
CSE P 501 – Compilers

Optimizing Transformations
Hal Perkins
Spring 2018

UW CSE P 501 Spring 2018 R-1

Agenda

• A closer look at some common optimizing
transformations

• More details and examples later when we look
at analysis algorithms

UW CSE P 501 Spring 2018 R-2

UW CSE P 501 Spring 2018 R-3

Source TargetFront End Back End

Scan

chars

tokens

AST

IR

AST = Abstract Syntax Tree IR = Intermediate Representation

‘Middle End’

Optimize

Select Instructions

Parse

Convert

Allocate Registers

Emit

Machine Code

IR

IR

IR

IR

IR

Optimizations in a Compiler

Role of Transformations

• Dataflow analysis discovers opportunities for
code improvement

• Compiler rewrites the (IR) to make these
improvements
– Transformation may reveal additional

opportunities for further optimization
– May also block opportunities by obscuring

information

UW CSE P 501 Spring 2018 R-4

Organizing Transformations in a Compiler

• Typically middle end consists of many phases
– Analyze IR
– Identify optimization
– Rewrite IR to apply optimization
– And repeat (50 phases in a commercial compiler is typical)

• Each individual optimization is supported by rigorous
formal theory

• But no formal theory for what order or how often to
apply them(!)
– Some rules of thumb and best practices
– May apply some transformations several times as different

phases reveal opportunities for further improvement

UW CSE P 501 Spring 2018 R-5

Optimization 'Phases'

UW CSE P 501 Spring 2018 R-6

IR IRIR IR IR

• Each optimization requires a 'pass' (linear scan) over the IR
• IR may sometimes shrink, sometimes expand
• Some optimizations may be repeated
• 'Best' ordering is heuristic
• Don't try to beat an optimizing compiler - you will lose!

• Note: not all programs are written by humans!
• Machine-generated code can pose a challenge for optimizers

• eg: a single function with 10,000 statements, 1,000+ local variables,
loops nested 15 deep, spaghetti of "GOTOs", etc

A Taxonomy
• Machine Independent Transformations
– Mostly independent of target machine

(e.g., loop unrolling will likely make it faster regardless of target)
– “Mostly”? – e.g., vectorize only if target has SIMD ops
– Worthwhile investment – applies to all targets

• Machine Dependent Transformations
– Mostly concerned with instruction selection & scheduling,

register allocation
– Need to tune for different targets
– Most of this in the back end, but some in the optimizer

UW CSE P 501 Spring 2018 R-7

Machine Independent Transformations

• Dead code elimination
– unreachable or not actually used later

• Code motion
– “hoist” loop-invariant code out of aloop

• Specialization

• Strength reduction
– 2*x => x+x; @A+((i*numcols+j)*eltsize => p+=4

• Enable other transformations

• Eliminate redundant computations
– Value numbering, GCSE

UW CSE P 501 Spring 2018 R-8

Machine Dependent Transformations

• Take advantage of special hardware
– e.g., expose instruction-level parallelism (ILP)
– e.g., use special instructions (VAX polyf; x86 sqrt, strings)
– e.g., use SIMD (vector) instructions and registers

• Manage or hide latencies
– e.g., tiling/blocking and loop interchange
– Improves cache behavior – hugely important

• Deal with finite resources - # functional units
• Compilers generate for a vanilla machine, e.g., SSE2
– But provide switches to tune (arch:AVX, arch:IA32)
– JIT compiler knows its target architecture!

UW CSE P 501 Spring 2018 R-9

Optimizer Contracts
• Prime directive
– No optimization will change observable program

behavior!
– This can be subtle. e.g.:

• What is "observable"? (via IO? to another thread?)
• Dead-Code-Eliminate a throw ?
• Language Reference Manual may be

ambiguous/undefined/negotiable for edge cases
• Avoid harmful optimizations
– If an optimization does not improve code significantly,

don't do it: it harms throughput
– If an optimization degrades code quality, don't do it

UW CSE P 501 Spring 2018 R-10

Is this hoist legal?

