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Agenda

• Dataflow analysis: a framework and algorithm 
for many common compiler analyses

• Initial example: dataflow analysis for common 
subexpression elimination

• Other analysis problems that work in the same 
framework

• Some of these are optimizations we’ve seen, 
but now more formally and with details
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The Story So Far…

• Redundant expression elimination
– Local Value Numbering
– Superlocal Value Numbering
• Extends VN to EBBs
• SSA-like namespace

– Dominator VN Technique (DVNT)
• All of these propagate along forward edges
• None are global
– In particular, can’t handle back edges (loops)
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Dominator Value Numbering

m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0

r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18

s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17

t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)

u2 = Φ(u0,u1)

v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)

y0 = a0 + b0

z0 = c0 + d0

G

• Most sophisticated 
algorithm so far

• Still misses some 
opportunities

• Can’t handle loops
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Available Expressions

• Goal: use dataflow analysis to find common 
subexpressions whose range spans basic 
blocks

• Idea: calculate available expressions at 
beginning of each basic block

• Avoid re-evaluation of an available expression 
– use a copy operation



“Available” and Other Terms
• An expression e is defined at 

point p in the CFG if its value 
is computed at p
– Sometimes called definition site

• An expression e is killed at 
point p if one of its operands 
is defined at p
– Sometimes called kill site

• An expression e is available
at point p if every path 
leading to p contains a prior 
definition of e and e is not 
killed between that definition 
and p
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t1 = a + b
...

t10 = a + b
…

b = 7
…

a+b
defined

a+b
available

a+b
killed



Available Expression Sets

• To compute available expressions, for each 
block b, define
– AVAIL(b) – the set of expressions available on 

entry to b
– NKILL(b) – the set of expressions not killed in b
• i.e., all expressions in the program except for those 

killed in b
– DEF(b) – the set of expressions defined in b and 

not subsequently killed in b
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Computing Available Expressions
• AVAIL(b) is the set

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))
– preds(b) is the set of b’s predecessors in the CFG
– The set of expressions available on entry to b is the set 

of expressions that were available at the end of every
predecessor basic block x

– The expressions available on exit from block b are 
those defined in b or available on entry to b and not 
killed in b

• This gives a system of simultaneous equations – a 
dataflow problem
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Name Space Issues
• In previous value-numbering algorithms, we used 

a SSA-like renaming to keep track of versions
• In global dataflow problems, we use the original 

namespace
– we require a+b have the same value along all paths to 

its use
– If a or b is updated along any path to its use, then a+b

has the “wrong” value
– so original names are exactly what we want

• The KILL information captures when a value is no 
longer available



Computing Available Expressions

• Big Picture
– Build control-flow graph
– Calculate initial local data – DEF(b) and NKILL(b)
• This only needs to be done once for each block b and 

depends only on the statements in b
– Iteratively calculate AVAIL(b) by repeatedly 

evaluating equations until nothing changes
• Another fixed-point algorithm
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Computing DEF and NKILL (1)

• For each block b with operations o1, o2, …, ok

KILLED = Æ // killed variables, not expressions

DEF(b) = Æ
for i = k to 1   // note: working back to front

assume oi is “x = y + z”

add x to KILLED

if (y Ï KILLED and z Ï KILLED)

add “y + z” to DEF(b)

…
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Computing DEF and NKILL (2)

• After computing DEF and KILLED for a block b, 
compute set of all expressions in the program 
not killed in b
NKILL(b) = { all expressions }
for each expression e

for each variable v Î e
if v Î KILLED then

NKILL(b) = NKILL(b) - e
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Example: Compute DEF and NKILL
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j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n



Example: Compute DEF and NKILL
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j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k



Example: Compute DEF and NKILL
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j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c



Example: Compute DEF and NKILL

UW CSE P 501 Spring 2018 T-17

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b



Example: Compute DEF and NKILL
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j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

DEF = { 2*a }
NKILL = exprs w/o h

DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b



Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b

Worklist = { all blocks bi }
while (Worklist ¹ Æ)

remove a block b from Worklist
recompute AVAIL(b)
if AVAIL(b) changed

Worklist = Worklist È successors(b)
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Example: Find Available Expressions
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AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

DEF = { 2*a }
NKILL = exprs w/o h

DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing



Example: Find Available Expressions
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AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

DEF = { 2*a }
NKILL = exprs w/o h

DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing



Example: Find Available Expressions
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AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing



Example: Find Available Expressions
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AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing



Example: Find Available Expressions
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AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

AVAIL = { 2*a, 2*b }
DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing



Example: Find Available Expressions
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AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

AVAIL = { 2*a, 2*b }
DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing



Example: Find Available Expressions
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AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

AVAIL = { 2*a, 2*b }
DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing
And the common subexpression is???



