CSE P 501 – Compilers

LR Parser Construction
Hal Perkins
Spring 2018
Agenda

- LR(0) state construction
- FIRST, FOLLOW, and nullable
- Variations: SLR, LR(1), LALR
LR State Machine

- Idea: Build a DFA that recognizes handles
 - Language generated by a CFG is generally not regular, but
 - Language of viable prefixes for a CFG is regular
 - So a DFA can be used to recognize handles
 - LR Parser reduces when DFA accepts a handle
Prefixes, Handles, &c (review)

- If S is the start symbol of a grammar G,
 - If $\underline{S} \Rightarrow^* \underline{\alpha}$ then α is a sentential form of G
 - γ is a viable prefix of G if there is some derivation $\underline{S} \Rightarrow^*_{\text{rm}} \underline{\alpha A w} \Rightarrow^*_{\text{rm}} \underline{\alpha \beta w}$ and γ is a prefix of $\alpha \beta$.
 - The occurrence of β in $\alpha \beta w$ is a handle of $\alpha \beta w$
- An item is a marked production (at some position in the right hand side)
 - $[A ::= \underline{X \ Y}]$ $[A ::= X \underline{. \ Y}]$ $[A ::= X \ Y \underline{.}]$

\[
A ::= X \ Y
\]
Building the LR(0) States

- Example grammar

\[
G = \begin{align*}
S' & ::= S \, $ \\
S & ::= (\, L \,) \\
S & ::= x \\
L & ::= S \\
L & ::= L \, , \, S
\end{align*}
\]

- We add a production \(S' \) with the original start symbol followed by end of file (\$)
 - We accept if we reach the end of this production
- Question: What language does this grammar generate?
Start of LR Parse

- Initially
 - Stack is empty
 - Input is the right hand side of S', i.e., S
 - Initial configuration is $[S' ::= . \ S \]$
 - But, since position is just before S, we are also just before anything that can be derived from S
Initial state

- \(S' ::= . S $ \) start
- \(S ::= . (L) \)
- \(S ::= . x \) completion

- A state is just a set of items
 - Start: an initial set of items
 - Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state
Shift Actions (1)

- To shift past the \(x \), add a new state with appropriate item(s), including their closure
 - In this case, a single item; the closure adds nothing
 - This state will lead to a reduction since no further shift is possible
Shift Actions (2)

0. $S' ::= S$
1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L, S$

- If we shift past the $(,$ we are at the beginning of L
- The closure adds all productions that start with L, which also requires adding all productions starting with S
Goto Actions

- Once we reduce S, we’ll pop the rhs from the stack exposing the first state. Add a *goto* transition on S for this.
Basic Operations

• *Closure* (S)
 - Adds all items implied by items already in S

• *Goto* (l, X)
 - l is a set of items
 - X is a grammar symbol (terminal or non-terminal)
 - *Goto* moves the dot past the symbol X in all appropriate items in set l
Closure Algorithm

- $\text{Closure}(S) =$
 repeat
 for any item $[A ::= \alpha \cdot \beta] \text{ in } S$
 for all productions $B ::= \gamma$
 add $[B ::= \cdot \gamma]$ to S
 until S does not change
 return S

- Classic example of a fixed-point algorithm
Goto Algorithm

- $Goto (l, X) =$

 set new to the empty set

 for each item $[A ::= \alpha . X . \beta]$ in l

 add $[A ::= \alpha X . \beta]$ to new

 return $Closure (new)$

- This may create a new state, or may return an existing one
LR(0) Construction

• First, augment the grammar with an extra start production $S' ::= S \;\$
• Let T be the set of states
• Let E be the set of edges
• Initialize T to $\text{Closure} \left(\left[S' ::= . \; S \;\$ \right] \right)$
• Initialize E to empty
LR(0) Construction Algorithm

repeat
 for each state I in T
 for each item $[A ::= \alpha \cdot X \cdot \beta]$ in I
 Let new be $\text{Goto}(I, X)$
 Add new to T if not present
 Add $I \xrightarrow{X} \text{new}$ to E if not present
 until E and T do not change in this iteration

• Footnote: For symbol $\$, we don’t compute $\text{goto}(I, \$)$; instead, we make this an accept action.
Example: States for

