CSE P 501 – Compilers

Dataflow Analysis
Hal Perkins
Spring 2018
Agenda

• Dataflow analysis: a framework and algorithm for many common compiler analyses
• Initial example: dataflow analysis for common subexpression elimination
• Other analysis problems that work in the same framework
• Some of these are optimizations we’ve seen, but now more formally and with details
The Story So Far...

- Redundant expression elimination
 - Local Value Numbering
 - Superlocal Value Numbering
 - Extends VN to EBBs
 - SSA-like namespace
 - Dominator VN Technique (DVNT)
- All of these propagate along forward edges
- None are global
 - In particular, can’t handle back edges (loops)
Dominator Value Numbering

- Most sophisticated algorithm so far
- Still misses some opportunities
- Can’t handle loops
Available Expressions

• Goal: use dataflow analysis to find common subexpressions whose range spans basic blocks
• Idea: calculate *available expressions* at beginning of each basic block
• Avoid re-evaluation of an available expression – use a copy operation
“Available” and Other Terms

- An expression e is defined at point p in the CFG if its value is computed at p
 - Sometimes called definition site
- An expression e is killed at point p if one of its operands is defined at p
 - Sometimes called kill site
- An expression e is available at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p
Available Expression Sets

• To compute available expressions, for each block b, define
 – AVAIL(b) – the set of expressions available on entry to b
 – NKILL(b) – the set of expressions not killed in b
 • i.e., all expressions in the program except for those killed in b
 – DEF(b) – the set of expressions defined in b and not subsequently killed in b
Computing Available Expressions

• AVAIL(b) is the set
 \[AVAIL(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (AVAIL(x) \cap \text{NKILL}(x))) \]
 – preds(b) is the set of b’s predecessors in the CFG
 – The set of expressions available on entry to b is the set of expressions that were available at the end of every predecessor basic block x
 – The expressions available on exit from block b are those defined in b or available on entry to b and not killed in b

• This gives a system of simultaneous equations – a dataflow problem
Name Space Issues

• In previous value-numbering algorithms, we used a SSA-like renaming to keep track of versions

• In global dataflow problems, we use the original namespace
 – we require a+b have the same value along all paths to its use
 – If a or b is updated along any path to its use, then a+b has the “wrong” value
 – so original names are exactly what we want

• The KILL information captures when a value is no longer available
Computing Available Expressions

• Big Picture
 – Build control-flow graph
 – Calculate initial local data – DEF\(b\) and NKILL\(b\)
 • This only needs to be done once for each block \(b\) and depends only on the statements in \(b\)
 – Iteratively calculate AVAIL\(b\) by repeatedly evaluating equations until nothing changes
 • Another fixed-point algorithm
Computing DEF and NKILL (1)

• For each block b with operations o_1, o_2, \ldots, o_k

 $\text{KILLED} = \emptyset$ // killed variables, not expressions

 $\text{DEF}(b) = \emptyset$

 for $i = k$ to 1 // note: working back to front

 assume o_i is “$x = y + z$”

 add x to KILLED

 if ($y \notin \text{KILLED}$ and $z \notin \text{KILLED}$)

 add “$y + z$” to DEF(b)

 ...

...
Computing DEF and NKILL (2)

• After computing DEF and KILLED for a block b, compute set of all expressions in the program not killed in b

$$\text{NKILL}(b) = \{ \text{all expressions} \}$$

for each expression e

for each variable $v \in e$

if $v \in \text{KILLED}$ then

$$\text{NKILL}(b) = \text{NKILL}(b) - e$$
Example: Compute DEF and NKILL

\[
\begin{align*}
j &= 2 \times a \\
k &= 2 \times b \\
x &= a + b \\
b &= c + d \\
m &= 5 \times n \\
h &= 2 \times a \\
c &= 5 \times n
\end{align*}
\]
Example: Compute DEF and NKILL

\[j = 2 \times a \]
\[k = 2 \times b \]

DEF = \{ 2a, 2b \}

\[x = a + b \]
\[b = c + d \]
\[m = 5 \times n \]

NKILL = exprs w/o j or k

\[c = 5 \times n \]

\[h = 2 \times a \]
Example: Compute DEF and NKILL

\[j = 2 \times a \]
\[k = 2 \times b \]

DEF = \{ 2a, 2b \}

NKILL = exprs w/o j or k

\[x = a + b \]
\[b = c + d \]
\[m = 5 \times n \]

\[c = 5 \times n \]

