CSE P 501 – Compilers

LL and Recursive-Descent Parsing
Hal Perkins
Spring 2018
Agenda

• Top-Down Parsing
• Predictive Parsers
• LL(k) Grammars
• Recursive Descent
• Grammar Hacking
 – Left recursion removal
 – Factoring
Basic Parsing Strategies (1)

• Bottom-up
 – Build up tree from leaves
 • Shift next input or reduce a handle
 • Accept when all input read and reduced to start symbol of the grammar
 – LR(k) and subsets (SLR(k), LALR(k), ...)

remaining input
Basic Parsing Strategies (2)

- Top-Down
 - Begin at root with start symbol of grammar
 - Repeatedly pick a non-terminal and expand
 - Success when expanded tree matches input
 - LL(k)
Top-Down Parsing

- Situation: have completed part of a left-most derivation
 \[S \Rightarrow^* w\alpha \Rightarrow^* wxy \]
- Basic Step: Pick some production
 \[A ::= \beta_1 \beta_2 ... \beta_n \]
 that will properly expand \(A \)
 to match the input
 - Want this to be
deterministic (i.e.,
 no backtracking)
Predictive Parsing

- If we are located at some non-terminal A, and there are two or more possible productions

 $A ::= \alpha$

 $A ::= \beta$

 we want to make the correct choice by looking at just the next input symbol

- If we can do this, we can build a **predictive parser** that can perform a top-down parse without backtracking
Example

• Programming language grammars are often suitable for predictive parsing
• Typical example
 \[
 stmt ::= id = exp ; | return exp ;
 \quad | if (exp) stmt | while (exp) stmt
 \]

If the next part of the input begins with the tokens

 \textbf{IF} \textbf{LPAREN} ID(x) ...

we should expand \textit{stmt} to an if-statement
LL(1) Property

- A grammar has the LL(1) property if, for all non-terminals A, if productions $A ::= \alpha$ and $A ::= \beta$ both appear in the grammar, then it is true that $\mathtt{FIRST}(\alpha) \cap \mathtt{FIRST}(\beta) = \emptyset$

- If a grammar has the LL(1) property, we can build a predictive parser for it that uses 1-symbol lookahead

*Provided that neither α or β is ϵ (i.e., empty). If either one is ϵ then we need to look at FOLLOW sets.
LL(k) Parsers

- An LL(k) parser
- Looks ahead at most k symbols
- Constructs a Leftmost derivation
- LL(k) for k > 1 is rare in practice
- 1-symbol lookahead is enough for many practical programming language grammars
- Scans the input Left to right

and even if the grammar isn’t quite LL(1), it may be close enough that we can pretend it is LL(1) and cheat a little when it isn’t
Table-Driven LL(k) Parsers

- As with LR(k), a table-driven parser can be constructed from the grammar

- Example
 1. $S ::= (S) S$
 2. $S ::= [S] S$
 3. $S ::= \varepsilon$

- Table

```
  \hspace{-1em}
  \begin{array}{c|c|c|c|c}
    & ( & [ & \$ \\
    \hline
    S & 1 & 3 & 2 & 3 & 3
  \end{array}
```
LL vs LR (1)

• Tools can automatically generate parsers for both LL(1) and LR(1) grammars
• LL(1) has to make a decision based on a single non-terminal and the next input symbol
• LR(1) can base the decision on the entire left context (i.e., contents of the stack) as well as the next input symbol
LL vs LR (2)

\[\therefore \text{LR(1) is more powerful than LL(1)} \]

 \[- \text{Includes a larger set of languages} \]

 \[\therefore \text{(editorial opinion) If you’re going to use a tool-generated parser, might as well use LR} \]

 \[- \text{But there are some very good LL parser tools out there (ANTLR, JavaCC, ...) that might win for other reasons (documentation, IDE support, integrated AST generation, local culture/politics/economics etc.)} \]
Recursive-Descent Parsers

