Agenda

• Optimization (Review)
 – Goals
 – Scope: local, superlocal, regional, global (intraprocedural), interprocedural
• Control flow graphs (reminder)
• Value numbering
• Dominators
• Ref.: Cooper/Torczon ch. 8
Code Improvement (1)

• Pick a better algorithm(!)
• Use machine resources efficiently
 – Instructions, registers
 – More later...
Code Improvement (2)

• Local optimizations – basic blocks
 – Algebraic simplifications
 – Constant folding
 – Common subexpression elimination (i.e., redundancy elimination)
 – Dead code elimination
 – Specialize computation based on context
 – etc., etc., ...
Code Improvement (3)

• Global optimizations
 – Code motion
 – Moving invariant computations out of loops
 – Strength reduction (replace multiplications by repeated additions, for example)
 – Global common subexpression elimination
 – Global register allocation
 – Many others…
“Optimization”

• None of these improvements are truly “optimal”
 – Hard problems (in theory-of-computation sense)
 – Proofs of optimality assume artificial restrictions

• Best we can do is to improve things
 – Most (much?) (some?) of the time
 – Realistically: try to do better for common idioms both in the code and on the machine
Optimization Phase

• Goal

 – Discover, at compile time, information about the runtime behavior of the program, and use that information to improve the generated code
A First Running Example: Redundancy Elimination

• An expression $x+y$ is *redundant* at a program point iff, along every path from the procedure’s entry, it has been evaluated and its constituent subexpressions (x and y) have not been redefined.

• If the compiler can prove the expression is redundant:
 – Can store the result of the earlier evaluation
 – Can replace the redundant computation with a reference to the earlier (stored) result
Common Pattern for Code Improvement

• Typical for most compiler optimizations
• First, discover opportunities through program analysis
• Then, modify the IR to take advantage of the opportunities
 – Historically, goal usually was to decrease execution time
 – Other possibilities: reduce space, power, ...
Issues (1)

- Safety – transformation must not change program meaning
 - Must generate correct results
 - Can’t generate spurious errors
 - Optimizations must be conservative
 - Large part of analysis goes towards proving safety
 - Can pay off to speculate (be optimistic) but then need to recover if reality is different
Issues (2)

• Profitibility
 – If a transformation is possible, is it profitable?
 – Example: loop unrolling
 • Can increase amount of work done on each iteration, i.e., reduce loop overhead
 • Can eliminate duplicate operations done on separate iterations
Issues (3)

• Downside risks
 – Even if a transformation is generally worthwhile, need to think about potential problems
 – Example:
 • Transformation might need more temporaries, putting additional pressure on registers
 • Increased code size could cause cache misses, or, in bad cases, increase page working set
Example: Value Numbering

• Technique for eliminating redundant expressions: assign an identifying number $VN(n)$ to each expression
 – $VN(x+y)=VN(j)$ if $x+y$ and j have the same value
 – Use hashing over value numbers for efficiency

• Old idea (Balke 1968, Ershov 1954)
 – Invented for low-level, linear IRs
 – Equivalent methods exist for tree IRs, e.g., build a DAG
Uses of Value Numbers

• Improve the code
 – Replace redundant expressions
 – Simplify algebraic identities
 – Discover, fold, and propagate constant valued expressions
Local Value Numbering

• Algorithm
 – For each operation \(o = \langle op, o1, o2 \rangle \) in a block
 • 1. Get value numbers for operands from hash lookup
 • 2. Hash \(\langle op, VN(o1), VN(o2) \rangle \) to get a value number for \(o \)
 (If \(op \) is commutative, sort \(VN(o1), VN(o2) \) first)
 • 3. If \(o \) already has a value number, replace \(o \) with a reference to the value
 • 4. If \(o1 \) and \(o2 \) are constant, evaluate \(o \) at compile time and replace with an immediate load