0. $S'::= S$
1. $S::= (L)$
2. $S::= x$
3. $L::= S$
4. $L::= L, S$

UW CSE P 501 Spring 2018

E-16
Building the Parse Tables (1)

• For each edge $l \xrightarrow{x} j$

 — if X is a terminal, put sj in column X, row l of the action table (shift to state j)

 — If X is a non-terminal, put gj in column X, row l of the goto table (go to state j)
Building the Parse Tables (2)

- For each state i containing an item
 $[S' ::= S \cdot \gamma],$ put $accept$ in column γ of row i
- Finally, for any state containing
 $[A ::= \gamma .]$ put action rn (reduce) in every column of row i in the table, where n is the $production$ number (not a state number)
Example: Tables for

<table>
<thead>
<tr>
<th>Action</th>
<th>Go.to</th>
</tr>
</thead>
<tbody>
<tr>
<td>x () , $</td>
<td>S L</td>
</tr>
<tr>
<td>s3 s4</td>
<td>92</td>
</tr>
<tr>
<td>r2 r2 r2 r2 r2 r2</td>
<td>acc</td>
</tr>
<tr>
<td>s3 s4 s3 r3 r3 r3 r3</td>
<td>95 96</td>
</tr>
<tr>
<td>s7 s8</td>
<td></td>
</tr>
<tr>
<td>r1 r1 r1 r1 r1</td>
<td></td>
</tr>
<tr>
<td>s3 s4</td>
<td></td>
</tr>
<tr>
<td>r4 r4 r4 r4 r4 r4 r4 r4</td>
<td></td>
</tr>
</tbody>
</table>

0. $'::= S$
1. $S::= L$
2. $S::= x$
3. $L::= S$
4. $L::= L, S$
Where Do We Stand?

• We have built the LR(0) state machine and parser tables
 — No lookahead yet
 — Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same

• A grammar is LR(0) if its LR(0) state machine (equiv. parser tables) has no shift-reduce or reduce-reduce conflicts.
A Grammar that is not LR(0)

- Build the state machine and parse tables for a simple expression grammar

\[
S ::= E ~$
\]
\[
E ::= T + E
\]
\[
E ::= T
\]
\[
T ::= x
\]
LR(0) Parser for

0. $S ::= E\$
1. $E ::= T + E$
2. $E ::= T$
3. $T ::= x$

- State 3 is has two possible actions on +
 - shift 4, or reduce 2
 - $T ::= E + E$

- Grammar is not LR(0)
How can we solve conflicts like this?

- Idea: look at the next symbol after the handle before deciding whether to reduce
- Easiest: SLR – Simple LR. Reduce only if next input terminal symbol could follow the nonterminal on the left of the production in some possible derivation(s)
- More complex: LR and LALR. Store lookahead symbols in items to keep track of what can follow a particular instance of a reduction
 - LALR used by YACC/Bison/CUP; we won’t examine in detail
 - see your favorite compiler book for explanations
SLR Parsers

- Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction; don’t reduce if the next input symbol can’t follow the resulting non-terminal
- We need to be able to compute $\text{FOLLOW}(A)$ – the set of symbols that can follow A in any possible derivation
 - i.e., t is in $\text{FOLLOW}(A)$ if any derivation contains A_t
 - To compute this, we need to compute $\text{FIRST}(\gamma)$ for strings γ that can follow A
Calculating $\text{FIRST}(\gamma)$

- Sounds easy... If $\gamma = X \ Y \ Z$, then $\text{FIRST}(\gamma)$ is $\text{FIRST}(X)$, right?

 - But what if we have the rule $X ::= \varepsilon$?
 - In that case, $\text{FIRST}(\gamma)$ includes anything that can follow X, i.e. $\text{FOLLOW}(X)$, which includes $\text{FIRST}(Y)$ and, if Y can derive ε, $\text{FIRST}(Z)$, and if Z can derive ε, ...
 - So computing FIRST and FOLLOW involves knowing FIRST and FOLLOW for other symbols, as well as which ones can derive ε.
FIRST, FOLLOW, and nullable

- nullable(X) is true if X can derive the empty string
- Given a string γ of terminals and non-terminals, FIRST(γ) is the set of terminals that can begin any strings derived from γ
 - For SLR we only need this for single terminal or non-terminal symbols, not arbitrary strings γ
- FOLLOW(X) is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together
Computing FIRST, FOLLOW, and nullable (1)

