subexpression elimination
- Other analysis problems that work in the same framework
- Some of these are optimizations we’ve seen, but now more formally and with details
The Story So Far...

• Redundant expression elimination
 — Local Value Numbering
 — Superlocal Value Numbering
 • Extends VN to EBBs
 • SSA-like namespace
 — Dominator VN Technique (DVNT)
• All of these propagate along forward edges
• None are global
 — In particular, can’t handle back edges (loops)
Dominator Value Numbering

- Most sophisticated algorithm so far
- Still misses some opportunities
- Can’t handle loops
Available Expressions

• Goal: use dataflow analysis to find common subexpressions whose range spans basic blocks
• Idea: calculate *available expressions* at beginning of each basic block
• Avoid re-evaluation of an available expression – use a copy operation
“Available” and Other Terms

- An expression e is defined at point p in the CFG if its value is computed at p
 - Sometimes called definition site
- An expression e is killed at point p if one of its operands is defined at p
 - Sometimes called kill site
- An expression e is available at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p
Available Expression Sets

• To compute available expressions, for each block b, define

 – $\text{AVAIL}(b)$ – the set of expressions available on entry to b

 – $\text{NKILL}(b)$ – the set of expressions not killed in b
 • i.e., all expressions in the program except for those killed in b

 – $\text{DEF}(b)$ – the set of expressions defined in b and not subsequently killed in b
Computing Available Expressions

• $\text{AVAIL}(b)$ is the set

 $\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))$

 — $\text{preds}(b)$ is the set of b’s predecessors in the CFG

 — The set of expressions available on entry to b is the set of expressions that were available at the end of every predecessor basic block x

 — The expressions available on exit from block b are those defined in b or available on entry to b and not killed in b

• This gives a system of simultaneous equations – a dataflow problem
Name Space Issues

• In previous value-numbering algorithms, we used a SSA-like renaming to keep track of versions
• In global dataflow problems, we use the original namespace
 – we require $a+b$ have the same value along all paths to its use
 – If a or b is updated along any path to its use, then $a+b$ has the “wrong” value
 – so original names are exactly what we want
• The KILL information captures when a value is no longer available
Computing Available Expressions

- Big Picture
 - Build control-flow graph
 - Calculate initial local data – DEF(b) and NKILL(b)
 - This only needs to be done once for each block b and depends only on the statements in b
 - Iteratively calculate AVAIL(b) by repeatedly evaluating equations until nothing changes
 - Another fixed-point algorithm
Computing DEF and NKILL (1)

- For each block b with operations $o_1, o_2, ..., o_k$
 - $\text{KILLED} = \emptyset$ // killed variables, not expressions
 - $\text{DEF}(b) = \emptyset$
 for $i = k$ to 1 // note: working back to front
 assume o_i is $\frac{x}{y} = \frac{z}{w}$
 if ($y \notin \text{KILLED}$ and $z \notin \text{KILLED}$)
 add "y + z" to DEF(b)
 add x to KILLED
 ...

 UW CSE P 501 Spring 2018
Computing DEF and NKILL (2)

• After computing DEF and KILLED for a block b, compute set of all expressions in the program not killed in b

 $NKILL(b) = \{ \text{all expressions} \}$

 for each expression e

 for each variable $v \in e$

 if $v \in \text{KILLED}$ then

 $NKILL(b) = NKILL(b) - e$
Example: Compute DEF and NKILL

\[j = 2 \times a \]
\[k = 2 \times b \]

\[x = a + b \]
\[b = c + d \]
\[m = 5 \times n \]

\[c = 5 \times n \]

\[h = 2 \times a \]
Example: Compute DEF and NKILL

\[
\begin{align*}
\text{DEF} &= \{ 2a, 2b \} \\
\text{NKILL} &= \text{exprs w/o j or k}
\end{align*}
\]

\[
\begin{align*}
\text{ DEF } &= \{ 2a, 2b \} \\
\text{ NKILL } &= \text{exprs w/o j or k}
\end{align*}
\]

\[
\begin{align*}
\begin{alignat*}{2}
\text{j} &= 2a \\
\text{k} &= 2b \\
\text{x} &= a + b \\
\text{b} &= c + d \\
\text{c} &= 5n \\
\text{m} &= 5n \\
\text{h} &= 2a
\end{alignat*}
\end{align*}
\]
Example: Compute DEF and NKILL

\[
\begin{align*}
 j &= 2 * a \\
 k &= 2 * b
\end{align*}
\]

