
CSE P 501 – Compilers

Dataflow Analysis
Hal Perkins
Spring 2018

UW CSE P 501 Spring 2018 T-1

Agenda

• Dataflow analysis: a framework and algorithm
for many common compiler analyses

• Initial example: dataflow analysis for common
subexpression elimination

• Other analysis problems that work in the same
framework

• Some of these are optimizations we’ve seen,
but now more formally and with details

UW CSE P 501 Spring 2018 T-2

The Story So Far…

• Redundant expression elimination
– Local Value Numbering
– Superlocal Value Numbering
• Extends VN to EBBs
• SSA-like namespace

– Dominator VN Technique (DVNT)
• All of these propagate along forward edges
• None are global
– In particular, can’t handle back edges (loops)

UW CSE P 501 Spring 2018 T-3

UW CSE P 501 Spring 2018 T-4

Dominator Value Numbering

m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0

r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18

s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17

t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)

u2 = Φ(u0,u1)

v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)

y0 = a0 + b0

z0 = c0 + d0

G

• Most sophisticated
algorithm so far

• Still misses some
opportunities

• Can’t handle loops

UW CSE P 501 Spring 2018 T-5

Available Expressions

• Goal: use dataflow analysis to find common
subexpressions whose range spans basic
blocks

• Idea: calculate available expressions at
beginning of each basic block

• Avoid re-evaluation of an available expression
– use a copy operation

“Available” and Other Terms
• An expression e is defined at

point p in the CFG if its value
is computed at p
– Sometimes called definition site

• An expression e is killed at
point p if one of its operands
is defined at p
– Sometimes called kill site

• An expression e is available
at point p if every path
leading to p contains a prior
definition of e and e is not
killed between that definition
and p

UW CSE P 501 Spring 2018 T-6

t1 = a + b
...

t10 = a + b
…

b = 7
…

a+b
defined

a+b
available

a+b
killed

Available Expression Sets

• To compute available expressions, for each
block b, define
– AVAIL(b) – the set of expressions available on

entry to b
– NKILL(b) – the set of expressions not killed in b
• i.e., all expressions in the program except for those

killed in b
– DEF(b) – the set of expressions defined in b and

not subsequently killed in b

UW CSE P 501 Spring 2018 T-7

Computing Available Expressions
• AVAIL(b) is the set

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))
– preds(b) is the set of b’s predecessors in the CFG
– The set of expressions available on entry to b is the set

of expressions that were available at the end of every
predecessor basic block x

– The expressions available on exit from block b are
those defined in b or available on entry to b and not
killed in b

• This gives a system of simultaneous equations – a
dataflow problem

UW CSE P 501 Spring 2018 T-8

UW CSE P 501 Spring 2018 T-9

Name Space Issues
• In previous value-numbering algorithms, we used

a SSA-like renaming to keep track of versions
• In global dataflow problems, we use the original

namespace
– we require a+b have the same value along all paths to

its use
– If a or b is updated along any path to its use, then a+b

has the “wrong” value
– so original names are exactly what we want

• The KILL information captures when a value is no
longer available

Computing Available Expressions

• Big Picture
– Build control-flow graph
– Calculate initial local data – DEF(b) and NKILL(b)
• This only needs to be done once for each block b and

depends only on the statements in b
– Iteratively calculate AVAIL(b) by repeatedly

evaluating equations until nothing changes
• Another fixed-point algorithm

UW CSE P 501 Spring 2018 T-10

Computing DEF and NKILL (1)

• For each block b with operations o1, o2, …, ok

KILLED = Æ // killed variables, not expressions

DEF(b) = Æ
for i = k to 1 // note: working back to front

assume oi is “x = y + z”

add x to KILLED

if (y Ï KILLED and z Ï KILLED)

add “y + z” to DEF(b)

…

UW CSE P 501 Spring 2018 T-11

Computing DEF and NKILL (2)

