CSE P 501 – Compilers

Value Numbering & Optimizations
Hal Perkins
Spring 2018
Agenda

- Optimization (Review)
 - Goals
 - Scope: local, superlocal, regional, global (intraprocedural), interprocedural
- Control flow graphs (reminder)
- Value numbering
- Dominators
- Ref.: Cooper/Torczon ch. 8
Code Improvement (1)

- Pick a better algorithm(!)
- Use machine resources efficiently
 - Instructions, registers
 - More later...
Code Improvement (2)

- Local optimizations – basic blocks
 - Algebraic simplifications
 - Constant folding
 - Common subexpression elimination (i.e., redundancy elimination)
 - Dead code elimination
 - Specialize computation based on context
 - etc., etc., ...
Code Improvement (3)

- Global optimizations
 - Code motion
 - Moving invariant computations out of loops
 - Strength reduction (replace multiplications by repeated additions, for example)
 - Global common subexpression elimination
 - Global register allocation
 - Many others...
“Optimization”

• None of these improvements are truly “optimal”
 – Hard problems (in theory-of-computation sense)
 – Proofs of optimality assume artificial restrictions

• Best we can do is to improve things
 – Most (much?) (some?) of the time
 – Realistically: try to do better for common idioms both in the code and on the machine
Optimization Phase

• Goal
 – Discover, at compile time, information about the runtime behavior of the program, and use that information to improve the generated code
A First Running Example: Redundancy Elimination

- An expression \(x+y \) is **redundant** at a program point iff, along every path from the procedure’s entry, it has been evaluated and its constituent subexpressions (\(x \) and \(y \)) have not been redefined.
- If the compiler can prove the expression is redundant:
 - Can store the result of the earlier evaluation
 - Can replace the redundant computation with a reference to the earlier (stored) result
Common Pattern for Code Improvement

• Typical for most compiler optimizations
• First, discover opportunities through program analysis
• Then, modify the IR to take advantage of the opportunities
 — Historically, goal usually was to decrease execution time
 — Other possibilities: reduce space, power, ...
Issues (1)

• Safety – transformation must not change program meaning
 – Must generate correct results
 – Can’t generate spurious errors
 – Optimizations must be conservative
 🤔 – Large part of analysis goes towards proving safety
 ➔ – Can pay off to speculate (be optimistic) but then need to recover if reality is different
Issues (2)

• Profitability
 – If a transformation is possible, is it profitable?
 – Example: loop unrolling
 • Can increase amount of work done on each iteration, i.e., reduce loop overhead
 • Can eliminate duplicate operations done on separate iterations
Issues (3)

• Downside risks
 – Even if a transformation is generally worthwhile, need to think about potential problems
 – Example:
 • Transformation might need more temporaries, putting additional pressure on registers
 • Increased code size could cause cache misses, or, in bad cases, increase page working set
Example: Value Numbering

• Technique for eliminating redundant expressions: assign an identifying number VN(n) to each expression
 — VN(x+y)=VN(j) if x+y and j have the same value
 — Use hashing over value numbers for efficiency
• Old idea (Balke 1968, Ershov 1954)
 — Invented for low-level, linear IRs
 — Equivalent methods exist for tree IRs, e.g., build a DAG
Uses of Value Numbers

- Improve the code
 - Replace redundant expressions
 - Simplify algebraic identities
 - Discover, fold, and propagate constant valued expressions
Local Value Numbering

\[o = o_1 \text{ op } o_2 \]

• Algorithm
 – For each operation \(o = \langle \text{op}, o_1, o_2 \rangle \) in a block
 • 1. Get value numbers for operands from hash lookup
 • 2. Hash \(\langle \text{op}, \text{VN}(o_1), \text{VN}(o_2) \rangle \) to get a value number for \(o \)
 (If op is commutative, sort \(\text{VN}(o_1), \text{VN}(o_2) \) first)
 • 3. If \(o \) already has a value number, replace \(o \) with a reference to the value
 • 4. If \(o_1 \) and \(o_2 \) are constant, evaluate \(o \) at compile time and replace with an immediate load

• If hashing behaves well, this runs in linear time
Example

Code

\[a^3 = x^1 + y^2 \]
\[b^3 = x^1 + y^2 \]
\[a^4 = 17^{14} \]
\[c^3 = x^1 + y^2 \]