• If hashing behaves well, this runs in linear time
Example

Code

\begin{align*}
a & = x + y \\
b & = x + y \\
a & = 17 \\
c & = x + y
\end{align*}

Rewritten
Bug in Simple Example

• If we use the original names, we get in trouble when a name is reused

• Solutions
 – Be clever about which copy of the value to use (e.g., use c=b in last statement)
 – Create an extra temporary
 – Rename around it (best!)
Renaming

• Idea: give each value a unique name
 \[a^i_j\] means \(i^{th}\) definition of \(a\) with VN = \(j\)

• Somewhat complex notation, but meaning is reasonably clear

• This is the idea behind SSA (Static Single Assignment)
 – Popular modern IR – exposes many opportunities for optimizations
Example Revisited

<table>
<thead>
<tr>
<th>Code</th>
<th>Rewritten</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = x + y</td>
<td></td>
</tr>
<tr>
<td>b = x + y</td>
<td></td>
</tr>
<tr>
<td>a = 17</td>
<td></td>
</tr>
<tr>
<td>c = x + y</td>
<td></td>
</tr>
</tbody>
</table>
Simple Extensions to Value Numbering

• Constant folding
 – Add a bit that records when a value is constant
 – Evaluate constant values at compile time
 – Replace op with load immediate

• Algebraic identities: x+0, x*1, x-x, ...
 – Many special cases
 • Switch on op to narrow down checks needed
 • Replace result with input VN
Larger Scopes

• This algorithm works on straight-line blocks of code (basic blocks)
 – Best possible results for single basic blocks
 – Loses all information when control flows to another block

• To go further we need to represent multiple blocks of code and the control flow between them
Control Flow Graph (CFG) reminder

• Nodes: basic blocks
 – Key property: all statements executed sequentially if any are

• Edges: include a directed edge from n1 to n2 if there is *any* possible way for control to transfer from block n1 to n2 during execution
Optimization Categories (1)

• *Local methods*
 – Usually confined to basic blocks
 – Simplest to analyze and understand
 – Most precise information
Optimization Categories (2)

• **Superlocal methods**
 – Operate over *Extended Basic Blocks* (EBBs)
 • An EBB is a set of blocks \(b_1, b_2, ..., b_n \) where \(b_1 \) has multiple predecessors and each of the remaining blocks \(b_i \) (\(2 \leq i \leq n \)) have only \(b_{i-1} \) as its unique predecessor
 • The EBB is entered only at \(b_1 \), but may have multiple exits
 • A single block \(b_i \) can be the head of multiple EBBs (these EBBs form a tree rooted at \(b_i \))
 – Use information discovered in earlier blocks to improve code in successors
Optimization Categories (3)

• **Regional methods**
 – Operate over scopes larger than an EBB but smaller than an entire procedure/function/method
 – Typical example: loop body
 – Difference from superlocal methods is that there may be merge points in the graph (i.e., a block with two or more predecessors)
 • Facts true at merge point are facts known to be true on all possible paths to that point
Optimization Categories (4)

• *Global methods*
 – Operate over entire procedures
 – Sometimes called *intraprocedural* methods
 – Motivation is that local optimizations sometimes have bad consequences in larger context
 – Procedure/method/function is a natural unit for analysis, separate compilation, etc.
 – Almost always need global *data-flow* analysis information for these
Optimization Categories (5)

- **Whole-program methods**
 - Operate over more than one procedure
 - Sometimes called *interprocedural* methods
 - Challenges: name scoping and parameter binding issues at procedure boundaries
 - Classic examples: inline method substitution, interprocedural constant propagation
 - Common in aggressive JIT compilers and optimizing compilers for object-oriented languages
Value Numbering Revisited

• Local Value Numbering
 – 1 block at a time
 – Strong local results
 – No cross-block effects
• Missed opportunities
Superlocal Value Numbering

- Idea: apply local method to EBBs
 - \{A,B\}, \{A,C,D\}, \{A,C,E\}
- Final info from A is initial info for B, C; final info from C is initial for D, E
- Gets reuse from ancestors
- Avoid reanalyzing A, C
- Doesn’t help with F, G
SSA Name Space (from before)

