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Agenda

• Register allocation constraints
• Local methods
– Faster compile, slower code, but good enough for 

lots of things (JITs, …)
• Global allocation – register coloring

UW CSE P 501 Spring 2018 P-2



k

• Intermediate code typically assumes infinite 
number of registers

• Real machine has k registers available
• Goals
– Produce correct code that uses k or fewer 

registers
– Minimize added loads and stores
– Minimize space needed for spilled values
– Do this efficiently – O(n), O(n log n), maybe O(n2)
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Register Allocation

• Task
– At each point in the code, pick the values to keep 

in registers
– Insert code to move values between registers and 

memory
• No additional transformations – scheduling should have 

done its job
– But we will usually rerun scheduling if we insert spill code

– Minimize inserted code, both dynamically and 
statically
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Allocation vs Assignment

• Allocation: deciding which values to keep in 
registers

• Assignment: choosing specific registers for 
values

• Compiler must do both
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Local Register Allocation

• Apply to basic blocks
• Produces decent register usage inside a block
– But can have inefficiencies at boundaries between 

blocks
• Two variations: top-down, bottom-up
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Top-down Local Allocation
• Principle: keep most heavily used values in 

registers
– Priority = # of times register referenced in block

• If more virtual registers than physical, 
– Reserve some registers for values allocated to 

memory
• Need enough to address and load two operands and store 

result
– Other registers dedicated to “hot” values

• But are tied up for entire block with particular value, even if 
only needed for part of the block
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Bottom-up Local Allocation (1)

• Keep a list of available registers (initially all 
registers at beginning of block)

• Scan the code
• Allocate a register when one is needed
• Free register as soon as possible
– In x:=y op z, free y and z if they are no longer 

needed before allocating x
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Bottom-up Local Allocation (2)

• If no registers are free when one is needed for 
allocation:
– Look at values assigned to registers – find the one 

not needed for longest forward stretch in the code
– Insert code to spill the value to memory and insert 

code to reload it when needed later
• If a copy already exists in memory, no need to spill
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Local "bottom-up" Register Allocation, -1
1. ; load v2 from memory
2. ; load v3 from memory
3. v1  = v2 + v3
4. ; load v5, v6 from memory
5. v4  = v5 - v6
6. v7  = v2 - 29
7. ; load v9 from memory
8. v8  = - v9
9. v10 = v6 * v4 
10. v11 = v10 - v3
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• Still in LIR.  So lots (too many!) virtual registers required (v2, etc).
• Grey instructions (1,2,4,7) load operands from memory into virtual registers.
• We will ignore these going forward.  Focus on mapping virtual to physical.



Local "bottom-up" Register Allocation, 0

1. v1  = v2 + v3
2. v4  = v5 - v6
3. v7  = v2 - 29
4. v8  = - v9
5. v10 = v6 * v4 
6. v11 = v10 - v3
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v1 1
v2 1
v3 1
v4 2
v5 2
v6 2
v7 3
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 -
R2 -
R3 -
R4 -

pReg vReg



Local "bottom-up" Register Allocation, 1

1. v1  = v2 + v3
2. v4  = v5 - v6
3. v7  = v2 - 29
4. v8  = - v9
5. v10 = v6 * v4 
6. v11 = v10 - v3
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v1 1 ¥
v2 1 3
v3 1 6
v4 2
v5 2
v6 2
v7 3
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 v2
R2 v3
R3 v1
R4 -

pReg vReg

R3 = R1 + R2



Local "bottom-up" Register Allocation, 2

1. v1  = v2 + v3
2. v4  = v5 - v6
3. v7  = v2 - 29
4. v8  = - v9
5. v10 = v6 * v4 
6. v11 = v10 - v3
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v1 ¥
v2 3
v3 6
v4 2 5
v5 2 ¥
v6 2 5
v7 3
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 v2
R2 v3 v4
R3 v1 v6
R4 v5

pReg vReg

R3 = R1 + R2
; spill R3
; spill R2? - no - still clean
R2 = R4 - R3



Local "bottom-up" Register Allocation, 3

1. v1  = v2 + v3
2. v4  = v5 - v6
3. v7  = v2 - 29
4. v8  = - v9
5. v10 = v6 * v4 
6. v11 = v10 - v3
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v1 ¥
v2 3 ¥
v3 6
v4 5
v5 ¥
v6 5
v7 3 ¥
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 v2
R2 v4
R3 v6
R4 v5 v7

pReg vReg

And so on . . .