DEF = \{2*a, 2*b\}
NKILL = exprs w/o \(j\) or \(k\)

\[
\begin{align*}
 x &= a + b \\
 b &= c + d \\
 m &= 5 * n
\end{align*}
\]

\[
\begin{align*}
 c &= 5 * n
\end{align*}
\]

DEF = \{5*n\}
NKILL = exprs w/o \(c\)

\[
\begin{align*}
 h &= 2 * a
\end{align*}
\]
Example: Compute DEF and NKILL

\[
\begin{align*}
 j &= 2 \times a \\
 k &= 2 \times b \\
 DEF &= \{ 2a, 2b \} \\
 NKILL &= \text{exprs w/o } j \text{ or } k \\
 x &= a + b \\
 b &= c + d \\
 m &= 5 \times n \\
 c &= 5 \times n \\
 DEF &= \{ 5n \} \\
 NKILL &= \text{exprs w/o } c \\
 h &= 2 \times a
\end{align*}
\]
Example: Compute DEF and NKILL

DEF = \{ 5n, c+d \}
NKILL = exprs w/o m, x, b

x = a + b
b = c + d
m = 5n

j = 2a
k = 2b

DEF = \{ 2a, 2b \}
NKILL = exprs w/o j or k

DEF = \{ 5n \}
NKILL = exprs w/o c

h = 2a

DEF = \{ 2a \}
NKILL = exprs w/o h
Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b

\[
\text{Worklist} = \{ \text{all blocks } b_i \} \\
\text{while (Worklist} \neq \emptyset) \\
\text{remove a block } b \text{ from Worklist} \\
\text{recompute AVAIL}(b) \\
\text{if AVAIL}(b) \text{ changed} \\
\text{Worklist} = \text{Worklist} \cup \text{successors}(b)
\]
Example: Find Available Expressions

\[\text{AVAIL}(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

- **DEF** = \{ 5*n, c+d \}
- **NKILL** = exprs w/o m, x, b

- **DEF** = \{ 2*a, 2*b \}
- **NKILL** = exprs w/o j or k

- **DEF** = \{ 5*n \}
- **NKILL** = exprs w/o c

- **DEF** = \{ 2*a \}
- **NKILL** = exprs w/o h

- **j = 2*a**
- **k = 2*b**

- **x = a + b**
- **b = c + d**
- **m = 5*n**

- **c = 5*n**

- **h = 2*a**

- **DEF** = \{ 2*a \}

\[\text{in worklist} \]

\[\text{processing} \]
Example: Find Available Expressions

\[\text{AVAIL}(b) = e_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))) \]

- **j = 2^*a**
- **k = 2^*b**

\[\text{AVAIL} = \{ \} \]
\[\text{DEF} = \{ 2^*a, 2^*b \} \]
\[\text{NKILL} = \text{exprs w/o j or k} \]

- **DEF = \{ 5^*n, c+d \}**
- **NKILL = \text{exprs w/o m, x, b}**

- **x = a + b**
- **b = c + d**
- **m = 5^*n**

\[\text{DEF} = \{ 5^*n \} \]
\[\text{NKILL} = \text{exprs w/o c} \]

- **h = 2^*a**

\[\text{DEF} = \{ 2^*a \} \]
\[\text{NKILL} = \text{exprs w/o h} \]

- **in worklist**
- **processing**

UW CSE P 501 Spring 2018
Example: Find Available Expressions

$$AVAIL(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (AVAIL(x) \cap NKILL(x))))$$