DEF = \{ 5n \}

NKILL = exprs w/o c

\[h = 2 \times a \]
Example: Compute DEF and NKILL

DEF = \{ 5*n, c+d \}
NKILL = exprs w/o m, x, b

j = 2 * a
k = 2 * b
DEF = \{ 2*a, 2*b \}
NKILL = exprs w/o j or k

x = a + b
b = c + d
m = 5 * n
DEF = \{ 5*n \}
NKILL = exprs w/o c

c = 5 * n

h = 2 * a
Example: Compute DEF and NKILL

\[
\begin{align*}
\text{DEF} & = \{ 2*a, 2*b \} \\
\text{NKILL} & = \text{exprs w/o } j \text{ or } k
\end{align*}
\]

\[
\begin{align*}
\text{DEF} & = \{ 5*n \} \\
\text{NKILL} & = \text{exprs w/o } c
\end{align*}
\]

\[
\begin{align*}
\text{DEF} & = \{ 2*a \} \\
\text{NKILL} & = \text{exprs w/o } h
\end{align*}
\]
Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b

Worklist = \{ all blocks \(b_i \) \}

while (Worklist \(\neq \emptyset \))

remove a block \(b \) from Worklist

recompute AVAIL(\(b \))

if AVAIL(\(b \)) changed

Worklist = Worklist \cup \text{successors}(\(b \))
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

- DEF = \{ 2*a, 2*b \}
- NKILL = exprs w/o j or k

- DEF = \{ 5*n, c+d \}
- NKILL = exprs w/o m, x, b

- DEF = \{ 5*n \}
- NKILL = exprs w/o c

- DEF = \{ 2*a \}
- NKILL = exprs w/o h
Example: Find Available Expressions

$$AVAIL(b) = \cap_{x \in \text{preds}(b)} (DEF(x) \cup (AVAIL(x) \cap NKILL(x)))$$

DEF = \{5*n, c+d\}
NKILL = exprs w/o m, x, b

- j = 2 * a
- k = 2 * b

AVAIL = \{\}
DEF = \{2*a, 2*b\}
NKILL = exprs w/o j or k

- x = a + b
- b = c + d
- m = 5 * n

DEF = \{5*n\}
NKILL = exprs w/o c

- c = 5 * n

DEF = \{2*a\}
NKILL = exprs w/o h

- h = 2 * a

- m, x, b = in worklist

- = processing
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

$\begin{align*}
 j &= 2 \times a \\
 k &= 2 \times b \\
 x &= a + b \\
 b &= c + d \\
 m &= 5 \times n \\
 c &= 5 \times n \\
 h &= 2 \times a \\
 \text{AVAIL} &= \{ \} \\
 \text{DEF} &= \{ 2a, 2b \} \\
 \text{NKILL} &= \text{exprs w/o } j \text{ or } k \\
 \text{AVAIL} &= \{ 5n \} \\
 \text{DEF} &= \{ 5n \} \\
 \text{NKILL} &= \text{exprs w/o } c \\
 \text{AVAIL} &= \{ 5n \} \\
 \text{DEF} &= \{ 2a \} \\
 \text{NKILL} &= \text{exprs w/o } h \\
\end{align*}$
Example: Find Available Expressions

\[AVAIL(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (AVAIL(x) \cap NKILL(x))) \]

\[
\begin{align*}
 j &= 2 \times a \\
 k &= 2 \times b \\
 x &= a + b \\
 c &= 5 \times n \\
 b &= c + d \\
 m &= 5 \times n \\
 h &= 2 \times a
\end{align*}
\]

AVAIL = \{ 2*a, 2*b \}
DEF = \{ 5*n, c+d \}
NKILL = exprs w/o m, x, b

AVAIL = \{ 5*n \}
DEF = \{ 2*a \}
NKILL = exprs w/o h

AVAIL = \{ \}
DEF = \{ 2*a, 2*b \}
NKILL = exprs w/o j or k

AVAIL = \{ \}
DEF = \{ 5*n \}
NKILL = exprs w/o c

= in worklist
= processing
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

- **j = 2 * a**
- **k = 2 * b**
- **AVAIL = \{ \}**
- **DEF = \{ 2*a, 2*b \}**
- **NKILL = exprs w/o j or k**