Rewritten

\[a^3 = x^1 + y^2 \]
\[b^3 = a^3 \]
\[c^3 = a^3 b^3 \]

\[
\begin{array}{c|c}
\text{exor} & \text{un} \\
\hline
x & 1 \\
y & 2 \\
<4,1,2> & 3 \\
a & 3 \\
b & 3 \\
17 & 4 \\
\alpha & 4 \\
c & 3 \\
\end{array}
\]
Bug in Simple Example

• If we use the original names, we get in trouble when a name is reused
• Solutions
 – Be clever about which copy of the value to use (e.g., use c=b in last statement)
 – Create an extra temporary
 – Rename around it (best!)
Renaming

- Idea: give each value a unique name
 \(a^j_i \) means \(i^{th} \) definition of \(a \) with \(VN = j \)
- Somewhat complex notation, but meaning is reasonably clear
- This is the idea behind SSA (Static Single Assignment)
 - Popular modern IR – exposes many opportunities for optimizations
Example Revisited

Code
\[a_0^3 = x_0^1 + y_0^2 \]
\[b_0^3 = x_0^1 + y_0^2 \]
\[a_1^4 = 17^4 \]
\[c_0^3 = x_0^1 + y_0^2 \]

Rewritten
\[\alpha_0^3 = x_0^1 + y_0^2 \]
\[b_0^3 = \alpha_0^3 \]
\[a_1^4 = 17^4 \]
\[\alpha_0^3 = \alpha_0^3 \]
\[c_0^3 = \alpha_0^3 \]
Simple Extensions to Value Numbering

- Constant folding
 - Add a bit that records when a value is constant
 - Evaluate constant values at compile time
 - Replace op with load immediate
- Algebraic identities: x+0, x*1, x-x, ...
 - Many special cases
 - Switch on op to narrow down checks needed
 - Replace result with input VN
Larger Scopes

• This algorithm works on straight-line blocks of code (basic blocks)
 — Best possible results for single basic blocks
 — Loses all information when control flows to another block

• To go further we need to represent multiple blocks of code and the control flow between them
Control Flow Graph (CFG) reminder

- Nodes: basic blocks
 - Key property: all statements executed sequentially if any are

- Edges: include a directed edge from n1 to n2 if there is any possible way for control to transfer from block n1 to n2 during execution
Optimization Categories (1)

- *Local methods*
 - Usually confined to basic blocks
 - Simplest to analyze and understand
 - Most precise information
Optimization Categories (2)

- **Superlocal methods**
 - Operate over *Extended Basic Blocks* (EBBs)
 - An EBB is a set of blocks $b_1, b_2, ..., b_n$ where b_1 has multiple predecessors and each of the remaining blocks b_i ($2 \leq i \leq n$) have only b_{i-1} as its unique predecessor
 - The EBB is entered only at b_1, but may have multiple exits
 - A single block b_i can be the head of multiple EBBs (these EBBs form a tree rooted at b_i)
 - Use information discovered in earlier blocks to improve code in successors
Optimization Categories (3)

- *Regional methods*
 - Operate over scopes larger than an EBB but smaller than an entire procedure/function/method
 - Typical example: loop body
 - Difference from superlocal methods is that there may be merge points in the graph (i.e., a block with two or more predecessors)
 - Facts true at merge point are facts known to be true on all possible paths to that point
Optimization Categories (4)

- **Global methods**
 - Operate over entire procedures
 - Sometimes called *intraprocedural* methods
 - Motivation is that local optimizations sometimes have bad consequences in larger context
 - Procedure/method/function is a natural unit for analysis, separate compilation, etc.
 - Almost always need global *data-flow* analysis information for these
Optimization Categories (5)

- **Whole-program methods**
 - Operate over more than one procedure
 - Sometimes called *interprocedural* methods
 - Challenges: name scoping and parameter binding issues at procedure boundaries
 - Classic examples: inline method substitution, interprocedural constant propagation
 - Common in aggressive JIT compilers and optimizing compilers for object-oriented languages
Value Numbering Revisited

- Local Value Numbering
 - 1 block at a time
 - Strong local results
 - No cross-block effects
- Missed opportunities
Superlocal Value Numbering

- Idea: apply local method to EBBs
 - \{A,B\}, \{A,C,D\}, \{A,C,E\}
- Final info from A is initial info for B, C; final info from C is initial for D, E
- Gets reuse from ancestors
- Avoid reanalyzing A, C
- Doesn’t help with F, G
SSA Name Space (from before)