• After computing DEF and KILLED for a block b,
compute set of all expressions in the program
not killed in b
NKILL(b) = { all expressions }
for each expression e

for each variable v Î e
if v Î KILLED then

NKILL(b) = NKILL(b) - e

UW CSE P 501 Spring 2018 T-12

Example: Compute DEF and NKILL

UW CSE P 501 Spring 2018 T-14

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

Example: Compute DEF and NKILL

UW CSE P 501 Spring 2018 T-15

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

Example: Compute DEF and NKILL

UW CSE P 501 Spring 2018 T-16

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

Example: Compute DEF and NKILL

UW CSE P 501 Spring 2018 T-17

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

Example: Compute DEF and NKILL

UW CSE P 501 Spring 2018 T-18

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

DEF = { 2*a }
NKILL = exprs w/o h

DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b

Worklist = { all blocks bi }
while (Worklist ¹ Æ)

remove a block b from Worklist
recompute AVAIL(b)
if AVAIL(b) changed

Worklist = Worklist È successors(b)

UW CSE P 501 Spring 2018 T-19

Example: Find Available Expressions

UW CSE P 501 Spring 2018 T-20

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

DEF = { 2*a }
NKILL = exprs w/o h

DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing

Example: Find Available Expressions

UW CSE P 501 Spring 2018 T-21

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

DEF = { 2*a }
NKILL = exprs w/o h

DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing

Example: Find Available Expressions

UW CSE P 501 Spring 2018 T-22

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing

Example: Find Available Expressions

UW CSE P 501 Spring 2018 T-23

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing

Example: Find Available Expressions

UW CSE P 501 Spring 2018 T-24

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

AVAIL = { 2*a, 2*b }
DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing

Example: Find Available Expressions

UW CSE P 501 Spring 2018 T-25

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

AVAIL = { 2*a, 2*b }
DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing

Example: Find Available Expressions

UW CSE P 501 Spring 2018 T-26

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

AVAIL = { 2*a, 2*b }
DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing
And the common subexpression is???

Example: Find Available Expressions

UW CSE P 501 Spring 2018 T-27

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

AVAIL = { 2*a, 2*b }
DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing

UW CSE P 501 Spring 2018 T-28

Comparing Algorithms

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

• LVN – Local Value
Numbering

• SVN – Superlocal Value
Numbering

• DVN – DominatoT-based
Value Numbering

• GRE – Global Redundancy
Elimination

UW CSE P 501 Spring 2018 T-29

Comparing Algorithms (2)

• LVN => SVN => DVN form a strict hierarchy – later
algorithms find a superset of previous information

• Global RE finds a somewhat different set
– Discovers e+f in F (computed in both D and E)
– Misses identical values if they have different names (e.g.,

a+b and c+d when a=c and b=d)
• Value Numbering catches this

UW CSE P 501 Spring 2018 T-30

Scope of Analysis

• Larger context (EBBs, regions, global,
interprocedural) sometimes helps
– More opportunities for optimizations

• But not always
– Introduces uncertainties about flow of control
– Usually only allows weaker analysis
– Sometimes has unwanted side effects

• Can create additional pressure on registers, for example

Code Replication

• Sometimes replicating code increases
opportunities – modify the code to create
larger regions with simple control flow

• Two examples
– Cloning
– Inline substitution

UW CSE P 501 Spring 2018 T-31

Cloning

• Idea: duplicate blocks with multiple
predecessors

• Tradeoff
– More local optimization possibilities – larger

blocks, fewer branches
– But: larger code size, may slow down if it interacts

badly with cache

UW CSE P 501 Spring 2018 T-32

Original VN Example

UW CSE P 501 Spring 2018 T-33

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

Example with cloning

UW CSE P 501 Spring 2018 T-34

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G
y = a + b
z = c + d

G

Inline Substitution

• Problem: an optimizer has to treat a
procedure call as if it (could have) modified all
globally reachable data
– Plus there is the basic expense of calling the

procedure
• Inline Substitution: replace each call site with

a copy of the called function body

UW CSE P 501 Spring 2018 T-35

Inline Substitution Issues

• Pro
– More effective optimization – better local context

and don’t need to invalidate local assumptions
– Eliminate overhead of normal function call