- **x = a + b**
- **b = c + d**
- **m = 5 * n**
- **c = 5 * n**
- **AVAIL = \{ 2*a, 2*b \}**
- **DEF = \{ 5*n \}**
- **NKILL = exprs w/o c**

- **h = 2 * a**
- **AVAIL = \{ 5*n \}**
- **DEF = \{ 2*a \}**
- **NKILL = exprs w/o h**

- **AVAIL = \{ 2*a, 2*b \}**
- **DEF = \{ 5*n, c+d \}**
- **NKILL = exprs w/o m, x, b**

- **AVAIL = \{ 2*a, 2*b \}**
- **DEF = \{ 5*n \}**
- **NKILL = exprs w/o c**

Legend:
- □ = in worklist
- ■ = processing
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

\[
\begin{align*}
j &= 2 \times a \\
k &= 2 \times b \\
x &= a + b \\
b &= c + d \\
m &= 5 \times n \\
h &= 2 \times a \\
c &= 5 \times n
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ \} \\
\text{DEF} &= \{ 2a, 2b \} \\
\text{NKILL} &= \text{exprs w/o } j \text{ or } k \\
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2a, 2b \} \\
\text{DEF} &= \{ 5n, c+d \} \\
\text{NKILL} &= \text{exprs w/o } m, x, b \\
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 5n, 2a \} \\
\text{DEF} &= \{ 2a \} \\
\text{NKILL} &= \text{exprs w/o } h \\
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 5n, 2a \} \\
\text{DEF} &= \{ 5n \} \\
\text{NKILL} &= \text{exprs w/o } c \\
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2a, 2b \} \\
\text{DEF} &= \{ 5n \} \\
\text{NKILL} &= \text{exprs w/o } c \\
\end{align*}
\]
Example: Find Available Expressions

\[AVAIL(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (AVAIL(x) \cap \text{NKILL}(x))) \]

\[j = 2 \times a \]
\[k = 2 \times b \]

AVAIL = \{ \}
DEF = \{ 2a, 2b \}
NKILL = exprs w/o j or k

AVAIL = \{ 2a, 2b \}
DEF = \{ 5n, c+d \}
NKILL = exprs w/o m, x, b

AVAIL = \{ 2a, 2b \}
DEF = \{ 5n \}
NKILL = exprs w/o c

AVAIL = \{ 5n, 2a \}
DEF = \{ 2a \}
NKILL = exprs w/o h

And the common subexpression is???
Example: Find Available Expressions

\[
\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))
\]

\[
\begin{align*}
\text{AVAIL} &= \{ \} \\
\text{DEF} &= \{ 2*a, 2*b \} \\
\text{NKILL} &= \text{exprs w/o j or k}
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2*a, 2*b \} \\
\text{DEF} &= \{ 5*n, c+d \} \\
\text{NKILL} &= \text{exprs w/o m, x, b}
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2*a, 2*b \} \\
\text{DEF} &= \{ 5*n \} \\
\text{NKILL} &= \text{exprs w/o c}
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 5*n, 2*a \} \\
\text{DEF} &= \{ 2*a \} \\
\text{NKILL} &= \text{exprs w/o h}
\end{align*}
\]
Comparing Algorithms

- LVN – Local Value Numbering
- SVN – Superlocal Value Numbering
- DVN – DominatoT-based Value Numbering
- GRE – Global Redundancy Elimination
Comparing Algorithms (2)

- LVN \Rightarrow SVN \Rightarrow DVN form a strict hierarchy – later algorithms find a superset of previous information
- Global RE finds a somewhat different set
 - Discovers $e+f$ in F (computed in both D and E)
 - Misses identical values if they have different names (e.g., $a+b$ and $c+d$ when $a=c$ and $b=d$)
 - Value Numbering catches this
Scope of Analysis

• Larger context (EBBs, regions, global, interprocedural) sometimes helps
 – More opportunities for optimizations

• But not always
 – Introduces uncertainties about flow of control
 – Usually only allows weaker analysis
 – Sometimes has unwanted side effects
 • Can create additional pressure on registers, for example
Code Replication

• Sometimes replicating code increases opportunities – modify the code to create larger regions with simple control flow