UW CSE P 501 Spring 2018 R-11

for (int i = start; i < finish; ++i) a[i] += 7;
i = start

loop:
if (i >= finish) goto done
if (i < 0 || i >= a.length) throw OutOfBounds
a[i] += 7
++i
goto loop

done:

if (start < 0 || finish >= a.length) throw OutOfBounds
i = start

loop:
if (i >= finish) goto done
a[i] += 7
++i
goto loop

done:

Another example: "volatile" pretty much kills all attempts to optimize

Dead Code Elimination

• If a compiler can prove that a computation has
no external effect, it can be removed
– Unreachable operations – always safe to remove
– Useless operations – reachable, may be executed,

but results not actually required
• Dead code often results from other

transformations
– Often want to do DCE several times

UW CSE P 501 Spring 2018 R-12

Dead Code Elimination
• Classic algorithm is similar to garbage collection
– Pass I – Mark all useful operations

• Instructions whose result does, or can, affect visible behavior:
– Input or Output
– Updates to object fields that might be used later
– Instructions that may throw an exception (e.g.: array bounds

check)
– Calls to functions that might perform IO or affect visible behavior
– (Remember, for many languages, compiler does not process entire

program at one time – but a JIT compiler might be able to)
• Mark all useful instructions
• Repeat until no more changes

– Pass II – delete all unmarked operations
UW CSE P 501 Spring 2018 R-13

UW CSE P 501 Spring 2018 R-14

Code Motion
• Idea: move an operation to a location where it is executed less

frequently
– Classic situation: hoist loop-invariant code: execute once, rather than on

every iteration

• Lazy code motion & partial redundancy

b = b + 1 a = b * c

a = b * c
= a . . .

b = b + 1
a = b * c a = b * c

= a . . .

Replicate, so a need not be re-calculated
a must be re-calculated - wasteful if
control took right-hand arm

Specialization I

• Idea: Replace general operation in IR with more
specific
– Constant folding:

• feet_per_minute = mph * feet_per_mile/minutes_per_hour
• feet_per_minute = mph * 5280 / 60
• feet_per_minute = mph * 88

– Replacing multiplications and division by constants
with shifts (when safe)

– Peephole optimizations
• movl $0,%eax => xorl %eax,%eax

UW CSE P 501 Spring 2018 R-15

Specialization:2 - Eliminate Tail Recursion

• Factorial - recursive
int fac(n) = if (n <= 2) return 1; else return n * fac(n - 1);

• 'accumulating' Factorial - tail-recursive
facaux(n, r) = if (n <= 2) return r; else return facaux(n - 1, n*r)
call facaux(n, 1)

• Optimize-away the call overhead; replace with simple jump
facaux(n, r) = if (n <= 2) return r;

else n = n - 1; r = n*r; jump back to start of facaux
– So replace recursive call with a loop and just one stack frame

• Issue?
– Avoid stack overflow - good! - "observable" change?

UW CSE P 501 Spring 2018 R-16

Strength Reduction
• Classic example: Array references in a loop

for (k = 0; k < n; k++) a[k] = 0;
• Naive codegen for a[k] = 0 in loop body

movl $4,%eax // elemsize = 4 bytes
imull offsetk(%rbp),%eax // k * elemsize
addl offseta(%rbp),%eax // &a[0] + k * elemsize
mov $0,(%eax) // a[k] = 0

• Better!
movl offseta(%rbp),eax // &a[0], once-off

movl $0,(%eax) // a[k] = 0
addl $4,%eax // eax = &a[k+1]

UW CSE P 501 Spring 2018 R-17

Note: pointers allow a user to do this directly in C or C++
Eg: for (p = a; p < a + n;) *p++ = 0;

Implementing Strength Reduction

• Idea: look for operations in a loop involving:
– A value that does not change in the loop, the

region constant, and
– A value that varies systematically from iteration to

iteration, the induction variable
• Create a new induction variable that directly

computes the sequence of values produced by
the original one; use an addition in each
iteration to update the value