R3 = R1 + R2
; spill R3
; spill R2? - no!
R2 = R4 - R3
; spill R4? - no!
R4 = R1 - 29



Bottom-Up Allocator

• Invented about once per decade
– Sheldon Best, 1955, for Fortran I
– Laslo Belady, 1965, for analyzing paging 

algorithms
– William Harrison, 1975, ECS compiler work
– Chris Fraser, 1989, LCC compiler
– Vincenzo Liberatore, 1997, Rutgers

• Will be reinvented again, no doubt
• Many arguments for optimality of this
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Global Register Allocation 

by Graph Coloring

• How to convert the infinite sequence of 

temporary data references, t1, t2, … into 

assignments to finite number of actual registers

• Goal: Use available registers with minimum 

spilling

• Problem: Minimizing the number of registers is 

NP-complete … it is equivalent to chromatic 

number – minimum colors needed to color nodes 

of a graph so no edge connects same color
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Begin With Data Flow Graph

• procedure-wide register allocation
• only live variables require register storage

• two variables(values) interfere when their live 
ranges overlap
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dataflow analysis: a variable is live at node N if 
the value it holds is used on some path further 
down the control-flow graph; otherwise it is dead



Live Variable Analysis
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a := read();
b := read();
c := read();
d := a + b*c;

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

f

c

e
e

a
b

d

a := read();
b := read();
c := read();
d := a + b*c;
if (d < 10 ) then

e := c+8;
print(c);

else
f := 10;
e := f + d;
print(f);

fi
print(e);



Register Interference Graph
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a := read();
b := read();
c := read();
d := a + b*c;

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

f

c

e
e

a
b

d

a b

e

dc

f



Graph Coloring
• NP complete problem

• Heuristic: color easy nodes last
– find node N with lowest degree
– remove N from the graph
– color the simplified graph 
– set color of N to the first color that is not used by any 

of N ’s neighbors
• Basics due to Chaitin (1982), refined by Briggs 

(1992)
UW CSE P 501 Spring 2018 Q-20

a b

e

dc

f



Apply Heuristic
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Apply Heuristic
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Apply Heuristic
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Apply Heuristic
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Continued
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Continued
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Continued
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Continued
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Continued
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Continued
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Continued
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Continued
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Continued
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Final Assignment
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a b

e

dc

f

a := read();
b := read();
c := read();
d := a + b*c;
if (d < 10 ) then

e := c+8;
print(c);

else
f := 10;
e := f + d;
print(f);

fi
print(e);



Some Graph Coloring Issues

• May run out of registers
– Solution: insert spill code and reallocate

• Special-purpose and dedicated registers
– Examples: function return register, function 

argument registers, registers required for 
particular instructions

– Solution: “pre-color” some nodes to force 
allocation to a particular register
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Global Register Allocation (for real)
• Graph coloring is the standard technique, but
• Nodes are live ranges not variables
• Use control and dataflow (actually SSA) graphs to 

derive interference graph
– Edge between (t1,t2) when live ranges t1 and t2 cannot be 

assigned to the same register
• Most commonly, t1 and t2 are both live at the same time
• Can also use to express constraints about registers, etc.

• Then color the nodes in the graph
– Two nodes connected by an edge may not have same color 

(i.e., cannot allocate to same register)
– If more than k colors are needed, insert spill code
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Live Ranges (1)

• A live range is the set of definitions and uses 
that are related because they flow together
– Every definition can reach every use
– Every use that a definition can reach is in the same 

live range
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Live Ranges (2)

• The idea relies on the notion of liveness, but 
not the same as either the set of variables or 
set of values
– Every value is part of some live range, even 

anonymous temporaries
– Same name may be part of several different live 

ranges
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Live Ranges: Example
1. loadi …    ® rfp
2. loadai rfp, 0 ® rw
3. loadi 2 ® r2
4. loadai rfp,xoffset ® rx
5. loadai rfp,yoffset ® ry
6. loadai rfp,zoffset ® rz
7. mult rw, r2 ® rw
8. mult rw, rx ® rw
9. mult rw, ry ® rw
10. mult rw, rz ® rw
11. storeai rw ® rfp, 0