Example: Find Available Expressions
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AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

AVAIL = { 2*a, 2*b }
DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing
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Comparing Algorithms

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

• LVN – Local Value 
Numbering

• SVN – Superlocal Value 
Numbering

• DVN – DominatoT-based 
Value Numbering

• GRE – Global Redundancy 
Elimination



UW CSE P 501 Spring 2018 T-29

Comparing Algorithms (2)

• LVN => SVN => DVN form a strict hierarchy – later 
algorithms find a superset of previous information

• Global RE finds a somewhat different set
– Discovers e+f in F (computed in both D and E)
– Misses identical values if they have different names (e.g., 

a+b and c+d when a=c and b=d)
• Value Numbering catches this
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Scope of Analysis

• Larger context (EBBs, regions, global, 
interprocedural) sometimes helps
– More opportunities for optimizations

• But not always
– Introduces uncertainties about flow of control
– Usually only allows weaker analysis
– Sometimes has unwanted side effects

• Can create additional pressure on registers, for example



Code Replication

• Sometimes replicating code increases 
opportunities – modify the code to create 
larger regions with simple control flow

• Two examples
– Cloning
– Inline substitution
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Cloning

• Idea: duplicate blocks with multiple 
predecessors

• Tradeoff
– More local optimization possibilities – larger 

blocks, fewer branches
– But: larger code size, may slow down if it interacts 

badly with cache
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Original VN Example
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m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G



Example with cloning
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m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G
y = a + b
z = c + d

G



Inline Substitution

• Problem: an optimizer has to treat a 
procedure call as if it (could have) modified all 
globally reachable data
– Plus there is the basic expense of calling the 

procedure
• Inline Substitution: replace each call site with 

a copy of the called function body
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Inline Substitution Issues

• Pro
– More effective optimization – better local context 

and don’t need to invalidate local assumptions
– Eliminate overhead of normal function call

• Con
– Potential code bloat
– Need to manage recompilation when either caller 

or callee changes
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Dataflow analysis

• Available expressions are an example of a 
dataflow analysis problem

• Many similar problems can be expressed in a 
similar framework

• Only the first part of the story – once we’ve 
discovered facts, we then need to use them to 
improve code
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Characterizing Dataflow Analysis
• All of these algorithms involve sets of facts about 

each basic block b
IN(b) – facts true on entry to b
OUT(b) – facts true on exit from b
GEN(b) – facts created and not killed in b
KILL(b) – facts killed in b

• These are related by the equation
OUT(b) = GEN(b) È (IN(b) – KILL(b))

– Solve this iteratively for all blocks
– Sometimes information propagates forward; 

sometimes backward
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Dataflow Analysis (1)

• A collection of techniques for compile-time 
reasoning about run-time values

• Almost always involves building a graph
– Trivial for basic blocks
– Control-flow graph or derivative for global 

problems
– Call graph or derivative for whole-program 

problems
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Dataflow Analysis (2)

• Usually formulated as a set of simultaneous 
equations (dataflow problem)
– Sets attached to nodes and edges
– Need a lattice (or semilattice) to describe values
• In particular, has an appropriate operator to combine 

values and an appropriate “bottom” or minimal value
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Dataflow Analysis (3)

• Desired solution is usually a meet over all 
paths (MOP) solution
– “What is true on every path from entry”
– “What can happen on any path from entry”
– Usually relates to safety of optimization



Dataflow Analysis (4)
• Limitations
– Precision – “up to symbolic execution”

• Assumes all paths taken
– Sometimes cannot afford to compute full solution
– Arrays – classic analysis treats each array as a single 

fact
– Pointers – difficult, expensive to analyze

• Imprecision rapidly adds up
• But gotta do it to effectively optimize things like C/C++

• For scalar values we can quickly solve simple 
problems
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Example:Live Variable Analysis
• A variable v is live at point p iff there is any path from 
p to a use of v along which v is not redefined