• Two examples
 – Cloning
 – Inline substitution
Cloning

• Idea: duplicate blocks with multiple predecessors

• Tradeoff
 – More local optimization possibilities – larger blocks, fewer branches
 – But: larger code size, may slow down if it interacts badly with cache
Example with cloning

\[
\begin{align*}
\text{A} & : m = a + b \\
& \quad n = a + b \\
\text{B} & : p = c + d \\
& \quad r = c + d \\
& \quad y = a + b \\
& \quad z = c + d \\
\text{C} & : q = a + b \\
& \quad r = c + d \\
\text{D} & : e = b + 18 \\
& \quad s = a + b \\
& \quad u = e + f \\
& \quad v = a + b \\
& \quad w = c + d \\
& \quad x = e + f \\
\text{E} & : e = a + 17 \\
& \quad t = c + d \\
& \quad u = e + f \\
\text{F} & : v = a + b \\
& \quad w = c + d \\
& \quad x = e + f \\
\text{G} & : y = a + b \\
& \quad z = c + d \\
\end{align*}
\]
Inline Substitution

• Problem: an optimizer has to treat a procedure call as if it (could have) modified all globally reachable data
 – Plus there is the basic expense of calling the procedure

• Inline Substitution: replace each call site with a copy of the called function body
Inline Substitution Issues

• Pro
 – More effective optimization – better local context and don’t need to invalidate local assumptions
 – Eliminate overhead of normal function call

• Con
 – Potential code bloat
 – Need to manage recompilation when either caller or callee changes
Dataflow analysis

• Available expressions are an example of a dataflow analysis problem
• Many similar problems can be expressed in a similar framework
• Only the first part of the story – once we’ve discovered facts, we then need to use them to improve code
Characterizing Dataflow Analysis

• All of these algorithms involve sets of facts about each basic block \(b \)

 \[
 \begin{align*}
 \text{IN}(b) & \quad \text{facts true on entry to } b \\
 \text{OUT}(b) & \quad \text{facts true on exit from } b \\
 \text{GEN}(b) & \quad \text{facts created and not killed in } b \\
 \text{KILL}(b) & \quad \text{facts killed in } b
 \end{align*}
 \]

• These are related by the equation
 \[
 \text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))
 \]
 – Solve this iteratively for all blocks
 – Sometimes information propagates forward; sometimes backward
Dataflow Analysis (1)

• A collection of techniques for compile-time reasoning about run-time values
• Almost always involves building a graph
 – Trivial for basic blocks
 – Control-flow graph or derivative for global problems
 – Call graph or derivative for whole-program problems
Dataflow Analysis (2)

- Usually formulated as a set of *simultaneous equations* (dataflow problem)
 - Sets attached to nodes and edges
 - Need a lattice (or semilattice) to describe values
 - In particular, has an appropriate operator to combine values and an appropriate “bottom” or minimal value
Dataflow Analysis (3)

• Desired solution is usually a *meet over all paths* (MOP) solution
 – “What is true on every path from entry”
 – “What can happen on any path from entry”
 – Usually relates to safety of optimization
Dataflow Analysis (4)

• Limitations
 – Precision – “up to symbolic execution”
 • Assumes all paths taken
 – Sometimes cannot afford to compute full solution
 – Arrays – classic analysis treats each array as a single fact
 – Pointers – difficult, expensive to analyze
 • Imprecision rapidly adds up
 • But gotta do it to effectively optimize things like C/C++

• For scalar values we can quickly solve simple problems
Example: Live Variable Analysis

• A variable v is \textit{live} at point p iff there is \textit{any} path from p to a use of v along which v is not redefined

• Some uses:
 – Register allocation – only live variables need a register
 – Eliminating useless stores – if variable not live at store, then stored variable will never be used
 – Detecting uses of uninitialized variables – if live at declaration (before initialization) then it might be used uninitialized
 – Improve SSA construction – only need Φ-function for variables that are live in a block (later)
Liveness Analysis Sets

• For each block b, define
 – $\text{use}[b] = \text{variable used in } b \text{ before any def}$
 – $\text{def}[b] = \text{variable defined in } b \text{ & not killed}$
 – $\text{in}[b] = \text{variables live on entry to } b$
 – $\text{out}[b] = \text{variables live on exit from } b$
Equations for Live Variables

• Given the preceding definitions, we have

\[
in[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])
\]

\[
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]

• Algorithm
 – Set in[b] = out[b] = \emptyset
 – Update in, out until no change
Example (1 stmt per block)

- Code

  ```
  a := 0
  L:  b := a+1
  c := c+b
  a := b*2
  if a < N goto L
  return c
  ```

\[
in[b] = \text{use[b]} \cup (\text{out[b]} - \text{def[b]})
\]
\[
\text{out[b]} = \bigcup_{s \in \text{succ[b]}} \text{in}[s]
\]
Calculation

