
CSE P 501 – Compilers

Instruction Scheduling
Hal Perkins
Spring 2018

UW CSE P 501 Spring 2018 O-1

Agenda

• Instruction scheduling issues – latencies

• List scheduling

UW CSE P 501 Spring 2018 O-2

Issues (1)

• Many operations have non-zero latencies
• Modern machines can issue several

operations per cycle
– Want to take advantage of multiple function units

on chip
• Loads & Stores may or may not block
– may be slots after load/store for other useful work

UW CSE P 501 Spring 2018 O-3

Issues (2)
• Branch costs vary
• Branches on some processors have delay slots
• Modern processors have heuristics to predict

whether branches are taken and try to keep
pipelines full

• GOAL: Scheduler should reorder instructions to
hide latencies, take advantage of multiple
function units and delay slots, and help the
processor effectively pipeline execution

UW CSE P 501 Spring 2018 O-4

Latencies for a Simple Example Machine

Operation Cycles
LOAD 3
STORE 3
ADD 1
MULT 2
SHIFT 1
BRANCH 0 TO 8

UW CSE P 501 Spring 2018 O-5

Example: w = w*2*x*y*z;

Simple schedule
1 LOAD r1 <- w
4 ADD r1 <- r1,r1
5 LOAD r2 <- x
8 MULT r1 <- r1,r2
9 LOAD r2 <- y
12 MULT r1 <- r1,r2
13 LOAD r2 <- z
16 MULT r1 <- r1,r2
18 STORE w <- r1
21 r1 free

2 registers, 20 cycles

Loads early
1 LOAD r1 <- w
2 LOAD r2 <- x
3 LOAD r3 <- y
4 ADD r1 <- r1,r1
5 MULT r1 <- r1,r2
6 LOAD r2 <- z
7 MULT r1 <- r1,r3
9 MULT r1 <- r1,r2
11 STORE w <- r1
14 r1 is free

3 registers, 13 cycles

UW CSE P 501 Spring 2018 O-6

Instruction Scheduling

• Problem
– Given a code fragment for some machine and

latencies for each operation, reorder to minimize
execution time

• Constraints
– Produce correct code (required)
– Minimize wasted cycles
– Avoid spilling registers if possible
– Do this efficiently

UW CSE P 501 Spring 2018 O-7

Precedence Graph

• Nodes n are operations
• Attributes of each node
– type – kind of operation
– delay – latency

• If node n2 uses the result of node n1, there is
an edge e = (n1,n2) in the graph

UW CSE P 501 Spring 2018 O-8

Example Graph
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE P 501 Spring 2018 O-9

Schedules (1)

• A correct schedule S maps each node n into a
non-negative integer representing its cycle
number, and
– S (n) >= 0 for all nodes n (obvious)
– If (n1,n2) is an edge, then S(n1)+delay(n1) <= S(n2)
– For each type t there are no more operations of

type t in any cycle than the target machine can
issue

UW CSE P 501 Spring 2018 O-10

Schedules (2)

• The length of a schedule S, denoted L(S) is
L(S) = maxn (S(n) + delay(n))

• The goal is to find the shortest possible
correct schedule
– Other possible goals: minimize use of registers,

power, space, …

UW CSE P 501 Spring 2018 O-11

Constraints
• Main points
– All operands must be available
– Multiple operations can be ready at any given point
– Moving operations can lengthen register lifetimes
– Moving uses near definitions can shorten register

lifetimes
– Operations can have multiple predecessors

• Collectively this makes scheduling NP-complete
• Local scheduling is the simpler case
– Straight-line code
– Consistent, predictable latencies

UW CSE P 501 Spring 2018 O-12

Algorithm Overview
• Build a precedence graph P
• Compute a priority function over the nodes in P

(typical: longest latency-weighted path)
• Use list scheduling to construct a schedule, one

cycle at a time
– Use queue of operations that are ready
– At each cycle

• Chose a ready operation and schedule it
• Update ready queue

• Rename registers to avoid false dependencies
and conflicts

UW CSE P 501 Spring 2018 O-13

List Scheduling Algorithm
Cycle = 1; Ready = leaves of P; Active = empty;
while (Ready and/or Active are not empty)

if (Ready is not empty)
remove an op from Ready;
S(op) = Cycle;
Active = Active È op;

Cycle++;
for each op in Active
if (S(op) + delay(op) <= Cycle)

remove op from Active;
for each successor s of op in P

if (s is ready – i.e., all operands available)
add s to Ready

UW CSE P 501 Spring 2018 O-14

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE P 501 Spring 2018 O-15

Forward vs Backwards

• Backward list scheduling
– Work from the root to the leaves
– Schedules instructions from end to beginning of

the block
• In practice, compilers try both and pick the

result that minimizes costs
– Little extra expense since the precedence graph

and other information can be reused
– Different directions win in different cases

UW CSE P 501 Spring 2018 O-16

Beyond Basic Blocks

• List scheduling dominates, but moving beyond
basic blocks can improve quality of the code.
Some possibilities:
– Schedule extended basic blocks
• Watch for exit points – limits reordering or requires

compensating
– Trace scheduling
• Use profiling information to select regions for

scheduling using traces (paths) through code

UW CSE P 501 Spring 2018 O-17