<table>
<thead>
<tr>
<th>Code</th>
<th>Rewritten</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0^3 = x_0^1 + y_0^2$</td>
<td>$a_0^3 = x_0^1 + y_0^2$</td>
</tr>
<tr>
<td>$b_0^3 = x_0^1 + y_0^2$</td>
<td>$b_0^3 = a_0^3$</td>
</tr>
<tr>
<td>$a_1^4 = 17$</td>
<td>$a_1^4 = 17$</td>
</tr>
<tr>
<td>$c_0^3 = x_0^1 + y_0^2$</td>
<td>$c_0^3 = a_0^3$</td>
</tr>
</tbody>
</table>

- Unique name for each definition
- Name \Leftrightarrow VN
- a_0^3 is available to assign to c_0^3
SSA Name Space

• Two Principles
 – Each name is defined by exactly one operation
 – Each operand refers to exactly one definition

• Need to deal with merge points
 – Add Φ functions at merge points to reconcile names
 – Use subscripts on variable names for uniqueness
Superlocal Value Numbering with All Bells & Whistles

- Finds more redundancies
- Little extra cost
- Still does nothing for F and G
Larger Scopes

- Still have not helped F and G
- Problem: multiple predecessors
- Must decide what facts hold in F and in G
 - For G, combine B & F?
 - Merging states is expensive
 - Fall back on what we know
Dominators

• Definition
 – x dominates y iff every path from the entry of the control-flow graph to y includes x

• By definition, x dominates x

• Associate a Dom set with each node
 – $|\text{Dom}(x)| \geq 1$

• Many uses in analysis and transformation
 – Finding loops, building SSA form, code motion
Immediate Dominators

• For any node x, there is a y in $\text{Dom}(x)$ closest to x
• This is the *immediate dominator* of x
 -- Notation: $\text{IDom}(x)$
Dominator Sets

<table>
<thead>
<tr>
<th>Block</th>
<th>Dom</th>
<th>IDom</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>A, B</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>A, C</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>A, C, D</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>A, C, E</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>A, C, F</td>
<td>A</td>
</tr>
<tr>
<td>G</td>
<td>A, G</td>
<td>A</td>
</tr>
</tbody>
</table>

Note that the IDOM relation defines a tree!

\[
\begin{align*}
 m_0 &= a_0 + b_0 \\
 n_0 &= a_0 + b_0 \\
 p_0 &= c_0 + d_0 \\
 r_0 &= c_0 + d_0 \\
 q_0 &= a_0 + b_0 \\
 r_1 &= c_0 + d_0 \\
 e_0 &= b_0 + 18 \\
 s_0 &= a_0 + b_0 \\
 u_0 &= e_0 + f_0 \\
 e_1 &= a_0 + 17 \\
 t_0 &= c_0 + d_0 \\
 u_1 &= e_1 + f_0 \\
 e_2 &= \Phi(e_0, e_1) \\
 u_2 &= \Phi(u_0, u_1) \\
 v_0 &= a_0 + b_0 \\
 w_0 &= c_0 + d_0 \\
 x_0 &= e_2 + f_0 \\
 r_2 &= \Phi(r_0, r_1) \\
 y_0 &= a_0 + b_0 \\
 z_0 &= c_0 + d_0
\end{align*}
\]
Dominator Value Numbering

- Still looking for a way to handle F and G
- Idea: Use info from IDom(x) to start analysis of x
 - Use C for F and A for G
- Dominator VN Technique (DVNT)
DVNT algorithm

- Use superlocal algorithm on extended basic blocks
 - Use scoped hash tables & SSA name space as before
- Start each node with table from its IDOM
- No values flow along back edges (i.e., loops)
- Constant folding, algebraic identities as before
Dominator Value Numbering

- Advantages
 - Finds more redundancy
 - Little extra cost
- Shortcomings
 - Misses some opportunities (common calculations in ancestors that are not IDOMs)
 - Doesn’t handle loops or other back edges
The Story So Far...

• Local algorithm
• Superlocal extension
 – Some local methods extend cleanly to superlocal scopes
• Dominator VN Technique (DVNT)
• All of these propagate along forward edges
• None are global
Coming Attractions

- Data-flow analysis
 - Provides global solution to redundant expression analysis
 - Catches some things missed by DVNT, but misses some others
 - Generalizes to many other analysis problems, both forward and backward
- Loops
- SSA for general transformations