<table>
<thead>
<tr>
<th>block</th>
<th>use</th>
<th>def</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: \(a := 0\)

2: \(b := a + 1\)

3: \(c := c + b\)

4: \(a := b + 2\)

5: \(a < N\)

6: return \(c\)

\[
in[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])
\]

\[
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]
Calculation

<table>
<thead>
<tr>
<th>block</th>
<th>use</th>
<th>def</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>--</td>
<td>--</td>
<td>c</td>
<td>--</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>--</td>
<td>c</td>
<td>a,c</td>
<td>a,c</td>
<td>a,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>a</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>b,c</td>
<td>c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>--</td>
<td>a</td>
<td>a,c</td>
<td>c</td>
<td>a,c</td>
<td>c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: \(a := 0 \)

2: \(b := a + 1 \)

3: \(c := c + b \)

4: \(a := b + 2 \)

5: \(a < N \)

6: \text{return c}

\[
in[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])
\]

\[
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]
Equations for Live Variables v2

• Many problems have more than one formulation. For example, Live Variables...

• Sets
 – USED(b) – variables used in b before being defined in b
 – NOTDEF(b) – variables not defined in b
 – LIVE(b) – variables live on exit from b

• Equation
 \[\text{LIVE}(b) = \bigcup_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{LIVE}(s) \cap \text{NOTDEF}(s)) \]
Efficiency of Dataflow Analysis

- The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG
 - Forward problems – reverse postorder
 - Backward problems – postorder
Example: Reaching Definitions

• A definition d of some variable v reaches operation i iff i reads the value of v and there is a path from d to i that does not define v

• Uses
 – Find all of the possible definition points for a variable in an expression
Equations for Reaching Definitions

• Sets
 – DEFOUT(b) – set of definitions in b that reach the end of b (i.e., not subsequently redefined in b)
 – SURVIVED(b) – set of all definitions not obscured by a definition in b
 – REACHES(b) – set of definitions that reach b

• Equation
 \[\text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup (\text{REACHES}(p) \cap \text{SURVIVED}(p)) \]
Example: Very Busy Expressions

• An expression e is considered *very busy* at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations

• Uses
 – Code hoisting – move e to p (reduces code size; no effect on execution time)
Equations for Very Busy Expressions

• Sets
 – USED(b) – expressions used in b before they are killed
 – KILLED(b) – expressions redefined in b before they are used
 – VERYBUSY(b) – expressions very busy on exit from b

• Equation
 $$\text{VERYBUSY}(b) = \bigcap_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{VERYBUSY}(s) - \text{KILLED}(s))$$
Using Dataflow Information

• A few examples of possible transformations...
Classic Common-Subexpression Elimination (CSE)

- In a statement $s: t := x \text{ op } y$, if $x \text{ op } y$ is available at s then it need not be recomputed.
- Analysis: compute reaching expressions i.e., statements $n: v := x \text{ op } y$ such that the path from n to s does not compute $x \text{ op } y$ or define x or y.

Classic CSE Transformation

• If $x \text{ op } y$ is defined at n and reaches s
 - Create new temporary w
 - Rewrite $n: v := x \text{ op } y$ as

 $n: w := x \text{ op } y$
 $n': v := w$
 - Modify statement s to be
 $s: t := w$

 - (Rely on copy propagation to remove extra assignments that are not really needed)
Revisiting Example (w/slight addition)

\[
\begin{align*}
 j &= 2 \times a \\
 k &= 2 \times b \\
 x &= a + b \\
 b &= c + d \\
 m &= 5 \times n \\
 h &= 2 \times a \\
 i &= 5 \times n \\
 c &= 5 \times n \\
 \text{AVAIL} &= \{ 2*a, 2*b \} \\
 \text{AVAIL} &= \{ 5*n, 2*a \} \\
 \text{AVAIL} &= \{ \} \\
 \text{AVAIL} &= \{ 2*a, 2*b \}
\end{align*}
\]
Revisiting Example (w/slight addition)

\[t_1 = 2 \times a \]
\[j = t_1 \]
\[k = 2 \times b \]

\[x = a + b \]
\[b = c + d \]
\[t_2 = 5 \times n \]
\[m = t_2 \]

\[h = t_1 \]
\[i = t_2 \]

AVAIL = \{ 2*a, 2*b \}

AVAIL = \{ 5*n, 2*a \}

AVAIL = \{ 2*a, 2*b \}

AVAIL = \{ \}
Then Apply Very Busy...