Code
\[a_0^3 = x_0^1 + y_0^2 \]
\[b_0^3 = x_0^1 + y_0^2 \]
\[a_1^4 = 17 \]
\[c_0^3 = x_0^1 + y_0^2 \]

Rewritten
\[a_0^3 = x_0^1 + y_0^2 \]
\[b_0^3 = a_0^3 \]
\[a_1^4 = 17 \]
\[c_0^3 = a_0^3 \]

- Unique name for each definition
- Name ⇔ VN
- \(a_0^3 \) is available to assign to \(c_0^3 \)
SSA Name Space

• Two Principles
 – Each name is defined by exactly one operation
 – Each operand refers to exactly one definition

• Need to deal with merge points
 – Add Φ functions at merge points to reconcile names
 – Use subscripts on variable names for uniqueness
Superlocal Value Numbering with All Bells & Whistles

- Finds more redundancies
- Little extra cost
- Still does nothing for F and G
Larger Scopes

- Still have not helped F and G
- Problem: multiple predecessors
- Must decide what facts hold in F and in G
 - For G, combine B & F?
 - Merging states is expensive
 - Fall back on what we know
Dominators

• Definition
 – x dominates y iff every path from the entry of the control-flow graph to y includes x

• By definition, x dominates x

• Associate a Dom set with each node
 – | Dom(x) | ≥ 1

• Many uses in analysis and transformation
 – Finding loops, building SSA form, code motion
Immediate Dominators

• For any node x, there is a y in $\text{Dom}(x)$ closest to x
• This is the *immediate dominator* of x
 – Notation: $\text{IDom}(x)$
Note that the IDOM relation defines a tree!
Dominator Value Numbering

- Still looking for a way to handle F and G
- Idea: Use info from IDom(x) to start analysis of x
 - Use C for F and A for G
- Dominator VN Technique (DVNT)
DVNT algorithm

• Use superlocal algorithm on extended basic blocks
 – Use scoped hash tables & SSA name space as before
• Start each node with table from its IDOM
• No values flow along back edges (i.e., loops)
• Constant folding, algebraic identities as before
Dominator Value Numbering

- **Advantages**
 - Finds more redundancy
 - Little extra cost

- **Shortcomings**
 - Misses some opportunities (common calculations in ancestors that are not IDOMs)
 - Doesn’t handle loops or other back edges

\[
\begin{align*}
m_0 &= a_0 + b_0 \\
n_0 &= a_0 + b_0 \\
p_0 &= c_0 + d_0 \\
r_0 &= c_0 + d_0 \\
q_0 &= a_0 + b_0 \\
r_1 &= c_0 + d_0 \\
e_0 &= b_0 + 18 \\
s_0 &= a_0 + b_0 \\
u_0 &= e_0 + f_0 \\
e_1 &= a_0 + 17 \\
t_0 &= c_0 + d_0 \\
u_1 &= e_1 + f_0 \\
e_2 &= \Phi(e_0, e_1) \\
u_2 &= \Phi(u_0, u_1) \\
v_0 &= a_0 + b_0 \\
w_0 &= c_0 + d_0 \\
x_0 &= e_2 + f_0 \\
r_2 &= \Phi(r_0, r_1) \\
y_0 &= a_0 + b_0 \\
z_0 &= c_0 + d_0
\end{align*}
\]
The Story So Far...

• Local algorithm
• Superlocal extension
 – Some local methods extend cleanly to superlocal scopes
• Dominator VN Technique (DVNT)
• All of these propagate along forward edges
• None are global
Coming Attractions

• Data-flow analysis
 – Provides global solution to redundant expression analysis
 • Catches some things missed by DVNT, but misses some others
 – Generalizes to many other analysis problems, both forward and backward

• Loops

• SSA for general transformations