Register   Interval
rfp [1,11]
rw [2,7]
rw [7,8]
rw [8,9]
rw [9,10]
rw [10,11]
r2 [3,7]
rx [4,8]
ry [5,9]
rz [6,10]
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Coloring by Simplification

• Linear-time approximation that generally gives 
good results
1. Build: Construct the interference graph
2. Simplify: Color the graph by repeatedly 

simplification
3. Spill: If simplify cannot reduce the graph 

completely, mark some node for spilling
4. Select: Assign colors to nodes in the graph 
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1. Build

• Construct the interference graph 
• Find live ranges – SSA!
– Build SSA form of IR
– Each SSA name is initially a singleton set
– A F-function means form the union of the sets that 

includes those names (union-find algorithm)
– Resulting sets represent live ranges
– Either rewrite code to use live range names or keep a 

mapping between SSA names and live-range names
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1. Build

• Use dataflow information to build interference 
graph
– Nodes = live ranges
– Add an edge in the graph for each pair of live 

ranges that overlap
• But watch copy operations.  MOV ri ® rj does not 

create interference between ri, rj since they can be the 
same register if the ranges do not otherwise interfere
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2. Simplify

• Heuristic: Assume we have K registers

• Find a node m with fewer than K neighbors

• Remove m from the graph.  If the resulting graph 
can be colored, then so can the original graph 
(the neighbors of m have at most K-1 colors 
among them)

• Repeat by removing and pushing on a stack all 
nodes with degree less than K

– Each simplification decreases other node degrees –
may make more simplifications possible
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3. Spill

• If simplify stops because all nodes have 
degree ≥ k, mark some node for spilling
– This node is in memory during execution
–\ Spilled node no longer interferes with 

remaining nodes, reducing their degree.
– Continue by removing spilled node and push on 

the stack (optimistic – hope that spilled node does 
not interfere with remaining nodes – Briggs 
allocator)
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3. Spill

• Spill decisions should be based on costs of 
spilling different values 

• Issues
– Address computation needed for spill
– Cost of memory operation
– Estimated execution frequency

(e.g., inner loops first)
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4. Select

• Assign nodes to colors in the graph:
– Start with empty graph
– Rebuild original graph by repeatedly adding node 

from top of the stack
• (When we do this, there must be a color for it if it didn’t 

represent a potential spill – pick a different color from 
any adjacent node)

– When a potential spill node is popped it may not 
be colorable (neighbors may have k colors 
already).  This is an actual spill.
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5. Start Over 

• If Select phase cannot color some node (must 
be a potential spill node), add loads before 
each use and stores after each definition
– Creates new temporaries with tiny live ranges

• Repeat from beginning
– Iterate until Simplify succeeds
– In practice a couple of iterations are enough
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Coalescing Live Ranges

• Idea: if two live ranges are connected by a 
copy operation (MOV ri ® rj) but do not 
otherwise interfere, then the live ranges can 
be coalesced (combined)
– Rewrite all references to rj to use ri
– Remove the copy instruction

• Then need to fix up interference graph
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Coalescing Advantages?
• Makes the code smaller, faster (no copy 

operation)
• Shrinks set of live ranges
• Reduces the degree of any live range that 

interfered with both live ranges ri, rj
• But: coalescing two live ranges can prevent 

coalescing of others, so ordering matters
– Best: Coalesce most frequently executed ranges first 

(e.g., inner loops)
• Can have a substantial payoff – do it!
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Overall Structure
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Find live 
ranges

Build int. 
graph Coalesce Spill 

Costs
Find 

Coloring

Insert 
Spills

No Spills

More Coalescing Possible

Spills



Complications

• Need to deal with irregularities in the register 
set
– Some operations require dedicated registers (idiv

in x86, split address/data registers in M68k and 
others), register overlap (AH, AL, AX, EAX, RAX) in 
x86 and x86-64

– Register conventions like function results, use of 
registers across calls, etc.

• Model by precoloring nodes, adding 
constraints in the graph, etc.
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Graph Representation
• The interference graph representation drives the 

time and space requirements for the allocator 
(and maybe the compiler)

• Not unknown to have O(5K) nodes and O(1M) 
edges

• Dual representation works best
– Triangular bit matrix for efficient access to 

interference information
– Vector of adjacency vectors for efficient access to 

node neighbors
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And That’s It

• Modulo all the picky details, that is…
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