• A main advantage of top-down parsing is that it is easy to implement by hand
 – And even if you use automatic tools, the code may be easier to follow and debug
• Key idea: write a function (procedure, method) corresponding to each non-terminal in the grammar
 – Each of these functions is responsible for matching its non-terminal with the next part of the input
Example: Statements

Grammar

\[
\begin{align*}
\text{stmt} & ::= \text{id} = \text{exp} ; \\
& \mid \text{return exp} ; \\
& \mid \text{if (exp) stmt} \\
& \mid \text{while (exp) stmt}
\end{align*}
\]

Method for this grammar rule

\[
\begin{align*}
\text{// parse stmt ::= id=exp; | ...} \\
\text{void stmt() {} } \\
\text{switch(nextToken) { } } \\
\text{RETURN: returnStmt(); break;} \\
\text{IF: ifStmt(); break;} \\
\text{WHILE: whileStmt(); break;} \\
\text{ID: assignStmt(); break;} \\
\text{}}
\end{align*}
\]
Example (more statements)

```c
// parse while (exp) stmt
void whileStmt() {
    // skip “while” “(”
    skipToken(WHILE);
    skipToken(LPAREN);

    // parse condition
    exp();

    // skip “)”
    skipToken(RPAREN);

    // parse stmt
    stmt();
}

// parse return exp
void returnStmt() {
    // skip “return”
    skipToken(RETURN);

    // parse expression
    exp();

    // skip “;”
    skipToken(SCOLON);
}

// aux method: advance past expected token
void skipToken(Token expected) {
    if (nextToken == expected)
        getNextToken();
    else error(“token” + expected + “expected”);
}
```
Recursive-Descent Recognizer

• Easy!
• Pattern of method calls traces leftmost derivation in parse tree
• Examples only handle valid programs and choke on errors. Real parsers need:
 – Better error recovery (don’t get stuck on bad token)
 – Semantic checks (declarations, type checking, ...)
 – Some sort of processing after recognizing (build AST, 1-pass code generation, ...)
Invariant for Parser Functions

• The parser functions need to agree on where they are in the input

• Useful invariant: When a parser function is called, the current token (next unprocessed piece of the input) is the token that begins the expanded non-terminal being parsed
 – Corollary: when a parser function is done, it must have completely consumed input correspond to that non-terminal
Possible Problems

• Two common problems for recursive-descent (and LL(1)) parsers
 - Left recursion (e.g., $E ::= E + T \mid ...$)
 - Common prefixes on the right side of productions
Left Recursion Problem

Grammar rule
\[expr ::= expr \, + \, term \]
\[| \, term \]

Code
```
// parse expr ::= ...
void expr() {
  expr();
  if (current token is PLUS) {
    skipToken(PLUS);
    term();
  }
}
```

And the bug is????
Left Recursion Problem

- If we code up a left-recursive rule as-is, we get an infinite recursion
- Non-solution: replace with a right-recursive rule

 \[expr ::= term + expr \mid term \]

 — Why isn’t this the right thing to do?
One Left Recursion Solution

- Rewrite using right recursion and a new non-terminal
- Original: $expr ::= expr + term \mid term$
- New

 $expr ::= term \text{ exprtail}$
 $\text{exprtail ::= + term exprtail} \mid \varepsilon$

- Properties
 - No infinite recursion if coded up directly
 - Maintains required left associatively (if you interpret the parse tree the right way in the semantic actions)
Another Way to Look at This

- Observe that

 $expr ::= expr + term | term$

 generates the sequence

 $((term + term) + term) + ... + term$

- We can sugar the original rule to reflect this

 $expr ::= term \{ + term \}^*$

- This leads directly to parser code

 - Just be sure to do the correct thing to handle associativity as the terms are parsed
Code for Expressions (1)

// parse
// expr ::= term { + term }*
void expr() {
 term();
 while (next symbol is PLUS) {
 skipToken(PLUS);
 term();
 }
}

// parse
// term ::= factor { * factor }*
void term() {
 factor();
 while (next symbol is TIMES) {
 skipToken(TIMES);
 factor()
 }
}
Code for Expressions (2)

```plaintext
// parse
//    factor ::= int | id | ( expr )
void factor() {
    switch(nextToken) {
        case INT:
            process int constant;
            getNextToken();
            break;
        case ID:
            process identifier;
            getNextToken();
            break;
        case LPAREN:
            skipToken(LPAREN);
            expr();
            skipToken(RPAREN);
    }
}
```
What About Indirect Left Recursion?