AVAIL = \{\}
DEF = \{2*a, 2*b\}
NKILL = exprs w/o j or k

j = 2*a
k = 2*b

DEF = \{5*n, c+d\}
NKILL = exprs w/o m, x, b

x = a + b
b = c + d
m = 5*n

c = 5*n

DEF = \{5*n\}
NKILL = exprs w/o c

h = 2*a

AVAIL = \{5*n\}
DEF = \{2*a\}
NKILL = exprs w/o h

= in worklist
= processing
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

- \text{AVAIL} = \{ 2^a, 2^b \}
- \text{DEF} = \{ 5^n, c+d \}
- \text{NKILL} = \text{exprs w/o m, x, b}

\[j = 2 \times a \]
\[k = 2 \times b \]

\[x = a + b \]
\[b = c + d \]
\[m = 5 \times n \]

\[c = 5 \times n \]

\[h = 2 \times a \]

- \text{AVAIL} = \{ 5^n \}
- \text{DEF} = \{ 2^a \}
- \text{NKILL} = \text{exprs w/o h}

\text{DEF} = \{ 2^a, 2^b \}
\text{NKILL} = \text{exprs w/o j or k}

\text{DEF} = \{ 5^n \}
\text{NKILL} = \text{exprs w/o c}

\text{DEF} = \{ 5^n \}
\text{NKILL} = \text{exprs w/o c}

\text{AVAIL} = \{ \}

\text{DEF} = \{ 2^a, 2^b \}
\text{NKILL} = \text{exprs w/o j or k}
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))) \]

\[
\begin{align*}
j &= 2 \times a \\
k &= 2 \times b
\end{align*}
\]

\[
\begin{align*}
\text{DEF} &= \{2\times a, 2\times b\} \\
\text{NKILL} &= \text{exprs w/o } j \text{ or } k
\end{align*}
\]

\[
\begin{align*}
x &= a + b \\
b &= c + d \\
m &= 5 \times n
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{2\times a, 2\times b\} \\
\text{DEF} &= \{5\times n\} \\
\text{NKILL} &= \text{exprs w/o } c
\end{align*}
\]

\[
\begin{align*}
h &= 2 \times a
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{5\times n\} \\
\text{DEF} &= \{2\times a\} \\
\text{NKILL} &= \text{exprs w/o } h
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{\} \\
\text{DEF} &= \{\} \\
\text{NKILL} &= \text{exprs w/o } j \text{ or } k
\end{align*}
\]
Example: Find Available Expressions

\[\text{AVAIL}(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

\[j = 2 \times a \]
\[k = 2 \times b \]

\[\text{AVAIL} = \{ \} \]
\[\text{DEF} = \{ 2\times a, 2\times b \} \]
\[\text{NKILL} = \text{exprs w/o } j \text{ or } k \]

\[\text{AVAIL} = \{ 2\times a, 2\times b \} \]
\[\text{DEF} = \{ 5\times n \} \]
\[\text{NKILL} = \text{exprs w/o } c \]

\[x = a + b \]
\[b = c + d \]
\[m = 5 \times n \]

\[c = 5 \times n \]

\[\text{AVAIL} = \{ 5\times n, 2\times a \} \]
\[\text{DEF} = \{ 2\times a \} \]
\[\text{NKILL} = \text{exprs w/o } h \]

\[h = 2 \times a \]

\[\text{AVAIL} = \{ \} \]
\[\text{DEF} = \{ 2\times a, 2\times b \} \]
\[\text{NKILL} = \text{exprs w/o } j \text{ or } k \]
Example: Find Available Expressions

\[\text{AVAIL}(b) = \cap_{x \in \text{exprs}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

\[
\begin{align*}
\text{AVAIL} &= \{ \}\, \quad \text{DEF} = \{ 2\text{a}, 2\text{b} \} \\
\text{NKILL} &= \text{exprs w/o j or k}
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2\text{a}, 2\text{b} \} \\
\text{DEF} &= \{ 5\text{n}, \text{c+d} \} \\
\text{NKILL} &= \text{exprs w/o m, x, b}
\end{align*}
\]

\[
\begin{align*}
x &= \text{a + b} \\
b &= \text{c + d} \\
m &= 5 \text{*[n]}
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2\text{a}, 2\text{b} \} \\
\text{DEF} &= \{ 5\text{n} \} \\
\text{NKILL} &= \text{exprs w/o c}
\end{align*}
\]

\[
\begin{align*}
h &= 2 \text{*[a]}
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 5\text{n}, 2\text{a} \} \\
\text{DEF} &= \{ 2\text{a} \} \\
\text{NKILL} &= \text{exprs w/o h}
\end{align*}
\]