• Con
– Potential code bloat
– Need to manage recompilation when either caller

or callee changes

UW CSE P 501 Spring 2018 T-36

Dataflow analysis

• Available expressions are an example of a
dataflow analysis problem

• Many similar problems can be expressed in a
similar framework

• Only the first part of the story – once we’ve
discovered facts, we then need to use them to
improve code

UW CSE P 501 Spring 2018 T-37

Characterizing Dataflow Analysis
• All of these algorithms involve sets of facts about

each basic block b
IN(b) – facts true on entry to b
OUT(b) – facts true on exit from b
GEN(b) – facts created and not killed in b
KILL(b) – facts killed in b

• These are related by the equation
OUT(b) = GEN(b) È (IN(b) – KILL(b))

– Solve this iteratively for all blocks
– Sometimes information propagates forward;

sometimes backward

UW CSE P 501 Spring 2018 T-38

UW CSE P 501 Spring 2018 T-39

Dataflow Analysis (1)

• A collection of techniques for compile-time
reasoning about run-time values

• Almost always involves building a graph
– Trivial for basic blocks
– Control-flow graph or derivative for global

problems
– Call graph or derivative for whole-program

problems

UW CSE P 501 Spring 2018 T-40

Dataflow Analysis (2)

• Usually formulated as a set of simultaneous
equations (dataflow problem)
– Sets attached to nodes and edges
– Need a lattice (or semilattice) to describe values
• In particular, has an appropriate operator to combine

values and an appropriate “bottom” or minimal value

UW CSE P 501 Spring 2018 T-41

Dataflow Analysis (3)

• Desired solution is usually a meet over all
paths (MOP) solution
– “What is true on every path from entry”
– “What can happen on any path from entry”
– Usually relates to safety of optimization

Dataflow Analysis (4)
• Limitations
– Precision – “up to symbolic execution”

• Assumes all paths taken
– Sometimes cannot afford to compute full solution
– Arrays – classic analysis treats each array as a single

fact
– Pointers – difficult, expensive to analyze

• Imprecision rapidly adds up
• But gotta do it to effectively optimize things like C/C++

• For scalar values we can quickly solve simple
problems

UW CSE P 501 Spring 2018 T-42

Example:Live Variable Analysis
• A variable v is live at point p iff there is any path from
p to a use of v along which v is not redefined

• Some uses:
– Register allocation – only live variables need a register
– Eliminating useless stores – if variable not live at store,

then stored variable will never be used
– Detecting uses of uninitialized variables – if live at

declaration (before initialization) then it might be used
uninitialized

– Improve SSA construction – only need Φ-function for
variables that are live in a block (later)

UW CSE P 501 Spring 2018 T-43

Liveness Analysis Sets

• For each block b, define
– use[b] = variable used in b before any def
– def[b] = variable defined in b & not killed
– in[b] = variables live on entry to b
– out[b] = variables live on exit from b

UW CSE P 501 Spring 2018 T-44

Equations for Live Variables

• Given the preceding definitions, we have
in[b] = use[b] È (out[b] – def[b])
out[b] = ÈsÎsucc[b] in[s]

• Algorithm
– Set in[b] = out[b] = Æ
– Update in, out until no change

UW CSE P 501 Spring 2018 T-45

Example (1 stmt per block)

• Code
a := 0

L: b := a+1
c := c+b
a := b*2
if a < N goto L
return c

UW CSE P 501 Spring 2018 T-46

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b*2

5: a < N

6: return c

in[b] = use[b] È (out[b] – def[b])

out[b] = ÈsÎsucc[b] in[s]

Calculation

UW CSE P 501 Spring 2018 T-47

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

in[b] = use[b] È (out[b] – def[b])

out[b] = ÈsÎsucc[b] in[s]

I II III

block use def out in out in out in

6

5

4

3

2

1

Calculation

UW CSE P 501 Spring 2018 T-48

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

in[b] = use[b] È (out[b] – def[b])
out[b] = ÈsÎsucc[b] in[s]

I II III

block use def out in out in out in

6 c -- -- c -- c

5 a -- c a,c a,c a,c

4 b a a,c b,c a,c b,c

3 b,c c b,c b,c b,c b,c

2 a b b,c a,c b,c a,c

1 -- a a,c c a,c c

Equations for Live Variables v2

• Many problems have more than one
formulation. For example, Live Variables…

• Sets
– USED(b) – variables used in b before being defined

in b
– NOTDEF(b) – variables not defined in b
– LIVE(b) – variables live on exit from b