• Initialization
 set FIRST and FOLLOW to be empty sets
 set nullable to false for all non-terminals
 set FIRST[a] to a for all terminal symbols a

• Repeatedly apply four simple observations to update these sets
 – Stop when there are no further changes
 – Another fixed-point algorithm
Computing FIRST, FOLLOW, and nullable (2)

repeat
 for each production $X ::= Y_1 \ldots Y_k$
 if $Y_1 \ldots Y_k$ are all nullable (or if $k = 0$)
 set $\text{nullable}[X] = \text{true}
 \text{for each } i \text{ from 1 to } k \text{ and each } j \text{ from } i + 1 \text{ to } k$
 if $Y_1 \ldots Y_{i-1}$ are all nullable (or if $i = 1$)
 add $\text{FIRST}[Y_i]$ to $\text{FIRST}[X]$
 if $Y_{i+1} \ldots Y_k$ are all nullable (or if $i = k$)
 add $\text{FOLLOW}[X]$ to $\text{FOLLOW}[Y_i]$
 if $Y_i \ldots Y_{i-1}$ are all nullable (or if $i+1=j$)
 add $\text{FIRST}[Y_i]$ to $\text{FOLLOW}[Y_i]$
 Until FIRST, FOLLOW, and nullable do not change
Example

• Grammar

1. \(Z ::= d \)
2. \(Z ::= X Y Z \)
3. \(Y ::= \varepsilon \)
4. \(Y ::= c \)
5. \(X ::= Y \)
6. \(X ::= a \)
LR(0) Reduce Actions (review)

- In a LR(0) parser, if a state contains a reduction, it is unconditional regardless of the next input symbol
- Algorithm:
 Initialize R to empty
 for each state l in T
 for each item $[A ::= \alpha .]$ in l
 add $(l, A ::= \alpha)$ to R
SLR Construction

• This is identical to LR(0) – states, etc., except for the calculation of reduce actions
• Algorithm:
 Initialize R to empty
 for each state l in T
 for each item $[A ::= \alpha .]$ in l
 for each terminal a in FOLLOW(A)
 add $(l, a, A ::= \alpha)$ to R
 – i.e., reduce α to A in state l only on lookahead a
SLR Parser for

0. $S ::= E \cdot$
1. $E ::= T + E$
2. $E ::= T$
3. $T ::= x$

UW CSE P 501 Spring 2018
On To LR(1)

- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information
LR(1) Items

• An LR(1) item \([A ::= \alpha . \beta, a]\) is
 — A grammar production \((A ::= \alpha\beta)\)
 — A right hand side position (the dot)
 — A lookahead symbol \((a)\)
• Idea: This item indicates that \(\alpha\) is the top of the stack and the next input is derivable from \(\beta a\).
• Full construction: see the book
LR(1) Tradeoffs

• LR(1)
 – Pro: extremely precise; largest set of grammars
 – Con: potentially very large parse tables with many states
LALR(1)

- Variation of LR(1), but merge any two states that differ only in lookahead
 - Example: these two would be merged

 \[
 [A ::= x \ , \ a] \\
 [A ::= x \ , \ b]
 \]
LALR(1) vs LR(1)

- LALR(1) tables can have many fewer states than LR(1)
 - Somewhat surprising result: will actually have same number of states as SLR parsers, even though LALR(1) is more powerful
 - After the merge step, acts like SLR parser with “smarter” FOLLOW sets (can be specific to particular handles)
- LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn’t happen often)
- Most practical bottom-up parser tools are LALR(1) (e.g., yacc, bison, CUP, ...)

UW CSE P 501 Spring 2018
Language Heirarchies

The diagram illustrates the relationship between different types of grammars, categorized as unambiguous and ambiguous. It includes categories such as LL(k), LR(k), LL(1), LR(1), LALR(1), SLR, and LR(0). The diagram shows how these categories are nested within each other, indicating the hierarchy and inclusion relationships among them.
Coming Attractions

Rest of Parsing...
• LL(k) Parsing – Top-Down
• Recursive Descent Parsers
 – What you can do if you want a parser in a hurry
Then...
• AST construction – what do do while you parse!
• Visitor Pattern – how to traverse ASTs for further processing (type checking, code generation, ...)

UW CSE P 501 Spring 2018