And the common subexpression is???
Example: Find Available Expressions

$$\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))))$$

\[
\begin{align*}
\text{AVAIL} &= \{\} \\
\text{DEF} &= \{2a, 2b\} \\
\text{NKILL} &= \text{exprs w/o j or k}
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{2a, 2b\} \\
\text{DEF} &= \{5n, c+d\} \\
\text{NKILL} &= \text{exprs w/o m, x, b}
\end{align*}
\]

\[
\begin{align*}
x &= a + b \\
b &= c + d \\
m &= 5n
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{2a, 2b\} \\
\text{DEF} &= \{5n\} \\
\text{NKILL} &= \text{exprs w/o c}
\end{align*}
\]

\[
\begin{align*}
h &= 2a
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{5n, 2a\} \\
\text{DEF} &= \{2a\} \\
\text{NKILL} &= \text{exprs w/o h}
\end{align*}
\]

\[=\text{in worklist}\]

\[=\text{processing}\]

UW CSE P 501 Spring 2018

T-27
Comparing Algorithms

- LVN – Local Value Numbering
- SVN – Superlocal Value Numbering
- DVN – DominatoT-based Value Numbering
- GRE – Global Redundancy Elimination
Comparing Algorithms (2)

- LVN => SVN => DVN form a strict hierarchy – later algorithms find a superset of previous information.
- Global RE finds a somewhat different set:
 - Discovers e+f in F (computed in both D and E).
 - Misses identical values if they have different names (e.g., a+b and c+d when a=c and b=d).
 - Value Numbering catches this.
Scope of Analysis

- Larger context (EBBs, regions, global, interprocedural) sometimes helps
 - More opportunities for optimizations
- But not always
 - Introduces uncertainties about flow of control
 - Usually only allows weaker analysis
 - Sometimes has unwanted side effects
 - Can create additional pressure on registers, for example
Code Replication

- Sometimes replicating code increases opportunities – modify the code to create larger regions with simple control flow
- Two examples
 - Cloning
 - Inline substitution
Cloning

- Idea: duplicate blocks with multiple predecessors
- Tradeoff
 - More local optimization possibilities – larger blocks, fewer branches
 - But: larger code size, may slow down if it interacts badly with cache
Original VN Example

A
- \(m = a + b \)
- \(n = a + b \)

B
- \(p = c + d \)
- \(r = c + d \)

C
- \(q = a + b \)
- \(r = c + d \)

D
- \(e = b + 18 \)
- \(s = a + b \)
- \(u = e + f \)

E
- \(e = a + 17 \)
- \(t = c + d \)
- \(u = e + f \)

F
- \(v = a + b \)
- \(w = c + d \)
- \(x = e + f \)

G
- \(y = a + b \)
- \(z = c + d \)
Example with cloning

A
 m = a + b
 n = a + b

B
 p = c + d
 q = a + b
 r = c + d

C
 q = a + b
 r = c + d

D
 e = b + 18
 s = a + b
 u = e + f
 v = a + b
 w = c + d
 x = e + f

E
 e = a + 17
 t = c + d
 u = e + f
 v = a + b
 w = c + d
 x = e + f

F
 y = a + b
 z = c + d

G
 y = a + b
 z = c + d
Inline Substitution

- Problem: an optimizer has to treat a procedure call as if it (could have) modified all globally reachable data
 - Plus there is the basic expense of calling the procedure
- Inline Substitution: replace each call site with a copy of the called function body
Inline Substitution Issues

• Pro
 – More effective optimization – better local context and don’t need to invalidate local assumptions
 – Eliminate overhead of normal function call

• Con
 – Potential code bloat
 – Need to manage recompilation when either caller or callee changes
Dataflow analysis