• Equation
LIVE(b) = ÈsÎsucc(b)USED(s) È (LIVE(s) Ç NOTDEF(s))

UW CSE P 501 Spring 2018 T-49

Efficiency of Dataflow Analysis

• The algorithms eventually terminate, but the
expected time needed can be reduced by
picking a good order to visit nodes in the CFG
– Forward problems – reverse postorder
– Backward problems – postorder

UW CSE P 501 Spring 2018 T-50

Example: Reaching Definitions

• A definition d of some variable v reaches
operation i iff i reads the value of v and there
is a path from d to i that does not define v

• Uses
– Find all of the possible definition points for a

variable in an expression

UW CSE P 501 Spring 2018 T-51

Equations for Reaching Definitions

• Sets
– DEFOUT(b) – set of definitions in b that reach the end of b

(i.e., not subsequently redefined in b)
– SURVIVED(b) – set of all definitions not obscured by a

definition in b
– REACHES(b) – set of definitions that reach b

• Equation
REACHES(b) = ÈpÎpreds(b) DEFOUT(p) È

(REACHES(p) Ç SURVIVED(p))

UW CSE P 501 Spring 2018 T-52

Example: Very Busy Expressions

• An expression e is considered very busy at
some point p if e is evaluated and used along
every path that leaves p, and evaluating e at p
would produce the same result as evaluating it
at the original locations

• Uses
– Code hoisting – move e to p (reduces code size; no

effect on execution time)

UW CSE P 501 Spring 2018 T-53

Equations for Very Busy Expressions

• Sets
– USED(b) – expressions used in b before they are killed
– KILLED(b) – expressions redefined in b before they are

used
– VERYBUSY(b) – expressions very busy on exit from b

• Equation
VERYBUSY(b) = ÇsÎsucc(b) USED(s) È

(VERYBUSY(s) - KILLED(s))

UW CSE P 501 Spring 2018 T-54

Using Dataflow Information

• A few examples of possible transformations…

UW CSE P 501 Spring 2018 T-55

Classic Common-Subexpression
Elimination (CSE)
• In a statement s: t := x op y, if x op y is

available at s then it need not be recomputed
• Analysis: compute reaching expressions i.e.,

statements n: v := x op y such that the path
from n to s does not compute x op y or define
x or y

UW CSE P 501 Spring 2018 T-56

Classic CSE Transformation

• If x op y is defined at n and reaches s
– Create new temporary w
– Rewrite n: v := x op y as

n: w := x op y
n’: v := w

– Modify statement s to be
s: t := w

– (Rely on copy propagation to remove extra
assignments that are not really needed)

UW CSE P 501 Spring 2018 T-57

Revisiting Example (w/slight addition)

UW CSE P 501 Spring 2018 T-58

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a
i = 5 * n

c = 5 * n

AVAIL = { }

AVAIL = { 2*a, 2*b }

AVAIL = { 5*n, 2*a }

AVAIL = { 2*a, 2*b }

Revisiting Example (w/slight addition)

UW CSE P 501 Spring 2018 T-59

t1 = 2 * a
j = t1
k = 2 * b

x = a + b
b = c + d
t2 = 5 * n
m = t2

h = t1
i = t2

t2 = 5 * n
c = t2

AVAIL = { }

AVAIL = { 2*a, 2*b }

AVAIL = { 5*n, 2*a }

AVAIL = { 2*a, 2*b }

Then Apply Very Busy…

UW CSE P 501 Spring 2018 T-60

t1 = 2 * a
j = t1
k = 2 * b
t2 = 5 * n

x = a + b
b = c + d
t2 = 5 * n
m = t2

h = t1
i = t2

t2 = 5 * n
c = t2

AVAIL = { }

AVAIL = { 2*a, 2*b }

AVAIL = { 5*n, 2*a }

AVAIL = { 2*a, 2*b }

Constant Propagation

• Suppose we have
– Statement d: t := c, where c is constant
– Statement n that uses t