UW CSE P 501 Spring 2018 R-18

Other Common Transformations

• Inline substitution (procedure bodies)

• Cloning / Replicating

• Loop Unrolling

• Loop Unswitching

UW CSE P 501 Spring 2018 R-19

Inline Substitution - "inlining"

• Eliminates call overhead
• Opens opportunities for more optimizations
• Can be applied to large method bodies too
• Aggressive optimizer will inline 2 or more deep
• Increases total code size (memory & cache issues)
• With care, is a huge win for OO code

UW CSE P 501 Spring 2018 R-20

class C {
int x;
int getx() { return x; }

}

class X {
void f() {
C c = new C();
int total = c.getx() + 42;

}
}

class X {
void f() {
C c = new C();
int total = c.x + 42;

}
}

Class with trivial getter

Method f calls getx

Compiler inlines body of getx into f

UW CSE P 501 Spring 2018 R-21

Code Replication

if (x < y) {
p = x + y;

} else {
p = z + 1;

}
q = p * 3;
w = y + x;

if (x < y) {
p = x + y;
q = p * 3;
w = y + x;

} else {
p = z + 1;
q = p * 3;
w = y + x;

}

Original
Replicated code

• + : extra opportunities to optimize in larger basic blocks (eg: LVN)
• - : increase total code size - may impact effectiveness of I-cache

Loop Unrolling

• Idea: Replicate the loop body
– More opportunity to optimize loop body
– Increases chances for good schedules and instruction

level parallelism
– Reduces loop overhead (reduce test/jumps by 75%)

• Catches
– must ensure unrolled code produces the same

answer: "loop-carried dependency analysis"
– code bloat
– don't overwhelm registers

UW CSE P 501 Spring 2018 R-22

UW CSE P 501 Spring 2018 R-23

Loop Unroll Example

for (i = 1, i <= n, i++) {
a[i] = a[i] + b[i];

}

i = 1;
while (i + 3 <= n) {
a[i] = a[i] + b[i];
a[i+1] = a[i+1] + b[i+1];
a[i+2] = a[i+2] + b[i+2];
a[i+3] = a[i+3] + b[i+3];
i += 4;

}

while (i <= n) {
a[i] = a[i] + b[i];
i++;

}

Original Unrolled

• Unroll 4x
• Need tidy-up loop for remainder

Loop Unswitching

• Idea: if the condition in an if-then-else is loop
invariant, rewrite the loop by pulling the if-
then-else out of the loop and generating a
tailored copy of the loop for each half of the
new conditional
– After this transformation, both loops have simpler

control flow – more chances for rest of compiler
to do better

UW CSE P 501 Spring 2018 R-24

UW CSE P 501 Spring 2018 R-25

Loop Unswitch Example

for (i = 1, i <= n, i++) {
if (x > y) {

a[i] = b[i]*x;
} else {

a[i] = b[i]*y;
}

}

Original
if (x > y) {
for (i = 1; i <= n; i++) {

a[i] = b[i]*x;
}

} else {
for (i = 1; i <= n; i++) {

a[i] = b[i]*y;
}

}

Unswitched

• IF condition does not change value in this code snippet
• No need to check x > y on every iteration
• Do the IF check once!

Summary
• Just a sampler

– 100s of transformations in the literature
– Will examine several in more detail, particularly involving loops

• Big part of engineering a compiler is:
– decide which transformations to use
– decide in what order
– decide if & when to repeat each transformation

• Compilers offer options:
– optimize for speed
– optimize for codesize
– optimize for specific target micro-architecture
– optimize for power consumption(!)

• Competitive bench-marking will investigate many
permutations

UW CSE P 501 Spring 2018 R-26

What’s next
• Careful look at several analysis and

transformation algorithms
• Value numbering / dominators
• Dataflow
• Loops, loops, loops
– Dominators – discovering loop structures
– Loop-invariant code
– Loop Transformations

• And an hour on (simple) code gen for the project

UW CSE P 501 Spring 2018 R-27