- Available expressions are an example of a dataflow analysis problem
- Many similar problems can be expressed in a similar framework
- Only the first part of the story – once we’ve discovered facts, we then need to use them to improve code
Characterizing Dataflow Analysis

• All of these algorithms involve sets of facts about each basic block b
 - $\text{IN}(b)$ – facts true on entry to b
 - $\text{OUT}(b)$ – facts true on exit from b
 - $\text{GEN}(b)$ – facts created and not killed in b
 - $\text{KILL}(b)$ – facts killed in b

• These are related by the equation
 \[\text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b)) \]
 – Solve this iteratively for all blocks
 – Sometimes information propagates forward; sometimes backward
Dataflow Analysis (1)

- A collection of techniques for compile-time reasoning about run-time values
- Almost always involves building a graph
 - Trivial for basic blocks
 - Control-flow graph or derivative for global problems
 - Call graph or derivative for whole-program problems
Dataflow Analysis (2)

• Usually formulated as a set of *simultaneous equations* (dataflow problem)
 — Sets attached to nodes and edges
 — Need a lattice (or semilattice) to describe values
 • In particular, has an appropriate operator to combine values and an appropriate “bottom” or minimal value
Dataflow Analysis (3)

- Desired solution is usually a *meet over all paths* (MOP) solution
 - “What is true on every path from entry”
 - “What can happen on any path from entry”
 - Usually relates to safety of optimization
Dataflow Analysis (4)

- Limitations
 - Precision – “up to symbolic execution”
 - Assumes all paths taken
 - Sometimes cannot afford to compute full solution
 - Arrays – classic analysis treats each array as a single fact
 - Pointers – difficult, expensive to analyze
 - Imprecision rapidly adds up
 - But gotta do it to effectively optimize things like C/C++
- For scalar values we can quickly solve simple problems
Example: Live Variable Analysis

- A variable v is *live* at point p iff there is *any* path from p to a use of v along which v is not redefined
- Some uses:
 - Register allocation – only live variables need a register
 - Eliminating useless stores – if variable not live at store, then stored variable will never be used
 - Detecting uses of uninitialized variables – if live at declaration (before initialization) then it might be used uninitialized
 - Improve SSA construction – only need Φ-function for variables that are live in a block (later)
Liveness Analysis Sets

- For each block b, define
 - $\text{use}[b] = \text{variable used in } b \text{ before any def}$
 - $\text{def}[b] = \text{variable defined in } b \text{ & not killed}$
 - $\text{in}[b] = \text{variables live on entry to } b$
 - $\text{out}[b] = \text{variables live on exit from } b$
Equations for Live Variables

• Given the preceding definitions, we have
 \[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \]
 \[\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s] \]

• Algorithm
 – Set \(\text{in}[b] = \text{out}[b] = \emptyset \)
 – Update \text{in}, \text{out} until no change
Example (1 stmt per block)

- Code

 a := 0
 b := a+1
 c := c+b
 a := b*2
 if a < N goto L
 return c

\[
\begin{align*}
\text{in}[b] &= \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \\
\text{out}[b] &= \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\end{align*}
\]
Calculation

<table>
<thead>
<tr>
<th>block</th>
<th>use</th>
<th>def</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td></td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td></td>
<td>a,c</td>
<td>c</td>
<td>a,c</td>
<td>a,c</td>
<td>a,c</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>a</td>
<td>b,c</td>
<td>c</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>b,c</td>
<td>c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a,b</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>a,c</td>
<td>c</td>
<td>a,c</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: a := 0
2: b := a + 1
3: c := c + b
4: a := b + 2
5: a < N
6: return c

\[
\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \\
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]
Calculation

<table>
<thead>
<tr>
<th>block</th>
<th>use</th>
<th>def</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>--</td>
<td>--</td>
<td>c</td>
<td>--</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>--</td>
<td>c</td>
<td>a,c</td>
<td>a,c</td>
<td>a,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>a</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>b,c</td>
<td>c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>--</td>
<td>a</td>
<td>a,c</td>
<td>c</td>
<td>a,c</td>
<td>c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: \(a := 0 \)

2: \(b := a + 1 \)

3: \(c := c + b \)

4: \(a := b + 2 \)

5: \(a < N \)

6: return c

\[
in[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \\
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]
Equations for Live Variables v2

• Many problems have more than one formulation. For example, Live Variables...