• Some uses:
– Register allocation – only live variables need a register
– Eliminating useless stores – if variable not live at store, 

then stored variable will never be used
– Detecting uses of uninitialized variables – if live at 

declaration (before initialization) then it might be used 
uninitialized

– Improve SSA construction – only need Φ-function for 
variables that are live in a block (later)
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Liveness Analysis Sets

• For each block b, define
– use[b] = variable used in b before any def
– def[b] = variable defined in b & not killed
– in[b] = variables live on entry to b
– out[b] = variables live on exit from b
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Equations for Live Variables

• Given the preceding definitions, we have
in[b] = use[b] È (out[b] – def[b])
out[b] = ÈsÎsucc[b] in[s]

• Algorithm
– Set in[b] = out[b] = Æ
– Update in, out until no change
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Example (1 stmt per block)

• Code
a := 0

L: b := a+1
c := c+b
a := b*2
if a < N goto L
return c
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1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b*2

5: a < N

6: return c

in[b] = use[b] È (out[b] – def[b])

out[b] = ÈsÎsucc[b] in[s]



Calculation
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1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

in[b] = use[b] È (out[b] – def[b])

out[b] = ÈsÎsucc[b] in[s]

I II III

block use def out in out in out in

6

5

4

3

2

1



Calculation
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1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

in[b] = use[b] È (out[b] – def[b])
out[b] = ÈsÎsucc[b] in[s]

I II III

block use def out in out in out in

6 c -- -- c -- c

5 a -- c a,c a,c a,c

4 b a a,c b,c a,c b,c

3 b,c c b,c b,c b,c b,c

2 a b b,c a,c b,c a,c

1 -- a a,c c a,c c



Equations for Live Variables v2

• Many problems have more than one 
formulation.  For example, Live Variables…

• Sets
– USED(b) – variables used in b before being defined 

in b
– NOTDEF(b) – variables not defined in b
– LIVE(b) – variables live on exit from b

• Equation
LIVE(b) = ÈsÎsucc(b)USED(s) È (LIVE(s) Ç NOTDEF(s))
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Efficiency of Dataflow Analysis

• The algorithms eventually terminate, but the 
expected time needed can be reduced by 
picking a good order to visit nodes in the CFG
– Forward problems – reverse postorder
– Backward problems – postorder
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Example: Reaching Definitions

• A definition d of some variable v reaches
operation i iff i reads the value of v and there 
is a path from d to i that does not define v

• Uses
– Find all of the possible definition points for a 

variable in an expression
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Equations for Reaching Definitions

• Sets
– DEFOUT(b) – set of definitions in b that reach the end of b 

(i.e., not subsequently redefined in b)
– SURVIVED(b) – set of all definitions not obscured by a 

definition in b
– REACHES(b) – set of definitions that reach b

• Equation
REACHES(b) = ÈpÎpreds(b) DEFOUT(p) È

(REACHES(p) Ç SURVIVED(p))
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Example: Very Busy Expressions

• An expression e is considered very busy at 
some point p if e is evaluated and used along 
every path that leaves p, and evaluating e at p
would produce the same result as evaluating it 
at the original locations

• Uses
– Code hoisting – move e to p (reduces code size; no 

effect on execution time)
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Equations for Very Busy Expressions

• Sets
– USED(b) – expressions used in b before they are killed
– KILLED(b) – expressions redefined in b before they are 

used
– VERYBUSY(b) – expressions very busy on exit from b

• Equation
VERYBUSY(b) = ÇsÎsucc(b) USED(s) È

(VERYBUSY(s) - KILLED(s))
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Using Dataflow Information

• A few examples of possible transformations…
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Classic Common-Subexpression
Elimination (CSE)
• In a statement s: t := x op y, if x op y is 

available at s then it need not be recomputed
• Analysis: compute reaching expressions i.e., 

statements n: v := x op y such that the path 
from n to s does not compute x op y or define 
x or y
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Classic CSE Transformation

• If x op y is defined at n and reaches s
– Create new temporary w
– Rewrite n: v := x op y as

n: w := x op y
n’: v := w

– Modify statement s to be
s: t := w

– (Rely on copy propagation to remove extra 
assignments that are not really needed)
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Revisiting Example (w/slight addition)
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j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a
i = 5 * n

c = 5 * n

AVAIL = { }

AVAIL = { 2*a, 2*b }

AVAIL = { 5*n, 2*a }

AVAIL = { 2*a, 2*b }



Revisiting Example (w/slight addition)

