CSE P 501 – Compilers

LL and Recursive-Descent Parsing

Hal Perkins

Spring 2018
Agenda

• Top-Down Parsing
• Predictive Parsers
• LL(k) Grammars
• Recursive Descent
• Grammar Hacking
 – Left recursion removal
 – Factoring
Basic Parsing Strategies (1)

• Bottom-up
 – Build up tree from leaves
 • Shift next input or reduce a handle
 • Accept when all input read and reduced to start symbol of the grammar
 – LR(k) and subsets (SLR(k), LALR(k), ...)

remaining input
Basic Parsing Strategies (2)

• Top-Down
 – Begin at root with start symbol of grammar
 – Repeatedly pick a non-terminal and expand
 – Success when expanded tree matches input
 – LL(k)
Top-Down Parsing

- Situation: have completed part of a left-most derivation
 \[S \Rightarrow^* wA\alpha \Rightarrow^* wxy \]
- Basic Step: Pick some production
 \[A ::= \beta_1 \beta_2 \ldots \beta_n \]
 that will properly expand \(A \) to match the input
 - Want this to be deterministic (i.e., no backtracking)
Predictive Parsing

• If we are located at some non-terminal A, and there are two or more possible productions

 $A ::= \alpha$

 $A ::= \beta$

 we want to make the correct choice by looking at just the next input symbol

• If we can do this, we can build a *predictive parser* that can perform a top-down parse without backtracking
Example

- Programming language grammars are often suitable for predictive parsing
- Typical example

 \[stmt ::= id = exp ; \mid \text{return } exp ; \mid \text{if (} exp \text{) stmt} \mid \text{while (} exp \text{) stmt} \]

If the next part of the input begins with the tokens

 \text{IF } \text{LPAREN } ID(x) \text{ ...}

we should expand \textit{stmt} to an if-statement
LL(1) Property

• A grammar has the LL(1) property if, for all non-terminals A, if productions $A ::= \alpha$ and $A ::= \beta$ both appear in the grammar, then it is true that $\text{FIRST}(\alpha) \cap \text{FIRST}(\beta) = \emptyset$

• If a grammar has the LL(1) property, we can build a predictive parser for it that uses 1-symbol lookahead

• Provided that neither α or β is ε (i.e., empty). If either one is ε then we need to look at FOLLOW sets.
LL(k) Parsers

• An LL(k) parser
 – Scans the input \textit{Left} to right
 – Constructs a \textit{Leftmost} derivation
 – Looking ahead at most \textit{k} symbols

• 1-symbol lookahead is enough for many practical programming language grammars
 – LL(k) for \textit{k} > 1 is rare in practice
 • and even if the grammar isn’t quite LL(1), it may be close enough that we can pretend it is LL(1) and cheat a little when it isn’t
Table-Driven LL(k) Parsers

- As with LR(k), a table-driven parser can be constructed from the grammar
- Example
 1. \(S ::= (S) S \)
 2. \(S ::= [S] S \)
 3. \(S ::= \varepsilon \)
- Table

| | (|) | [|] | $ |
|---|---|---|---|---|
| \(S \) | 1 | 3 | 2 | 3 | 3 |
LL vs LR (1)

• Tools can automatically generate parsers for both LL(1) and LR(1) grammars
• LL(1) has to make a decision based on a single non-terminal and the next input symbol
• LR(1) can base the decision on the entire left context (i.e., contents of the stack) as well as the next input symbol
LL vs LR (2)

:. LR(1) is more powerful than LL(1)
 - Includes a larger set of languages

:. (editorial opinion) If you’re going to use a tool-generated parser, might as well use LR
 - But there are some very good LL parser tools out there (ANTLR, JavaCC, ...) that might win for other reasons (documentation, IDE support, integrated AST generation, local culture/politics/economics etc.)
Recursive-Descent Parsers

• A main advantage of top-down parsing is that it is easy to implement by hand
 – And even if you use automatic tools, the code may be easier to follow and debug
• Key idea: write a function (procedure, method) corresponding to each non-terminal in the grammar
 – Each of these functions is responsible for matching its non-terminal with the next part of the input
Example: Statements

Grammar

\[stmt ::= id = exp ; \]
\[| \text{return } exp ; \]
\[| \text{if (} exp \text{) stmt} \]
\[| \text{while (} exp \text{) stmt} \]

Method for this grammar rule

// parse stmt ::= id=exp; | ...
void stmt() {
 switch(nextToken) {
 RETURN: returnStmt(); break;
 IF: ifStmt(); break;
 WHILE: whileStmt(); break;
 ID: assignStmt(); break;
 }
}
Example (more statements)

// parse while (exp) stmt
void whileStmt() {
 // skip “while” “(
 skipToken(WHILE);
 skipToken(LPAREN);

 // parse condition
 exp();

 // skip “)”
 skipToken(RPAREN);

 // parse stmt
 stmt();
}

// parse return exp ;
void returnStmt() {
 // skip “return”
 skipToken(RETURN);

 // parse expression
 exp();

 // skip “;”
 skipToken(SCOLON);
}

// aux method: advance past expected token
void skipToken(Token expected) {
 if (nextToken == expected)
 getNextToken();
 else error(“token” + expected + “expected”);
}
Recursive-Descent Recognizer

• Easy!
• Pattern of method calls traces leftmost derivation in parse tree
• Examples only handle valid programs and choke on errors. Real parsers need:
 – Better error recovery (don’t get stuck on bad token)
 – Semantic checks (declarations, type checking, …)
 – Some sort of processing after recognizing (build AST, 1-pass code generation, …)
Invariant for Parser Functions