- A grammar might have a derivation that leads to a left recursion
 \[A \Rightarrow \beta_1 \Rightarrow^* \beta_n \Rightarrow A \gamma \]
- Solution: transform the grammar to one where all productions are either

 \[A ::= a\alpha \quad \text{-- i.e., starts with a terminal symbol, or} \]
 \[A ::= A\alpha \quad \text{-- i.e., direct left recursion} \]

 then use formal left-recursion removal to eliminate all direct left recursions
Eliminating Indirect Left Recursion

• Basic idea: Rewrite all productions $A ::= B \ldots$ where A and B are different non-terminals by using all $B ::= \ldots$ productions to replace the initial rhs B

• Example: Suppose we have $A ::= B\delta$, $B ::= \alpha$, and $B ::= \beta$. Replace $A ::= B\delta$ with $A ::= \alpha\delta$ and $A ::= \beta\delta$.

• Need to pick an order to process the non-terminals to avoid re-introducing indirect left recursions. Not complicated, just be systematic.
 – Details in any compiler or formal-language textbook
Second Problem: Left Factoring

- If two rules for a non-terminal have right hand sides that begin with the same symbol, we can’t predict which one to use
- Solution: Factor the common prefix into a separate production
Left Factoring Example

- Original grammar

 \[ifStmt ::= if (expr) stmt \]

 \[| if (expr) stmt \ else \ stmt \]

- Factored grammar

 \[ifStmt ::= if (expr) stmt \ ifTail \]

 \[ifTail ::= else stmt \ | \ \varepsilon \]
Parsing if Statements

- But it’s easiest to just directly code up “else matches closest if” rule

- (If you squint properly this is really just left factoring with the two productions combined in a single routine)

```c
// parse
// if (expr) stmt [ else stmt ]
void ifStmt()
{
    skipToken(IF);
    skipToken(LPAREN);
    expr();
    skipToken(RPAREN);
    stmt();
    if (next symbol is ELSE) {
        skipToken(ELSE);
        stmt();
    }
}
```
Another Lookahead Problem

- In languages like FORTRAN and Basic, parentheses are used for array subscripts.
- A FORTRAN grammar includes something like
 \[
 \text{factor} ::= \text{id} \ (\ \text{subscripts} \) \ | \ \text{id} \ (\ \text{arguments} \) \ | \ ...
 \]
- When the parser sees "id (", how can it decide whether this begins an array element reference or a function call?
Two Ways to Handle $id(x, x, x)$

- Use the type of id to decide
 - Requires declare-before-use restriction if we want to parse in 1 pass; also means parser needs semantic information, not just grammar

- Use a covering grammar

\[
\text{factor} ::= \text{id (commaSeparatedList) | ...}
\]

and fix/check later when more information is available (e.g., types)
Top-Down Parsing Concluded

- Works with a smaller set of grammars than bottom-up, but can be done for most sensible programming language constructs
 - Possibly with some grammar refactoring
 - And maybe a little cheating (occasional extra lookahead, ...)
- If you need to write a quick-n-dirty parser, recursive descent is often the method of choice
 - And some sophisticated hand-written parsers for real languages (e.g., C++) are “based on” LL parsing, but with lots of customizations
Parsing Concluded

- That’s it!
- On to the rest of the compiler
- Coming attractions
 - Intermediate representations (ASTs etc.)
 - Semantic analysis (including type checking)
 - Symbol tables
 - & more...