AVAIL = \{ 2*a, 2*b \}

- \(x = a + b \)
- \(b = c + d \)
- \(t2 = 5 * n \)
- \(m = t2 \)

- \(h = t1 \)
- \(i = t2 \)

AVAIL = \{ \}

AVAIL = \{ 2*a, 2*b \}

- \(t1 = 2 * a \)
- \(j = t1 \)
- \(k = 2 * b \)
- \(t2 = 5 * n \)

AVAIL = \{ 5*n, 2*a \}

AVAIL = \{ 2*a, 2*b \}

AVAIL = \{ 2*a, 2*b \}
Constant Propagation

• Suppose we have
 – Statement d: t := c, where c is constant
 – Statement n that uses t

• If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t
Copy Propagation

• Similar to constant propagation
• Setup:
 – Statement d: t := z
 – Statement n uses t
• If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
 – Recall that this can help remove dead assignments
Copy Propagation Tradeoffs

• Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic
• But it can expose other optimizations, e.g.,

\[a := y + z\]
\[u := y\]
\[c := u + z \quad // \text{copy propagation makes this } y + z\]

– After copy propagation we can recognize the common subexpression
Dead Code Elimination

• If we have an instruction

 \[s: a := b \text{ op } c \]

and \(a \) is not live-out after \(s \), then \(s \) can be eliminated

 – Provided it has no implicit side effects that are visible (output, exceptions, etc.)

 • If \(b \) or \(c \) are function calls, they have to be assumed to have unknown side effects unless the compiler can prove otherwise
Aliases

- A variable or memory location may have multiple names or *aliases*
 - Call-by-reference parameters
 - Variables whose address is taken (&x)
 - Expressions that dereference pointers (p.x, *p)
 - Expressions involving subscripts (a[i])
 - Variables in nested scopes
Aliases vs Optimizations

• Example:

\[p.x := 5; \ q.x := 7; \ a := p.x; \]

– Does reaching definition analysis show that the definition of \(p.x \) reaches \(a \)?
– (Or: do \(p \) and \(q \) refer to the same variable/object?)
– (Or: \textit{can} \(p \) and \(q \) refer to the same thing?)
Aliases vs Optimizations

• Example

  ```c
  void f(int *p, int *q) {
    *p = 1; *q = 2;
    return *p;
  }
  ```

 – How do we account for the possibility that p and q might refer to the same thing?
 – Safe approximation: since it’s possible, assume it is true (but rules out a lot)

 • C programmers can use “restrict” to indicate no other pointer is an alias for this one
Types and Aliases (1)

• In Java, ML, MiniJava, and others, if two variables have incompatible types they cannot be names for the same location
 – Also helps that programmer cannot create arbitrary pointers to storage in these languages
Types and Aliases (2)

• Strategy: Divide memory locations into *alias classes* based on type information (every type, array, record field is a class)

• Implication: need to propagate type information from the semantics pass to optimizer
 – Not normally true of a minimally typed IR

• Items in different alias classes cannot refer to each other
Aliases and Flow Analysis

• Idea: Base alias classes on points where a value is created
 – Every new/malloc and each local or global variable whose address is taken is an alias class
 – Pointers can refer to values in multiple alias classes (so each memory reference is to a set of alias classes)
 – Use to calculate “may alias” information (e.g., p “may alias” q at program point s)
Using “may-alias” information

• Treat each alias class as a “variable” in dataflow analysis problems

• Example: framework for available expressions
 – Given statement $s: M[a] := b$,

 $\text{gen}[s] = \{ \}$

 $\text{kill}[s] = \{ M[x] \mid a \text{ may alias } x \text{ at } s \}$
May-Alias Analysis

• Without alias analysis, #2 kills M[t] since x and t might be related
• If analysis determines that “x may-alias t” is false, M[t] is still available at #3; can eliminate the common subexpression and use copy propagation

Code

1: u := M[t]
2: M[x] := r
3: w := M[t]
4: b := u+w
Where are we now?

• Dataflow analysis is the core of classical optimizations
 – Although not the only possible story

• Still to explore:
 – Discovering and optimizing loops
 – SSA – Static Single Assignment form