• The parser functions need to agree on where they are in the input

• Useful invariant: When a parser function is called, the current token (next unprocessed piece of the input) is the token that begins the expanded non-terminal being parsed
 – Corollary: when a parser function is done, it must have completely consumed input correspond to that non-terminal
Possible Problems

• Two common problems for recursive-descent (and LL(1)) parsers
 – Left recursion (e.g., $E ::= E + T \mid ...$)
 – Common prefixes on the right side of productions
Left Recursion Problem

Grammar rule

\[expr ::= expr + term \]
\[\quad | \quad term \]

Code

// parse expr ::= ...
void expr() {
 expr();
 if (current token is PLUS) {
 skipToken(PLUS);
 term();
 }
}

And the bug is?????
Left Recursion Problem

• If we code up a left-recursive rule as-is, we get an infinite recursion
• Non-solution: replace with a right-recursive rule

\[expr ::= \text{term} + \text{expr} \mid \text{term} \]

– Why isn’t this the right thing to do?
One Left Recursion Solution

• Rewrite using right recursion and a new non-terminal
• Original: \(expr ::= expr + term \mid term\)
• New
 \[
 expr ::= term exprtail
 exprtail ::= + term exprtail \mid \varepsilon
 \]
• Properties
 – No infinite recursion if coded up directly
 – Maintains required left associatively (if you interpret the parse tree the right way in the semantic actions)
Another Way to Look at This

• Observe that

\[expr ::= expr + term \mid term \]

generates the sequence

\[\ldots((term + term) + term) + \ldots) + term \]

• We can sugar the original rule to reflect this

\[expr ::= term \{ + term \}* \]

• This leads directly to parser code
 – Just be sure to do the correct thing to handle associativity as the terms are parsed
Code for Expressions (1)

```c
// parse
//   expr ::= term { + term }*
void expr() {
    term();
    while (next symbol is PLUS) {
        skipToken(PLUS);
        term();
    }
}

// parse
//   term ::= factor { * factor }*
void term() {
    factor();
    while (next symbol is TIMES) {
        skipToken(TIMES);
        term();
    }
    factor();
}
```
// parse
// factor ::= int | id | (expr)
void factor() {

 switch(nextToken) {

 case INT:
 process int constant;
 getNextToken();
 break;
 case ID:
 process identifier;
 getNextToken();
 break;
 case LPAREN:
 skipToken(LPAREN);
 expr();
 skipToken(RPAREN);
 ...
 }
}
What About Indirect Left Recursion?

• A grammar might have a derivation that leads to a left recursion
 \[A \Rightarrow \beta_1 \Rightarrow^{*} \beta_n \Rightarrow A \gamma \]

• Solution: transform the grammar to one where all productions are either
 \[A ::= a\alpha \quad \text{– i.e., starts with a terminal symbol, or} \]
 \[A ::= A\alpha \quad \text{– i.e., direct left recursion} \]

 then use formal left-recursion removal to eliminate all direct left recursions
Eliminating Indirect Left Recursion

• Basic idea: Rewrite all productions $A ::= B \ldots$ where
A and B are different non-terminals by using all
B ::= ... productions to replace the initial rhs B

• Example: Suppose we have $A ::= B\delta$, $B ::= \alpha$, and
B ::= β. Replace $A ::= B\delta$ with $A ::= \alpha\delta$ and $A ::= \beta\delta$.

• Need to pick an order to process the non-
terminals to avoid re-introducing indirect left
recursions. Not complicated, just be systematic.

 – Details in any compiler or formal-language textbook
Second Problem: Left Factoring

• If two rules for a non-terminal have right hand sides that begin with the same symbol, we can’t predict which one to use
• Solution: Factor the common prefix into a separate production
Left Factoring Example

• Original grammar

 \[ifStmt ::= if (expr) stmt \]

 \[| if (expr) stmt \ else \ stmt \]

• Factored grammar

 \[ifStmt ::= if (expr) stmt \ ifTail \]

 \[ifTail ::= else \ stmt \ | \ \epsilon \]
Parsing if Statements

- But it’s easiest to just directly code up “else matches closest if” rule

- (If you squint properly this is really just left factoring with the two productions combined in a single routine)

```c
// parse
//     if (expr) stmt [ else stmt ]
void ifStmt() {
    skipToken(IF);
    skipToken(LPAREN);
    expr();
    skipToken(RPAREN);
    stmt();
    if (next symbol is ELSE) {
        skipToken(ELSE);
        stmt();
    }
}
```
Another Lookahead Problem

• In languages like FORTRAN and Basic, parentheses are used for array subscripts.

• A FORTRAN grammar includes something like:

\[
\text{factor ::= id (subscripts) | id (arguments) | ...}
\]

• When the parser sees “id (”, how can it decide whether this begins an array element reference or a function call?
Two Ways to Handle $id(x, x, x)$

• Use the type of id to decide
 – Requires declare-before-use restriction if we want to parse in 1 pass; also means parser needs semantic information, not just grammar

• Use a covering grammar

 $factor ::= id \ (commaSeparatedList \) \ | \ ...$

 and fix/check later when more information is available (e.g., types)
Top-Down Parsing Concluded

• Works with a smaller set of grammars than bottom-up, but can be done for most sensible programming language constructs
 – Possibly with some grammar refactoring
 • And maybe a little cheating (occasional extra lookahead, ...)

• If you need to write a quick-n-dirty parser, recursive descent is often the method of choice
 – And some sophisticated hand-written parsers for real languages (e.g., C++) are “based on” LL parsing, but with lots of customizations
Parsing Concluded

• That’s it!
• On to the rest of the compiler
• Coming attractions
 – Intermediate representations (ASTs etc.)
 – Semantic analysis (including type checking)
 – Symbol tables
 – & more...