• If d reaches n and no other definitions of t
reach n, then rewrite n to use c instead of t

UW CSE P 501 Spring 2018 T-61

Copy Propagation

• Similar to constant propagation
• Setup:
– Statement d: t := z
– Statement n uses t

• If d reaches n and no other definition of t
reaches n, and there is no definition of z on
any path from d to n, then rewrite n to use z
instead of t
– Recall that this can help remove dead assignments

UW CSE P 501 Spring 2018 T-62

Copy Propagation Tradeoffs

• Downside is that this can increase the lifetime
of variable z and increase need for registers or
memory traffic

• But it can expose other optimizations, e.g.,
a := y + z
u := y
c := u + z // copy propagation makes this y + z

– After copy propagation we can recognize the
common subexpression

UW CSE P 501 Spring 2018 T-63

Dead Code Elimination

• If we have an instruction
s: a := b op c

and a is not live-out after s, then s can be
eliminated
– Provided it has no implicit side effects that are

visible (output, exceptions, etc.)
• If b or c are function calls, they have to be assumed to

have unknown side effects unless the compiler can
prove otherwise

UW CSE P 501 Spring 2018 T-64

Aliases

• A variable or memory location may have
multiple names or aliases
– Call-by-reference parameters
– Variables whose address is taken (&x)
– Expressions that dereference pointers

(p.x, *p)
– Expressions involving subscripts (a[i])
– Variables in nested scopes

UW CSE P 501 Spring 2018 T-65

Aliases vs Optimizations

• Example:
p.x := 5; q.x := 7; a := p.x;

– Does reaching definition analysis show that the
definition of p.x reaches a?

– (Or: do p and q refer to the same variable/object?)
– (Or: can p and q refer to the same thing?)

UW CSE P 501 Spring 2018 T-66

Aliases vs Optimizations
• Example

void f(int *p, int *q) {
*p = 1; *q = 2;
return *p;

}
– How do we account for the possibility that p and q

might refer to the same thing?
– Safe approximation: since it’s possible, assume it is

true (but rules out a lot)
• C programmers can use “restrict” to indicate no other

pointer is an alias for this one

UW CSE P 501 Spring 2018 T-67

Types and Aliases (1)

• In Java, ML, MiniJava, and others, if two
variables have incompatible types they cannot
be names for the same location
– Also helps that programmer cannot create

arbitrary pointers to storage in these languages

UW CSE P 501 Spring 2018 T-68

Types and Aliases (2)

• Strategy: Divide memory locations into alias
classes based on type information (every type,
array, record field is a class)

• Implication: need to propagate type
information from the semantics pass to
optimizer
– Not normally true of a minimally typed IR

• Items in different alias classes cannot refer to
each other

UW CSE P 501 Spring 2018 T-69

Aliases and Flow Analysis

• Idea: Base alias classes on points where a
value is created
– Every new/malloc and each local or global variable

whose address is taken is an alias class
– Pointers can refer to values in multiple alias

classes (so each memory reference is to a set of
alias classes)

– Use to calculate “may alias” information (e.g., p
“may alias” q at program point s)

UW CSE P 501 Spring 2018 T-70

Using “may-alias” information

• Treat each alias class as a “variable” in
dataflow analysis problems

• Example: framework for available expressions
– Given statement s: M[a]:=b,

gen[s] = { }
kill[s] = { M[x] | a may alias x at s }

UW CSE P 501 Spring 2018 T-71

May-Alias Analysis

• Without alias analysis,
#2 kills M[t] since x and
t might be related

• If analysis determines
that “x may-alias t” is
false, M[t] is still
available at #3; can
eliminate the common
subexpression and use
copy propagation

• Code
1: u := M[t]
2: M[x] := r
3: w := M[t]
4: b := u+w

UW CSE P 501 Spring 2018 T-72

Where are we now?

• Dataflow analysis is the core of classical
optimizations
– Although not the only possible story

• Still to explore:
– Discovering and optimizing loops
– SSA – Static Single Assignment form

UW CSE P 501 Spring 2018 T-73