• Sets
 – USED(b) – variables used in b before being defined in b
 – NOTDEF(b) – variables not defined in b
 – LIVE(b) – variables live on exit from b

• Equation
 \[\text{LIVE}(b) = \bigcup_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{LIVE}(s) \cap \text{NOTDEF}(s)) \]
Efficiency of Dataflow Analysis

- The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG
 - Forward problems – reverse postorder
 - Backward problems – postorder
Example: Reaching Definitions

- A definition d of some variable v reaches operation i iff i reads the value of v and there is a path from d to i that does not define v

- Uses
 - Find all of the possible definition points for a variable in an expression
Equations for Reaching Definitions

- **Sets**
 - $\text{DEFOUT}(b)$ – set of definitions in b that reach the end of b (i.e., not subsequently redefined in b)
 - $\text{SURVIVED}(b)$ – set of all definitions not obscured by a definition in b
 - $\text{REACHES}(b)$ – set of definitions that reach b

- **Equation**
 \[
 \text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup (\text{REACHES}(p) \cap \text{SURVIVED}(p))
 \]
Example: Very Busy Expressions

• An expression e is considered *very busy* at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations.

• Uses
 — Code hoisting – move e to p (reduces code size; no effect on execution time)
Equations for Very Busy Expressions

- **Sets**
 - $\text{USED}(b)$ – expressions used in b before they are killed
 - $\text{KILLED}(b)$ – expressions redefined in b before they are used
 - $\text{VERYBUSY}(b)$ – expressions very busy on exit from b

- **Equation**
 $$\text{VERYBUSY}(b) = \cap_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{VERYBUSY}(s) - \text{KILLED}(s))$$
Using Dataflow Information

• A few examples of possible transformations...
Classic Common-Subexpression Elimination (CSE)

- In a statement $s: t := x \ op \ y$, if $x \ op \ y$ is available at s then it need not be recomputed.
- Analysis: compute reaching expressions i.e., statements $n: v := x \ op \ y$ such that the path from n to s does not compute $x \ op \ y$ or define x or y.
Classic CSE Transformation

- If x op y is defined at n and reaches s
 - Create new temporary w
 - Rewrite $[n: v := x \text{ op } y$
 $$\begin{align*}
 n: & \quad w := x \text{ op } y \\
 n': & \quad v := w
 \end{align*}$$
 - Modify statement s to be
 $s: t := w$
 - (Rely on copy propagation to remove extra assignments that are not really needed)
Revisiting Example (w/slight addition)

\[
\begin{align*}
 j &= 2 \times a \\
 k &= 2 \times b \\
 \text{AVAIL} &= \{ \}\n\end{align*}
\]

\[
\text{AVAIL} = \{ 2a, 2b \}
\]

\[
\begin{align*}
 x &= a + b \\
 b &= c + d \\
 m &= 5 \times n \\
 c &= 5 \times n \\
 \text{AVAIL} &= \{ 2a, 2b \}
\end{align*}
\]

\[
\begin{align*}
 h &= 2 \times a \\
 i &= 5 \times n \\
 \text{AVAIL} &= \{ 5n, 2a \}
\end{align*}
\]
Revisiting Example (w/slight addition)

```
AVAIL = { 2*a, 2*b }
```

```
x = a + b
b = c + d
t2 = 5*n
m = t2
```

```
h = t1
i = t2
```

```
AVAIL = { 2*a, 2*b }
```

```
t1 = 2 * a
j = t1
k = 2 * b
```

```
AVAIL = { } 
```

```
t2 = 5 * n
c = t2
```

```
AVAIL = { 5*n, 2*a }
```

```
AVAIL = { } 
```

```
```
Then Apply Very Busy...