UW CSE P 501 Spring 2018 T-59

t1 = 2 * a
j = t1
k = 2 * b

x = a + b
b = c + d
t2 = 5 * n
m = t2

h = t1
i = t2

t2 = 5 * n
c = t2

AVAIL = { }

AVAIL = { 2*a, 2*b }

AVAIL = { 5*n, 2*a }

AVAIL = { 2*a, 2*b }



Then Apply Very Busy…
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t1 = 2 * a
j = t1
k = 2 * b
t2 = 5 * n

x = a + b
b = c + d
t2 = 5 * n
m = t2

h = t1
i = t2

t2 = 5 * n
c = t2

AVAIL = { }

AVAIL = { 2*a, 2*b }

AVAIL = { 5*n, 2*a }

AVAIL = { 2*a, 2*b }



Constant Propagation

• Suppose we have
– Statement d: t := c, where c is constant
– Statement n that uses t

• If d reaches n and no other definitions of t 
reach n, then rewrite n to use c instead of t 
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Copy Propagation

• Similar to constant propagation
• Setup:
– Statement d: t := z
– Statement n uses t

• If d reaches n and no other definition of t 
reaches n, and there is no definition of z on 
any path from d to n, then rewrite n to use z 
instead of t
– Recall that this can help remove dead assignments
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Copy Propagation Tradeoffs

• Downside is that this can increase the lifetime 
of variable z and increase need for registers or 
memory traffic

• But it can expose other optimizations, e.g.,
a := y + z
u := y
c := u + z         // copy propagation makes this y + z

– After copy propagation we can recognize the 
common subexpression
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Dead Code Elimination

• If we have an instruction
s: a := b op c

and a is not live-out after s, then s can be 
eliminated
– Provided it has no implicit side effects that are 

visible (output, exceptions, etc.)
• If b or c are function calls, they have to be assumed to 

have unknown side effects unless the compiler can 
prove otherwise
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Aliases

• A variable or memory location may have 
multiple names or aliases 
– Call-by-reference parameters
– Variables whose address is taken (&x)
– Expressions that dereference pointers 

(p.x, *p)
– Expressions involving subscripts (a[i])
– Variables in nested scopes
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Aliases vs Optimizations

• Example:
p.x := 5;  q.x := 7;  a := p.x;

– Does reaching definition analysis show that the 
definition of p.x reaches a?  

– (Or: do p and q refer to the same variable/object?)
– (Or: can p and q refer to the same thing?)
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Aliases vs Optimizations
• Example

void f(int *p, int *q) {
*p = 1; *q = 2;
return *p;

}
– How do we account for the possibility that p and q 

might refer to the same thing?
– Safe approximation: since it’s possible, assume it is 

true (but rules out a lot)
• C programmers can use “restrict” to indicate no other 

pointer is an alias for this one
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Types and Aliases (1)

• In Java, ML, MiniJava, and others, if two 
variables have incompatible types they cannot 
be names for the same location
– Also helps that programmer cannot create 

arbitrary pointers to storage in these languages
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Types and Aliases (2)

• Strategy: Divide memory locations into alias 
classes based on type information (every type, 
array, record field is a class)

• Implication: need to propagate type 
information from the semantics pass to 
optimizer
– Not normally true of a minimally typed IR

• Items in different alias classes cannot refer to 
each other
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Aliases and Flow Analysis

• Idea: Base alias classes on points where a 
value is created
– Every new/malloc and each local or global variable 

whose address is taken is an alias class
– Pointers can refer to values in multiple alias 

classes (so each memory reference is to a set of 
alias classes)

– Use to calculate “may alias” information (e.g., p 
“may alias” q at program point s)
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Using “may-alias” information

• Treat each alias class as a “variable” in 
dataflow analysis problems

• Example: framework for available expressions
– Given statement   s: M[a]:=b,

gen[s] = { }
kill[s] = { M[x] | a may alias x at s }
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May-Alias Analysis

• Without alias analysis, 
#2 kills M[t] since x and 
t might be related

• If analysis determines 
that “x may-alias t” is 
false, M[t] is still 
available at #3; can 
eliminate the common 
subexpression and use 
copy propagation

• Code
1:  u := M[t]
2:  M[x] := r
3:  w := M[t]
4:  b := u+w
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Where are we now?

• Dataflow analysis is the core of classical 
optimizations
– Although not the only possible story

• Still to explore:
– Discovering and optimizing loops
– SSA – Static Single Assignment form
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