CSE P 501 - Compilers

Instruction Scheduling
Hal Perkins
Spring 2018

Agenda

- Instruction scheduling issues - latencies
- List scheduling

Issues (1)

- Many operations have non-zero latencies
- Modern machines can issue several operations per cycle
- Want to take advantage of multiple function units on chip
- Loads \& Stores may or may not block
- may be slots after load/store for other useful work

Issues (2)

- Branch costs vary
- Branches on some processors have delay slots
- Modern processors have heuristics to predict whether branches are taken and try to keep pipelines full
- GOAL: Scheduler should reorder instructions to hide latencies, take advantage of multiple function units and delay slots, and help the processor effectively pipeline execution

Latencies for a Simple Example Machine

Operation	Cycles
LOAD	3
STORE	3
ADD	1
MULT	2
SHIFT	1
BRANCH	0 TO 8

Example: w = w*2*x* ${ }^{*} z ;$

Simple schedule

1 LOAD	r1 <- w
4 ADD	r1 <- r1,r1
5 LOAD	r2 <-x
8 MULT	r1 <-r1,r2
9 LOAD	r2 <-y
12 MULT	$r 1<-r 1, r 2$
13 LOAD	r2 <- z
16 MULT	$r 1<-r 1, r 2$
18 STORE	w <-r1
21 r1 free	
2 reg	rs, 20 cycles

Loads early
1 LOAD $\quad \mathrm{r} 1<-\mathrm{w}$

2 LOAD r2 <-x
3 LOAD $r 3<-y$
4 ADD r1<-r1,r1
5 MULT $\quad \mathrm{r} 1<-\mathrm{r} 1, \mathrm{r} 2$
6 LOAD \quad 2 $<-z$
7 MULT $\quad r 1<-r 1, r 3$
9 MULT $\quad r 1<-r 1, r 2$
11 STORE $\quad w<-r 1$
14 r1 is free
3 registers, 13 cycles

Instruction Scheduling

- Problem
- Given a code fragment for some machine and latencies for each operation, reorder to minimize execution time
- Constraints
- Produce correct code (required)
- Minimize wasted cycles
- Avoid spilling registers if possible
- Do this efficiently

Precedence Graph

- Nodes n are operations
- Attributes of each node
- type - kind of operation
- delay - latency
- If node n_{2} uses the result of node n_{1}, there is an edge $e=\left(n_{1}, n_{2}\right)$ in the graph

Example Graph

- Code

a LOAD	$r 1<-w$
b ADD	$r 1<-r 1, r 1$
c LOAD	$r 2<-x$
d MULT	$r 1<-r 1, r 2$
e LOAD	$r 2<-y$
f MULT	$r 1<-r 1, r 2$
g LOAD	$r 2<-z$
h MULT	$r 1<-r 1, r 2$
i STORE	$w<-r 1$

Schedules (1)

- A correct schedule S maps each node n into a non-negative integer representing its cycle number, and
$-S(n)>=0$ for all nodes n (obvious)
- If $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ is an edge, then $\mathrm{S}\left(\mathrm{n}_{1}\right)+$ delay $\left(\mathrm{n}_{1}\right)<=\mathrm{S}\left(\mathrm{n}_{2}\right)$
- For each type t there are no more operations of type t in any cycle than the target machine can issue

Schedules (2)

- The length of a schedule S, denoted $L(S)$ is

$$
\mathrm{L}(\mathrm{~S})=\max _{n}(\mathrm{~S}(n)+\operatorname{delay}(n))
$$

- The goal is to find the shortest possible correct schedule
- Other possible goals: minimize use of registers, power, space, ...

Constraints

- Main points
- All operands must be available
- Multiple operations can be ready at any given point
- Moving operations can lengthen register lifetimes
- Moving uses near definitions can shorten register lifetimes
- Operations can have multiple predecessors
- Collectively this makes scheduling NP-complete
- Local scheduling is the simpler case
- Straight-line code
- Consistent, predictable latencies

Algorithm Overview

- Build a precedence graph P
- Compute a priority function over the nodes in P (typical: longest latency-weighted path)
- Use list scheduling to construct a schedule, one cycle at a time
- Use queue of operations that are ready
- At each cycle
- Chose a ready operation and schedule it
- Update ready queue
- Rename registers to avoid false dependencies and conflicts

List Scheduling Algorithm

Cycle = 1; Ready = leaves of P; Active = empty; while (Ready and/or Active are not empty)
if (Ready is not empty)
remove an op from Ready; S(op) = Cycle; Active = Active \cup op;
Cycle++;
for each op in Active if (S(op) + delay(op) <= Cycle) remove op from Active; for each successor s of op in P if (s is ready - i.e., all operands available) add s to Ready

Example

- Code

a LOAD	$r 1<-w$
b ADD	$r 1<-r 1, r 1$
c LOAD	$r 2<-x$
d MULT	$r 1<-r 1, r 2$
e LOAD	$r 2<-y$
f MULT	$r 1<-r 1, r 2$
g LOAD	$r 2<-z$
h MULT	$r 1<-r 1, r 2$
i STORE	$w<-r 1$

Forward vs Backwards

- Backward list scheduling
- Work from the root to the leaves
- Schedules instructions from end to beginning of the block
- In practice, compilers try both and pick the result that minimizes costs
- Little extra expense since the precedence graph and other information can be reused
- Different directions win in different cases

Beyond Basic Blocks

- List scheduling dominates, but moving beyond basic blocks can improve quality of the code. Some possibilities:
- Schedule extended basic blocks
- Watch for exit points - limits reordering or requires compensating
- Trace scheduling
- Use profiling information to select regions for scheduling using traces (paths) through code