AVAIL = \{ 2^a, 2^b \}

\begin{align*}
 x &= a + b \\
 b &= c + d \\
 t_2 &= 5 \cdot n \\
 m &= t_2
\end{align*}

AVAIL = \{ 2^a, 2^b \}

AVAIL = \{ 5^n, 2^a \}

AVAIL = \{ \}
Constant Propagation

- Suppose we have
 - Statement $d: t := c$, where c is constant
 - Statement n that uses t
- If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t
Copy Propagation

• Similar to constant propagation
• Setup:
 — Statement d: \(t := z \)
 — Statement n uses \(t \)

 • If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
 — Recall that this can help remove dead assignments
Copy Propagation Tradeoffs

- Downside is that this can increase the lifetime of variable \(z \) and increase need for registers or memory traffic
- But it can expose other optimizations, e.g.,
 \[
 \begin{align*}
 & a := y + z \\
 & \mu := y \\
 & c := \mu + z \quad // \text{copy propagation makes this } y + z \\
 \end{align*}
 \]
 - After copy propagation we can recognize the common subexpression
Dead Code Elimination

- If we have an instruction
 \[s: _ := b \text{ op } c \]
 and \(a\) is not live-out after \(s\), then \(s\) can be eliminated
 - Provided it has no implicit side effects that are visible (output, exceptions, etc.)
 - If \(b\) or \(c\) are function calls, they have to be assumed to have unknown side effects unless the compiler can prove otherwise
Aliases

- A variable or memory location may have multiple names or *aliases*
 - Call-by-reference parameters
 - Variables whose address is taken (&x)
 - Expressions that dereference pointers (p.x, *p)
 - Expressions involving subscripts (a[i])
 - Variables in nested scopes
Aliases vs Optimizations

• Example:

 \[
 p.x := 5; \quad q.x := 7; \quad a := p.x;
 \]

 – Does reaching definition analysis show that the definition of p.x reaches a?
 – (Or: do p and q refer to the same variable/object?)
 – (Or: can p and q refer to the same thing?)
Aliases vs Optimizations

- Example
  ```c
  void f(int *p, int *q) {
    *p = 1; *q = 2;
    return *p;
  }
  ```
 - How do we account for the possibility that p and q might refer to the same thing?
 - Safe approximation: since it’s possible, assume it is true (but rules out a lot)

 - C programmers can use “restrict” to indicate no other pointer is an alias for this one
Types and Aliases (1)

- In Java, ML, MiniJava, and others, if two variables have incompatible types they cannot be names for the same location
 - Also helps that programmer cannot create arbitrary pointers to storage in these languages
Types and Aliases (2)

- Strategy: Divide memory locations into *alias classes* based on type information (every type, array, record field is a class)
- Implication: need to propagate type information from the semantics pass to optimizer
 - Not normally true of a minimally typed IR
- Items in different alias classes cannot refer to each other
Aliases and Flow Analysis

- Idea: Base alias classes on points where a value is created
 - Every new/malloc and each local or global variable whose address is taken is an alias class
 - Pointers can refer to values in multiple alias classes (so each memory reference is to a set of alias classes)
 - Use to calculate “may alias” information (e.g., p “may alias” q at program point s)
Using “may-alias” information

• Treat each alias class as a “variable” in dataflow analysis problems

• Example: framework for available expressions
 – Given statement $s: M[a]:=b,$

 $\text{gen}[s] = \{ \}$

 $\text{kill}[s] = \{ M[x] \mid a \text{ may alias } x \text{ at } s \}$

UW CSE P 501 Spring 2018
May-Alias Analysis

- Without alias analysis, #2 kills M[t] since x and t might be related.
- If analysis determines that “x may-alias t” is false, M[t] is still available at #3; can eliminate the common subexpression and use copy propagation.

Code

1: \(u := M[t] \)
2: \(M[x] := r \)
3: \(w := M[t] \)
4: \(b := u + w \)
Where are we now?

- Dataflow analysis is the core of classical optimizations
 - Although not the only possible story
- Still to explore:
 - Discovering and optimizing loops
 - SSA – Static Single Assignment form